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Abstract: For solving the continuous Sylvester equation, a class of Hermitian and skew-
Hermitian based multiplicative splitting iteration methods is presented. We consider
two symmetric positive definite splittings for each coefficient matrix of the continuous
Sylvester equations, and it can be equivalently written as two multiplicative splitting
matrix equations. When both coefficient matrices in the continuous Sylvester equation
are (non-symmetric) positive semi-definite, and at least one of them is positive definite,
we can choose Hermitian and skew-Hermitian (HS) splittings of matrices A and B in the
first equation, and the splitting of the Jacobi iterations for matrices A and B in the second
equation in the multiplicative splitting iteration method. Convergence conditions of this
method are studied in depth, and numerical experiments show the efficiency of this method.
Moreover, by numerical computation, we show that multiplicative splitting can be used as
a splitting preconditioner and induce accurate, robust and effective preconditioned Krylov
subspace iteration methods for solving the continuous Sylvester equation.

Keywords: Sylvester equation; matrix equation; multiplicative splitting; Hermitian and
skew-Hermitian splitting; iterative methods

MSC: 15A24; 15A30; 15A69; 65F10; 65F30

1. Introduction
Matrix equations arise in a number of problems of scientific computations and engi-

neering applications, such as in control theory [1,2], model reduction [3], signal process-
ing [4] and image processing [5], and many researchers focus on the matrix equations [6–11].
Nowadays, the continuous Sylvester equation is possibly the most famous and the most
broadly employed linear matrix equation [5,6,11–19]. It is given as

AX + XB = C, (1)

where A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m are defined matrices and X ∈ Rn×m is an
unknown matrix. A Lyapunov equation is a special case with m = n, B = AT and C = CT .
Here and in the subsequent sections, WT is used to denote the transpose of the matrix
W ∈ Rn×n. The continuous Sylvester Equation (1) has a unique solution if and only if A
and −B have no common eigenvalues, which will be assumed throughout this paper.

The continuous Sylvester equation has been studied extensively in recent decades as
a key pipeline and has received wide applications in areas such as control theory, differ-
ential systems and signal processing. As a result, a number of algorithms focusing on the
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dimension reduction of the equation have been proposed [20]. The resulting algorithms can
be extended to more general forms of the continuous algebraic Lyapunov equations and
extended Sylvester equations, as well as to the Markov jump system. For the continuous
Sylvester equation, various iterative methods are given in the literature. For instance,
splitting the matrix equation to find an approximate solution of the continuous Sylvester
equation has shown proper convergence, and is simpler than the corresponding multiplica-
tive splitting and thusg has relatively lower computational complexity [20–24]. Another
class of solutions focuses on overcoming the lack of stability via the combination of two
split equations and corresponding new iterative methods to approximate the solution of
the continuous Sylvester equation via the modified Richardson technique [23,25,26].

As a summary, if the equation can be expressed as a simple, symmetric, regular
singular equation, it can exploit the mixed structure to solve the equation by finding a
specific transformation to the standard form or degenerative decomposition for large-scale
experiments. Toward a solution, different techniques like regular deflating linearization,
the Hamiltonian boundary value method, dealing with fundamental subspaces which do
not relate to eigenvalues of the M-matrix, utilizing standard polynomial eigenproblem
algorithms without computation of any special splitting and implementing the Hessenberg
matrix to convert the homogeneous equivalent matrix to a special block structure have
been reported in the literature [25,27–29].

In general, the dimensions of A and B may be orders of magnitude different, and this
fact is key in selecting the most appropriate numerical solution strategy [11]. For solving
general Sylvester equations of small size, we use some methods classified such as direct
methods. Among these direct methods are the Bartels–Stewart [30] and the Hessenberg–
Schur [31] methods, which consist of transforming coefficient matrices A and B into trian-
gular or Hessenberg form by an orthogonal similarity transformation and then solving the
resulting system directly by a back-substitution process. When the coefficient matrices A
and B are large and sparse, iterative methods are often the methods of choice for solving
the Sylvester equation (1) efficiently and accurately. Many iterative methods have been
developed for solving matrix equations, such as the alternating direction implicit (ADI)
method [32], the Krylov subspace-based algorithms [13,33,34], the Hermitian and skew-
Hermitian splitting (HSS) method, the inexact variant of HSS (IHSS) iteration method [6]
and the nested splitting conjugate gradient (NSCG) method [17,35] and the nested splitting
CGNR (NS-CGNR) method [18].

In order to study the numerical methods, we often rewrite the continuous Sylvester
equation (1) as th following linear system of equations

Ax = c, (2)

where the matrix A is of dimension nm × nm and is given by

A = Im ⊗ A + BT ⊗ In, (3)

where ⊗ denotes the Kronecker product (A ⊗ B = [aijB]) and

c = vec(C) = (c11, c21, · · · , cn1, c12, c22, · · · , cn2, · · · , cnm)T

x = vec(X) = (x11, x21, · · · , xn1, x12, x22, · · · , xn2, · · · , xnm)T .

Of course, this is quite expensive and a numerically poor way to determine the solution
X of the continuous Sylvester equation (1), as the linear system of Equation (2) is costly to
solve and can be ill-conditioned.
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Now, we recall some necessary notations and useful results, which will be used
in the following section. In this paper, we use λ(M), ||M||2, ||M||F and In to denote
the eigenvalue, the spectral norm, the Frobenius norm of a matrix M ∈ Rn×n and the
identity matrix with dimension n, respectively. Note that ||.||2 is also used to represent
the 2-norm of a vector. For nonsingular matrix B, we denote by κ(B) = ||B||2||B−1||2 its
spectral condition number, and for a symmetric a positive definite matrix B, we define
the || · ||B norm of a vector x ∈ Rn as ||x||B =

√
xHBx. Then, the induced || · ||B norm

of a matrix M ∈ Rn×n is defined as ||M||B = ||B 1
2 MB− 1

2 ||2. In addition, it holds that
||Mx||B ≤ ||M||B ||x||B , ||M||B ≤

√
κ(B)||M||2 and ||I||B = 1, where I is the identity

matrix. For any matrices A = [aij] and B = [bij], A ⊗ B denotes the Kronecker product,
defined as A ⊗ B = [aijB]. For the matrix X = (x1, x2, · · · , xm) ∈ Rn×m, vec(X) denotes
the vec operator, defined as vec(X) = (xT

1 , xT
2 , · · · , xT

m)
T . Moreover, for a matrix M ∈ Rn×n

and the vector vec(M) ∈ Rnm, we have ||M||F = ||vec(M)||2.
For matrix A ∈ Rn×n, A = B − C is called a splitting of the matrix A if B is nonsin-

gular. This splitting is a convergent splitting if ρ(B−1C) < 1 and a contractive splitting if
||B−1C|| < 1 for some matrix norm.

The reminder of this paper is organized as follows. Section 2 presents our main
contribution. In other words, the multiplicative splitting iteration (MSI) method for the
continuous Sylvester equation and its convergence properties are studied deeply. Section 3
is devoted to an extensive numerical experiments with full comparison with other state-of-
the-art methods in the literature. In Section 4, we address some challenges and suggestions
for future work. Finally, we present our conclusions in Section 5.

2. Multiplicative Splitting Iterations
2.1. Traditional MSI Method

Consider the linear system of Equation (2). Let A = Mi − Ni (i = 1, 2) be two
splittings of the coefficient matrix A. The MSI method for solving the system of linear
Equation (2) is defined as follows [36]:

MSI method for linear system of equations:
Given an initial guess x(0) ∈ Rn,
For k = 1, 2, · · · until convergence, do

u(k+1) = M−1
1 N1x(k) +M−1

1 c
x(k+1) = M−1

2 N2u(k+1) +M−1
2 c

end
The MSI method can be equivalently written in the form

x(k+1) = Tmsix(k) + Gmsic, k = 0, 1, 2, · · ·

where Tmsi = M−1
2 N2M−1

1 N1 and Gmsi = M−1
2 N2M−1

1 +M−1
2 . See [36] for more details.

2.2. MSI Method for the Sylvester Equation

Based on the MSI method proposed in [36], we obtain the MSI method for the contin-
uous Sylvester equation. Let A = Mi − Ni and B = Pi − Qi, (i = 1, 2) be two splittings
of the matrices A and B, such that Mi and Pi, (i = 1, 2) are symmetric positive definite.
The continuous Sylvester equation (1) can be equivalently written as the multiplicative
splitting matrix equations {

M1U + UP1 = N1X + XQ1 + C
M2X + XP2 = N2U + UQ2 + C
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Under the assumption that Mi and Pi, (i = 1, 2) are symmetric positive definite,
we easily know that there is no common eigenvalues between the matrices Mi and −Pi,
(i = 1, 2), so that this two multiplicative splitting matrix equations have unique solutions
for all given right-hand-side matrices.

Now, based on the above observations, we can establish the following multiplicative
splitting iterations for solving the continuous Sylvester Equation (1):

MSI method for Sylvester equation:
Given an initial guess X(0) ∈ Rm×n,
For k = 1, 2, · · · until convergence, do

Solve M1U(k+1) + U(k+1)P1 = N1X(k) + X(k)Q1 + C
Solve M2X(k+1) + X(k+1)P2 = N2U(k+1) + U(k+1)Q2 + C

end
In special cases, when both coefficient matrices A and B in the Sylvester equation (1)

are (non-symmetric) positive semi-definite, and at least one of them is positive definite, in
the first equation in the MSI method we can choose Hermitian and skew-Hermitian (HS)
splittings of matrices A and B, i.e., A = HA − SA and B = HB − SB, where HA, SA, HB, SB

are the Hermitian and skew-Hermitian parts of A and B, respectively. Also, in the second
equation in the MSI method, we consider the splitting of the Jacobi iterations [37] for
matrices A and B, i.e., A = DA − NA and B = DB − NB, where DA, NA, DB, NB are the
diagonal and non-diagonal parts of A and B, respectively. Therefore, we can rewrite this
method as follows:
Given an initial guess X(0) ∈ Rm×n,
For k = 1, 2. · · · until convergence, do

Solve system HAU(k+1) + U(k+1)HB = SAX(k) + X(k)SB + C
Solve system DAX(k+1) + X(k+1)DB = NAU(k+1) + U(k+1)NB + C

end
Achieving two Sylvester equations that we can easily solve is our motivation for

choosing these splittings. This is because the first system can be solved by the Sylvester
conjugate gradient method [38], and the following routine can be used for direct solution
of the second system:

Directly solution of matrix equation DAX + XDB = F:
For i = 1 : n

For j = 1 : m

xij =
fij

aii+bjj

end

end
where aii and bjj are the diagonal elements of matrices A and B, respectively. Moreover,
F = NAU + UNB + C, and U is the solution of the first equation in the MSI method for
Sylvester equation.

2.3. Using Multiplicative Splitting as a Preconditioner

Given the fact that any matrix splitting can naturally induce a splitting preconditioner
for the Krylov subspace methods (see [39]) in Section 3, by numerical computation, we show
that multiplicative splitting can be used as a splitting preconditioner to induce accurate,
robust and effective preconditioned Krylov subspace iteration methods for solving the
continuous Sylvester equation.
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2.4. Convergence Analysis

In the subsequent solution, we need the following lemmas.

Lemma 1 ([36]). Let B, C ∈ Rn×n be two Hermitian matrices. Then, BC = CB if and only if B
and C have a common set of orthonormal eigenvectors.

Lemma 2 ([40]). Let A ∈ Rn×n be a symmetric positive definite matrix. Then, for all x ∈ Rn, we
have ||A 1

2 x||2 = ||x||A and√
λmin(A)||x||A ≤ ||Ax||2 ≤

√
λmax(A)||x||A.

Lemma 3 ([41]). Suppose that A, B ∈ Rn×n are two Hermitian matrices, and denote the minimum
and the maximum eigenvalues of a matrix M with λmin(M) and λmax(M), respectively. Then,

λmax(A + B) ≤ λmax(A) + λmax(B),
λmin(A + B) ≥ λmin(A) + λmin(B).

Lemma 4 ([41]). Let A, B ∈ Cn×n, and λ and µ be the eigenvalues of A and B, and x and y be the
corresponding eigenvectors, respectively. Then λµ is an eigenvalue of A ⊗ B corresponding to the
eigenvector x ⊗ y.

Lemma 5. Suppose that A = M−N is a splitting such that M is symmetric positive definite,
with M = Im ⊗ M + PT ⊗ In and N = Im ⊗ N + QT ⊗ In. If

θ3 max |λ(N)|+ max |λ(Q)|
λmin(M) + λmin(P)

< 1,

where θ =
√

λmax(M)+λmax(P)
λmin(M)+λmin(P) , then ||M−1N ||M < 1.

Proof. By Lemmas 3 and 4, we have

||M||2 = λmax(M) ≥ λmin(M) ≥ λmin(M) + λmin(P),

and
||N ||2 = max

λ∈Λ(N )
|λ(N )| ≤ max |λ(N)|+ max |λ(Q)|.

Therefore, it follows that

||M−1N ||M ≤
√

κ(M)||M−1N ||2
≤

√
κ(M)||M−1||2||N ||2

≤ (κ(M))
3
2
||N ||2
||M||2

≤ (κ(M))
3
2

max |λ(N)|+max |λ(Q)|
λmin(M)+λmin(P) .

Again, the use of Lemmas 3 and 4 implies that

√
κ(M) =

√
λmax(M)

λmin(M)
≤

√
λmax(M) + λmax(P)
λmin(M) + λmin(P)

= θ. (4)

So, we can write

||M−1N ||M ≤ θ3 max |λ(N)|+ max |λ(Q)|
λmin(M) + λmin(P)

. (5)
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This clearly proves the lemma.

Theorem 1. Let A ∈ Rn×n and B ∈ Rm×m and consider two splittings A = Mi − Ni and
B = Pi − Qi (i = 1, 2) such that Mi and Pi, (i = 1, 2) are symmetric positive definite. Denote by
A = Mi −Ni (i = 1, 2) with Mi = Im ⊗ Mi + PT

i ⊗ In and Ni = Im ⊗ Ni +QT
i ⊗ In (i = 1, 2),

and assume that M1A−1 and M2A−1 are Hermitian matrices and M1A−1M2 = M2A−1M1.
Then, the MSI method is convergent if ϱ1ϱ2 < 1, where

ϱi = θ3
i

max |λ(Ni)|+ max |λ(Qi)|
λmin(Mi) + λmin(Pi)

, and θi =

√
λmax(Mi) + λmax(Pi)

λmin(Mi) + λmin(Pi)
, (i = 1, 2).

Proof. By making use of the Kronecker product, we can rewrite the above-described MSI
method in the following matrix–vector form:{

(Im ⊗ M1 + PT
1 ⊗ In)u(k+1) = (Im ⊗ N1 + QT

1 ⊗ In)x(k) + c
(Im ⊗ M2 + PT

2 ⊗ In)x(k+1) = (Im ⊗ N2 + QT
2 ⊗ In)u(k+1) + c

which can be arranged equivalently as{
M1u(k+1) = N1x(k) + c
M2x(k+1) = N2u(k+1) + c

which can be obtained by the following iteration method:{
u(k+1) = M−1

1 N1x(k) +M−1
1 c

x(k+1) = M−1
2 N2u(k+1) +M−1

2 c
(6)

Evidently, the above iteration scheme is the MSI method [36] for solving the system
of linear Equation (2) with A = Mi −Ni (i = 1, 2). The MSI iteration (6) can be neatly
expressed as a stationary fixed-point iteration as follows:

x(k+1) = T x(k) + Gc

with T = M−1
2 N2M−1

1 N1 and G = M−1
2 N2M−1

1 +M−1
2 .

Because M1A−1M2 = M2A−1M1 is equivalent to the two matrices M1A−1 and
M2A−1 being commutative, according to Lemma 1, we know that M1A−1 and M2A−1

have a common set of orthonormal eigenvectors. That is say, there exists a unitary matrix
Q ∈ Rnm×nm and two diagonal matrices Λi = diag(λ(i)

1 , λ
(i)
2 , · · · , λ

(i)
nm), i = 1, 2, such that

QM−1
i AQ∗ = Λi, i = 1, 2. Noticing that

T = M−1
2 N2M−1

1 N1

= M−1
2 (M2 −A)M−1

1 (M1 −A)

= (I −M−1
2 A)(I −M−1

1 A)

= (Q∗Q−Q∗QM−1
2 AQ∗Q)(Q∗Q−Q∗QM1AQ∗Q)

= (Q∗Q−Q∗Λ2Q)(Q∗Q−Q∗Λ1Q)

= Q∗(I − Λ2)Q∗Q(I − Λ1)Q
= Q∗(I − Λ2)(I − Λ1)Q
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by definition we have

ρ(T ) ≤ max1≤i,j≤nm |(1 − λ
(2)
i )(1 − λ

(1)
j )|

≤ max1≤i≤nm |(1 − λ
(2)
i )|max1≤j≤nm |(1 − λ

(1)
j )|

= ρ(I −M−1
2 A)ρ(I −M−1

1 A)

= ρ(M−1
2 N2)ρ(M−1

1 N1)

≤ ||M−1
2 N2||M2 ||M

−1
1 N1||M1

Therefore, by Lemma 5 we have

ρ(T ) ≤ θ3
1

max |λ(N1)|+ max |λ(Q1)|
λmin(M1) + λmin(P1)

θ3
2

max |λ(N2)|+ max |λ(Q2)|
λmin(M2) + λmin(P2)

= ϱ1ϱ2

and this completes the proof.

3. Numerical Results
All numerical experiments presented in this section were computed in double precision

with a number of MATLAB R2018a codes. All iterations are started from the initial zero
matrix X(0) and terminated when the current iteration satisfies

∥R(k)∥F

∥R(0)∥F
≤ 10−8,

where R(k) = C − AX(k) − X(k)B is the residual of the kth iterate. Also, we use the tolerance
ε = 0.01 for inner iterations in corresponding methods. For each experiment, we report
the number of iterations or the number of total outer iteration steps (shown as out-itr) and
CPU time. In the tables, the norm of the residual is shown as res-norm.

The MSI method was compared with two Hermitian- and skew-Hermitian-based
splitting methods such the NSCG [17] and the HSS [6], and two familiar iterative methods
such the GMRES [34] and the BiCGSTAB [14] methods. Note that although the NS-CGNR
method is a Hermitian- and skew-Hermitian-based splitting method, it works well for
problems with a dominant skew-Hermitian part and not efficiently for problems with a
dominant Hermitian part, see [18]. Therefore, it is not fair to compare this version of the
MSI method with it.

Example 1. For this example, we use the matrices

A = B = M + 2rN +
100

(n + 1)2 I,

where M, N ∈ Rn×n are the tridiagonal matrices given by

M = tridiag(−1, 2,−1) and N = tridiag(0.5, 0,−0.5).

We consider r = 0.01 and n = m = 256 [6].

This class of problems may arise in the preconditioned Krylov subspace iteration
methods used for solving the systems of linear equations resulting from the finite differ-
ence or Sinc–Galerkin discretization of various differential equations and boundary value
problems [6].

We apply the iteration methods to this problem. The results are given in Table 1.
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Table 1. Results of the Example 1.

Method Out-Itr CPU Time Res-Norm

MSI 7 10.54 2.0887 × 10−6

NSCG 7 8.19 2.1050 × 10−6

HSS 298 75.32 3.2107 × 10−6

GMRES(10) 151 40.56 3.0400 × 10−6

BiCGSTAB 255 17.91 2.4616 × 10−6

From the results presented in Table 1, it can be seen that for this problem, the MSI and
the NSCG methods are more efficient than the other methods.

Example 2. For the second experiment, consider A = tridiag(−2, 4,−1) and
B = tridiag(−1, 4,−2) with dimensions 2048 × 2048 and 128 × 128, respectively.

This is a problem with a strong Hermitian part [42,43]. The numerical results for this
problem are listed in Table 2.

Table 2. Results of Example 2.

Method Out-Itr CPU Time Res-Norm

MSI 7 5.66 4.3252 × 10−5

NSCG 9 6.18 7.7746 × 10−5

HSS 21 39.82 8.7083 × 10−5

GMRES(10) 3 2.84 2.3509 × 10−6

BiCGSTAB 14 2.67 9.7977 × 10−5

Regarding Table 2, it is obvious that although the MSI method is more effective versus
the NSCG and the HSS methods, the GMRES and the BiCGSTAB methods are more effective
than it.

Example 3. We consider the continuous Sylvester Equation (1) with n = m and the coefficient
matrices {

A = diag(1, 2, · · · , n) + rLT ,
B = 2−t In + diag(1, 2, · · · , n) + rLT + 2−tL,

where L is the strictly lower triangular matrix having ones in the lower triangle part [6]. Here, t is
a problem parameter to be specified in actual computations.

The iteration methods were used for this problem, and the results are given in Table 3.
Moreover, we compare the convergence history of the iterative methods by residual norm
decreasing in Figure 1.

Table 3. Results of Example 3.

Method Out-Itr CPU Time Res-Norm

MSI 5 16.43 0.0029
NSCG 8 21.65 0.0070
HSS 99 326.71 0.0288
GMRES(10) 20 49.87 0.0027
BiCGSTAB 75 16.22 0.0028

In Table 3, we report the number of outer iterations (out-itr), the CPU time and the
residual norm (res-norm) after convergence. For this example, we observe that the MSI
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method is superior to the other iterative methods in terms of the number of iterations and
it is similar to the BiCGSTAB method in terms of CPU time. Comparing the convergence
history of the iterative methods by residual norm decreasing shows that the MSI method
converges more rapidly and smoothly than the BiCGSTAB method (see Figure 1).

Figure 1. Convergence history of MSI versus the other iterative methods for Example 3.

Example 4. For this example, we used the nonsymmetric sparse matrix SHERMAN3 of dimension
5005 × 5005 with 20033 nonzero entries from the Harwell–Boeing collection [44] instead of the
coefficient matrix A. For the coefficient matrix B, we used B = tridiag(−1, 4,−2) of dimension
8 × 8 [17].

We apply the iteration methods to this problem, and the results are given in Table 4.
Moreover, we compare the convergence history of the iterative methods by residual norm
decreasing in Figure 2.

Table 4. Results of Example 4.

Method Out-Itr CPU Time Res-Norm

MSI 34 78.437 1.57 × 10−4

NSCG 64 121.265 2.61 × 10−4

HSS >5000 >1000 2.32
GMRES(10) >5000 >1000 247.77
BiCGSTAB † † NaN
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In Table 4, we report the number of outer iterations (out-itr), the CPU time and the
residual norm (res-norm) after convergence or in 5000 outer iterations. For this example,
we observe that the MSI method is superior to the other iterative methods in terms of the
number of iterations and CPU times, the NSCG method has an acceptable performance.
Furthermore, the HSS and the GMRES methods have a very slow convergence rate ( see
Figure 2). From the Table 4 and Figure 2, we observe that the BiCGSTAB method was
diverged for this problem. Therefore, we use splitting of the MSI, the NSCG and the
HSS method as the splitting preconditioner denoted as MSI-BiCGSTAB, NSCG-BiCGSTAB
and HSS-BiCGSTAB, respectively. The results of the preconditioned method for these
preconditioners are given in Table 5. In Tables 4 and 5 dagger (†) and notation “>1000”
show that no solution has been obtained after 5000 iteration or CPU time is more than
1000 s respectively.

Figure 2. Convergence history of MSI versus the other iterative methods for Example 4.

Table 5. Results of the preconditioned BiCGSTAB for Example 4.

Method Out-Itr CPU Time Res-Norm

BiCGSTAB † † NaN
MSI-BiCGSTAB 2 113.51 9.0749 × 10−6

NSCG-BiCGSTAB 4 263.92 5.6612 × 10−6

HSS-BiCGSTAB † † NaN

The results in Table 5 show that the use of the MSI method as a preconditioner
improves the results obtained by the corresponding methods.
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4. Future Work
As an important challenge in the fractional mathematical field, the extension of this

work for solving the multi-term fractional Sylvester equation with frequency is of interest
because most of the existing methods are only useful for untangling the multi-term frac-
tional differential equation. Therefore, investigation of capturing appropriate methods that
are applicable to solve a specific type of multi-term fractional equation is attractive and
meaningful [45–48].

5. Conclusions
In this paper, we have proposed an efficient iterative method for solving the continuous

Sylvester equation AX + XB = C. This method employs two symmetric positive definite
splittings of the coefficient matrices A and B and present a multiplicative splitting iteration
method. The convergence conditions have been derived based on the iteration matrix.

We have compared the MSI method with well-known iterative methods such as the
NSCG method, the HSS method, the BiCGSTAB method and the GMRES method for some
problems. We have observed that, for these problems, the MSI method is more efficient
than the other methods.

In summary, by focusing on the results presented in Tables 1 and 3–5, one can observe
that the MSI method is often superior to the other iterative methods. Moreover, the use
of the multiplicative splitting as a preconditioner can induce an accurate and effective
preconditioned BiCGSTAB method.
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