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Abstract: Let G be a random variable of functionals of an isonormal Gaussian process X
defined on some probability space. Studies have been conducted to determine the exact
form of the density function of the random variable G. In this paper, unlike previous
studies, we will use the Stein’s method for invariant measures of diffusions to obtain the
density formula of G. By comparing the density function obtained in this paper with that
of the diffusion invariant measure, we find that the diffusion coefficient of an Itô diffusion
with an invariant measure having a density can be expressed as in terms of operators in
Malliavin calculus.
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1. Introduction
Let X = {X(h), h ∈ H}, where H is a real separable Hilbert space, be an isonormal

Gaussian process defined on a probability space (Ω,F,P), and let G be a random variable
of functionals of an isonormal Gaussian process X. The following formula on the density
of a random variable G is a well-known fact of the Malliavin calculus: if DG

∥DG∥H
belongs

to the domain of divergence operator δ, then the law of G has a continuous and bounded
density pG, given by

pG(x) = E
[

1{G>x}δ

(
DG

∥DG∥H

)]
for all x ∈ R.

Several examples are detailed in the section titled “Malliavin Calculus” of Nualart’s
book [1] (or [2]). Nourdin and Viens (2009) prove a new general formula for pG that does
not refer to divergence operator δ. For a random variable G ∈ D1,2 with E[G] = 0, where
D1,2 is the domain of the Malliavin derivative operator D with respect to X, such that the
Malliavin derivative DG of G is a random element belonging in H with E[∥DG∥2

H] < ∞,
we define the function gG by

gG(x) = E[⟨DG,−DL−1G⟩H|G = x]. (1)

The operator L appearing in (1) is the so-called generator of the Ornstein–Uhlenbeck
semigroup and L−1 is its pseudo-inverse. For details, see Section 2. It is well known that
gG is non-negative on the support of the law of G (see Proposition 3.9 in [3]).
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Under some general conditions on a random variable G, Nourdin and Viens (2009)
obtained the new formula of the density pG for the law of G, provided that it exists. A
precise statement is given in the following theorem.

Theorem 1 ([Nourdin and Viens]). The law of G admits a density (with respect to Lebesgue
measure), say pG, if and only if the random variable gG(G) is almost surely strictly positive. In
this case, the support of pG, denoted by supp(pG), is a closed interval of R containing zero and, for
almost all x ∈ supp(pG),

pG(x) =
E[|G|]
2gG(x)

exp

(
−
∫ x

0

y
gG(y)

dy

)
. (2)

Assume that the density p satisfies the following conditions: it is continuous and
bounded, with

∫ u
l x2 p(x)dx < ∞. Let us set an interval I = (l, u) (−∞ ≤ l < u ≤ ∞).

Then, {
p(x) > 0 if x ∈ I
p(x) = 0 if x ∈ Ic .

We define a continuous function b on I such that there exists e ∈ (l, u), satisfying{
b(x) > 0 if x ∈ (l, e)
b(x) < 0 if x ∈ (e, u)

,

where bp is bounded on I and ∫ u

l
b(x)p(x)dx = 0.

Define
a(x) =

2
p(x)

∫ x

l
b(y)p(y)dy. (3)

Then, the diffusion with the invariant density p has the Stochastic Differential Equation
(SDE) with the form

dXt = b(Xt)dt +
√

a(Xt)dWt, (4)

where W is a standard Brownian motion. Equation (4) should be interpreted as an informal
way of expressing the corresponding integral equation,

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0

√
a(Xs)dWs. (5)

The stochastic integral used in Equation (5) is of an Itô integral.
In the previous studies in this field (see [1,2,4]), the density function was obtained

using the integration-by-parts formula (see Lemma 1 below) in Malliavin calculus. On the
other hand, in this paper, we derive the new density formula of a random variable G,
satisfying appropriate conditions related to Malliavin calculus, from the following equation
obtained by using Stein’s method: for every z ∈ R,

P(G ≤ z)− P(F ≤ z) = E
[

h̃′z(G)

(
1
2

a(G) + ⟨−DL−1b(G), DG⟩H
)]

+E[b(G)]E[h̃z(G)], (6)

where F is a random variable with the invariant density p and h̃z is a solution to the Stein’s
equation (for a detailed explanation of Stein’s method, see [5–7]).
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The density function obtained in this paper provides a surprising method for solving
an existing problem (see Theorem 2 in [8]) linked to diffusions with an invariant density. As
an application of our results, we will show that the diffusion coefficient a of SDE (4) can be
written in an explicit form, like (1), if the random variable G in (6), with its value on I, has a
density p and satisfies b(G) ∈ L2(Ω). The rest of this paper is organized as follows. Section 2
reviews some basic notations, and the contents of Malliavin calculus. In Section 3, we will
briefly discuss the construction of a diffusion process with an invariant density p, and then
describe our main results. Finally, as an application of our main results, in Section 4, we give
some examples.

2. Preliminaries
Malliavin Calculus

In this section, we present some basic facts about Malliavin operators defined on
spaces of random elements that are functionals of possibly infinite-dimensional Gaussian
fields. For a more detailed explanation, see [1,9]. Suppose that H is a real separable Hilbert
space with a scalar product denoted by ⟨·, ·⟩H. Let X = {X(h), h ∈ H} be an isonormal
Gaussian process, which is a centered Gaussian family of random variables such that
E[X(h)X(g)] = ⟨h, g⟩H. For every n ≥ 1, let Hn be the nth Wiener chaos of X, which is the
closed linear subspace of L2(Ω) generated by {Hn(X(h)) : h ∈ H, ∥h∥H = 1}, where Hn

is the nth Hermite polynomial. We define a linear isometric mapping In : H⊙n → Hn by
In(h⊗n) = n!Hn(X(h)), where H⊙n is the symmetric tensor product. It is well known that
any square integrable random variable F ∈ L2(Ω,F,P) (F denotes the σ-field generated by
X) can be expanded into a series of multiple stochastic integrals,

F =
∞

∑
q=0

Iq( fq),

where f0 = E[F], the series converges in L2, and the functions fq ∈ H⊙q are uniquely
determined by F.

Let S be the class of smooth and cylindrical random variables F of the form

F = f (X(φ1), · · · , X(φn)), (7)

where n ≥ 1, f ∈ C∞
b (Rn) and φi ∈ H, i = 1, · · · , n. The Malliavin derivative of F with

respect to X is the element of L2(Ω,H) defined by

DF =
n

∑
i=1

∂ f
∂xi

(X(φ1), · · · , X(φn))φi. (8)

We denote by Dl,p the closure of its associated smooth random variable class with
respect to the norm

∥F∥p
l,p = E(|F|p) +

l

∑
k=1

E(∥DkF∥p
H⊗k ).

We denote by δ the adjoint of the operator D, also called the divergence operator. The
domain of δ, denoted by Dom(δ), is an element u ∈ L2(Ω;H), such that

|E(< Dl F, u >H⊗l )| ≤ C(E|F|2)1/2 for all F ∈ Dl,2.

If u ∈ Dom(δ), then δ(u) is the element of L2(Ω) defined by the duality relationship,

E[Fδ(u)] = E[⟨DF, u⟩H] for every F ∈ D1,2.
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Recall that F ∈ L2(Ω) can be expanded as F = E[F] + ∑∞
q=1 PqF, where pq is the

projection operator L2(Ω) to the qth Wiener chaos Hn. The operator L is defined through
the projection operator Pq, q = 0, 1, 2 . . ., as L = ∑∞

q=0 −qPq, and is called the infinitesimal
generator of the Ornstein–Uhlenbeck semigroup. The relationship between the operator D, δ,
and L is given as follows: δDF = −LF, i.e., for F ∈ L2(Ω), the statement F ∈ Dom(L) is
equivalent to F ∈ Dom(δD) (i.e., F ∈ D1,2 and DF ∈ Dom(δ)), and in this case, δDF = −LF.
For any F ∈ L2(Ω), we define the operator L−1, which is the pseudo-inverse of L, as
L−1F = ∑∞

q=1
1
q PqF. Note that L−1 is an operator with values in D2,2 and LL−1F = F −E[F]

for all F ∈ L2(Ω).

3. Diffusion Process with Invariant Measures and Main Results
In this section, we will give the construction of a diffusion process with an invariant

measure, and present our main results in this paper.

3.1. Diffusion Process with Invariant Measures

In this section, we will briefly describe the construction of a diffusion process with an
invariant measure µ having a density p with respect to the Lebesgue measure (for more
details, see [8,10]). Let F be a random variable with a probability measure µ on I = (l, u)
(−∞ ≤ l < u ≤ ∞) with a density p, which is continuous, bounded, strictly positive on
I, and E[F2] < ∞. Let b be a continuous function on I such that there exists e ∈ (l, u) that
satisfies b(x) > 0 for e ∈ (l, u) and b(x) < 0 for e ∈ (l.u). Moreover, the function bp is
bounded on I, and

E[b(F)] = 0. (9)

For x ∈ I, define

a(x) =
2

p(x)

∫ x

l
b(y)p(y)dy. (10)

Then, the diffusion coefficient a in (10) is strictly positive for all x ∈ (l, u), and also
satisfies E[a(F)] < ∞. Equation (10) implies that, for some c ∈ I,

p(x)a(x) = p(c)a(c) exp

( ∫ x

c

2b(y)
a(y)

dy

)
. (11)

Then, the following SDE:

dXt = b(Xt)dt +
√

a(Xt)dBt, (12)

has a unique ergodic Markovian weak solution with the invariant density p. Let C0(I) =
{ f : I → R| f is continuous on I vanishing at the boundary of I}. For f ∈ C0(I), define

h f (x) =
∫ x

0
h̃ f (y)dy,

where

h̃ f (x) =
2
∫ x

l ( f (y)−E[ f (F)])p(y)dy
a(x)pF(x)

.

Then, h f satisfies Stein’s equation,

f (x)−E[ f (F)] = b(x)h′f (x) +
1
2

a(x)h′′f (x)

= b(x)h̃ f (x) +
1
2

a(x)h̃′f (x), (13)



Mathematics 2025, 13, 323 5 of 15

where F is a random variable with a probability measure µ as its law.

3.2. Main Results

Before describing our main result in this paper, we begin with the following simple
result, given in Theorem 2.9.1 in [9].

Lemma 1. Suppose that F, G ∈ D1,2, and let g : R → R be a continuously differentiable with
bounded derivative (or when g is only almost everywhere differentiable, one needs G to have an
absolutely continuous). Then,

E[Fg(G)] = E[F]E[g(G)] +E[g′(G)⟨DF,−DL−1G⟩H]. (14)

Let us set

gb(G)(x) = E[⟨−DL−1(b(G)−E[b(G)]), DG⟩H|G = x]. (15)

Similarly to the proof of Proposition 3.9 in [3], we will show that gb(G)(x) is non-
negative almost everywhere with respect to the law of G.

Proposition 1. Let G ∈ D1,2. Then, we have that gb(G)(x) ≥ 0 for almost everywhere with respect
to the law of G; say, HG(x) = P(G ≤ x).

Proof. Let q be a smooth non-negative real function. Define

Q(x) =

{ ∫ x
β q(y)dy if x ≥ β

−
∫ β

x q(y)dy if x < β,

where β ∈ R is a constant that satisfies b(x) − E[b(G)] > 0 for β ∈ (l, u) and b(x) −
E[b(G)] < 0 for β ∈ (l.u). Since Q(x) ≥ 0 for x ≥ β and Q(x) < 0 for x < β, we have
E[(b(G)−E[b(G)])Q(G)] ≥ 0. An application of Lemma 14 yields that

E[(b(G)−E[b(G)])Q(G)] = E[⟨−DL−1(b(G)−E[b(G)]), DG⟩H]

=
∫ ∞

−∞
gb(G)(x)q(x)dHG(x) ≥ 0. (16)

By an approximation of the function q, we can show that, for all Borel measurable sets
B ∈ B(R), we have ∫

B
gb(G)(x)q(x)dHG(x) ≥ 0.

This obviously implies that gb(G)(x) ≥ 0 for almost everywhere with respect to the law
of G.

Lemma 2. If the random variable gb(G)(G) is almost surely strictly positive, then the law of G has
a density with respect to Lebesgue measure; say, pG.

Proof. By a similar argument to the proof of Theorem 3.1 in [4], we have that, for any Borel
set B ∈ B(R) and any n ≥ 1,

E
[
(b(G)E[b(G)])

∫ G

−∞
1B∩[−n,n](x)dx

]
= E

[
(b(G)E[b(G)])1B∩[−n,n](G)gb(G)(G)

]
. (17)
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The same argument as for the case of b(G) = G in the proof of Theorem 3.1 in [4]
shows that the law of G has a density.

An explicit formula for the density is the following statement:

Theorem 2. Let F be a random variable having the law µ, and let G be a random variable in D1,2

with b(G) ∈ L2(Ω). Assume that the random variable gb(G)(G) is almost surely strictly positive,
and

∥bh̃ f ∥∞ ≤ C∥ f ∥∞ = sup
x∈I

| f (x)| < ∞. (18)

In this case, the support of pG, denoted by supp(pG), is a closed interval of R and, for almost
all x ∈ supp(pG),

pG(x) =
pG(β)gb(G)(β)

gb(G)(x)
exp

(
−
∫ x

β

b(y)−E[b(G)]

gb(G)(y)
dy

)
(19)

for some β ∈ supp(pG).

Proof. Obviously, using (11) shows that the function h̃ f can be written as

h̃ f (x) =
2

pF(β)a(β)
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
∫ x

l
( f (y)−E[ f (F)])pF(y)dy. (20)

Let us set HF(x) = P(F ≤ z). If f (x) = 1(−∞,z](x) for z ∈ R, we write h f = hz and
h̃ f = h̃z. Then, the function h̃z can be written as

h̃z(x) =
2

pF(β)a(β)
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
{

HF(z)[1 − HF(x)] if x ≥ z
HF(x)[1 − HF(z)] if x < z.

(21)

From (21), it follows that, for x ≥ z,

h̃′z(x) =
2

pF(β)a(β)
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
{(

− 2b(x)
a(x)

)
HF(z)[1 − HF(x)]− pF(x)HF(z)

}
. (22)

For x < z,

h̃′z(x) =
2

pF(β)a(β)
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
{(

− 2b(x)
a(x)

)
HF(x)[1 − HF(z)] + pF(x)[1 − HF(z)]

}
. (23)

If f (x) = 1(−∞,z](x) for x ∈ I, we take fn ∈ C0(I) such that { fn} is an increasing
sequence and fn(x) → f (x) for all x ∈ I. Obviously, by the dominated convergence
theorem, we have that, as n → ∞,

h̃ fn(x) → h̃z(x) and h̃′fn
(x) → h̃′z(x) for all x ∈ I. (24)
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The bound of (18) yields that, for all n ≥ 1,

∥bh̃ fn∥∞ ≤ C∥ fn∥∞ ≤ 1. (25)

Combining (11) with the bound in (18), we also obtain, for all n ≥ 1,

∥ah̃′fn
∥∞ ≤ C∥ fn∥∞ ≤ 1. (26)

From (13), it follows that, for fn ∈ C0(I),

E[ fn(G)]−E[ fn(F)] = E[b(G)h̃ fn(G)] +E
[

1
2

a(G)h̃′fn
(G)

]
. (27)

Due to the bounds of (25) and (26), the dominated convergence theorem can be applied
to (27), which gives the following limit value:

P(G ≤ z)− P[(F ≤ z) = E
[
(b(G)−E[b(G)])h̃z(G)

]
+E[b(G)]E[]h̃z(G)] +E

[
1
2

a(G)h̃′z(G)

]
. (28)

Applying (14) in Lemma 1 to the first expectation in (28), we obtain that

P(G ≤ z)− P[(F ≤ z) = E
[
⟨−DL−1(b(G)−E[b(G)]), DG⟩Hh̃′z(G)

]
+E
[

1
2

a(G)h̃′z(G)

]
+E[b(G)]E[h̃z(G)]

= E
[

h̃′z(G)E
[
⟨−DL−1(b(G)−E[b(G)]), DG⟩H

∣∣G]]
+E
[

1
2

a(G)h̃′z(G)

]
+E[b(G)]E[h̃z(G)]. (29)

Differentiating both sides in (29) yields that

pG(z)− pF(z) =
∂

∂z

∫ ∞

−∞
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx

+E[b(G)]
∂

∂z

∫ ∞

−∞
h̃z(x)pG(x)dx. (30)

Next, we concentrate on the computations of two integrals in (30). Using (22) and (23)
gives that

∂

∂z

∫ ∞

−∞
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx := J1(z) + J2(z),

where

J1(z) =
∂

∂z

∫ z

−∞
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx

J2(z) =
∂

∂z

∫ ∞

z
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx
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Obviously, we write J1(z) = J11(z) + J12(z),

J11(z) = h̃′z(z)
{

gb(G)(z) +
1
2

a(z)
}

pG(z),

J12(z) =
∫ z

−∞

∂

∂z
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx.

For J12, we first differentiate h̃′z(x) with respect to z. For x < z,

∂

∂z
h̃′z(x) =

2
pF(c)a(c)

exp

(
−
∫ x

c

2b(y)
a(y)

dy

)

×
{(

2b(x)
a(x)

)
HF(x)pF(z)− pF(x)pF(z)

}
. (31)

By (23) and (31), we obtain

J11(z) =
2

pF(c)a(c)
exp

(
−
∫ z

c

2b(y)
a(y)

dy

)

×
{(

− 2b(z)
a(z)

)
HF(z)[1 − HF(z)] + pF(z)[1 − HF(z)]

}

×
{

gb(G)(z) +
1
2

a(z)
}

pG(z), (32)

J12(z) =
2

pF(c)a(c)

∫ z

−∞
exp

(
−
∫ x

c

2b(y)
a(y)

dy

)

×
{(

2b(x)
a(x)

)
HF(x)pF(z)− pF(x)pF(z)

}

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx. (33)

For x ≥ z,

∂

∂z
h̃′z(x) =

2
pF(β)a(β)

exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
{(

− 2b(x)
a(x)

)
pF(z)[1 − HF(x)]− pF(x)pF(z)

}
. (34)

On the other hand, we write J2(z) = J21(z) + J22(z), where

J21(z) = −h̃′z(z)
{

gb(G)(z) +
1
2

a(z)
}

pG(z),

J22(z) =
∫ ∞

z

∂

∂z
h̃′z(x)

{
gb(G)(x) +

1
2

a(x)
}

pG(x)dx.

From (33), we have that
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J21(z) = − 2
pF(β)a(β)

exp

(
−
∫ z

c

2b(y)
a(y)

dy

)

×
{(

− 2b(z)
a(z)

)
HF(z)[1 − HF(z)]− pF(z)HF(z)

}

×
{

gb(G)(z) +
1
2

a(z)
}

pG(z), (35)

J22(z) =
2

pF(β)a(β)

∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)

×
{(

− 2b(x)
a(x)

)
[1 − HF(x)]pF(z)− pF(x)pF(z)

}

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx. (36)

From (21), the differentiation of the second integral in (30) can be easily calculated
as follows:

E[b(G)]
∂

∂z

∫ ∞

−∞
h̃z(x)pG(x)dx

= E[b(G)]
∂

∂z

∫ z

−∞
h̃z(x)pG(x)dx

+E[b(G)]
∂

∂z

∫ ∞

z
h̃z(x)pG(x)dx

=
2E[b(G)]

pF(β)a(β)

{
− pF(z)

∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
HF(x)pG(x)dx

+(1 − HF(z)) exp

(
−
∫ z

β

2b(y)
a(y)

dy

)
HF(z)pG(z)

}

+
2E[b(G)]

pF(β)a(β)

{
pF(z)

∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
(1 − HF(x))pG(x)dx

−HF(z) exp

(
−
∫ z

β

2b(y)
a(y)

dy

)
(1 − HF(z))pG(z)

}

=
2pF(z)E[b(G)]

pF(β)a(β)

{
−
∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
HF(x)pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
(1 − HF(x))pG(x)dx

}
. (37)

Combining (32), (33) and (35)–(37) yields that, for z ∈ R,
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pG(z)− pF(z) =
2pF(z)

pF(β)a(β)
exp

(
−
∫ z

β

2b(y)
a(y)

dy

){
gb(G)(z) +

1
2

a(z)
}

pG(z)

+
2pF(z)

pF(β)a(β)

[ ∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)(
2b(x)
a(x)

)
HF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)(
− 2b(x)

a(x)

)
[1 − HF(x)]

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

]

− 2pF(z)
pF(β)a(β)

∫ ∞

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
pF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+
2pF(z)E[b(G)]

pF(β)a(β)

{
−
∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
HF(x)pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
(1 − HF(x))pG(x)dx

}
. (38)

Substituting pF in (11) for pF in the right-hand side of Equation (38), we obtain

pG(z)− pF(z)

=
2

a(z)

{
gb(G)(z) +

1
2

a(z)
}

pG(z)

+
2

a(z)
exp

( ∫ z

β

2b(y)
a(y)

dy

)[ ∫ z

−∞
exp

(
−
∫ x

c

2b(y)
a(y)

dy

)(
2b(x)
a(x)

)
HF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)(
− 2b(x)

a(x)

)
[1 − HF(x)]

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

]

− 2
a(z)

exp

( ∫ z

β

2b(y)
a(y)

dy

) ∫ ∞

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
pF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+
2E[b(G)]

a(z)
exp

( ∫ z

β

2b(y)
a(y)

dy

){
−
∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
HF(x)pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
(1 − HF(x))pG(x)dx

}
. (39)
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From the formula of pF in (11) and (39), we obtain that, for some β ∈ supp(pG),

−gb(G)(z)pG(z)

=
pF(β)a(β)

2
exp

( ∫ z

β

2b(y)
a(y)

dy

)

+ exp

( ∫ z

β

2b(y)
a(y)

dy

){ ∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)(
2b(x)
a(x)

)
HF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)(
− 2b(x)

a(x)

)
[1 − HF(x)]

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

}

− exp

( ∫ z

β

2b(y)
a(y)

dy

) ∫ ∞

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
pF(x)

×
{

gb(G)(x) +
1
2

a(x)
}

pG(x)dx

+E[b(G)] exp

( ∫ z

β

2b(y)
a(y)

dy

){
−
∫ z

−∞
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
× HF(x)pG(x)dx

+
∫ ∞

z
exp

(
−
∫ x

β

2b(y)
a(y)

dy

)
(1 − HF(x))pG(x)dx

}
. (40)

Differentiating Equation (40) with respect to z proves that

∂

∂z
gb(G)(z)pG(z) =

2b(z)
a(z)

gb(G)(z)pG(z)

−
(

2b(z)
a(z)

) {
gb(G)(z) +

1
2

a(z)
}

pG(z)−E[b(G)]pG(z)

= −(b(z)−E[b(G)])pG(z). (41)

This Equation (41) proves that, for almost all z ∈ supp(pG),

gb(G)(z)pG(z) = −
∫ z

−∞
(b(x)−E[b(G)])pG(x)dx. (42)

From (41) and (42), it follows that, for almost all z ∈ supp(pG),

d
dz (gb(G)(z)pG(z))

gb(G)(z)pG(z)
= − b(z)−E[b(G)]

gb(G)(z)
(43)

Hence,
d
dz

log(gb(G)(z)pG(z)) = − b(z)−E[b(G)]

gb(G)(z)
(44)

By integrating both sides of (44) from β ∈ supp(pG) to z, we have

log(gb(G)(z)pG(z)) = log(gb(G)(β)pG(β))−
∫ z

β

b(x)−E[b((G)])]

gb(G)(x)
dx. (45)
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Equation (45) proves that, for almost all z ∈ supp(pG),

pG(z) =
gb(G)(β)pG(β)

gb(G)(z)
exp

(
−
∫ z

β

b(x)−E[b(G)]

gb(G)(x)
dx

)
. (46)

When a random variable G is general, it is not easy to find an explicit computation of
gb(G)((x)). In particular, when

〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

is not measurable with
respect to the σ-field generated by G, there are cases where it is impossible to compute
the expectation. Using the above Theorem 2, we derive the explicit form of gb(G)(x). The
following theorem corresponds to Theorem 2 in [8].

Theorem 3. A random variable G ∈ D1,2, taking its value on I, has the distribution µ and satisfies
that E[b(G)2] < ∞ if and only if E[b(G)] = 0 and

gb(G)(x) = −1
2

a(x) for all x ∈ I. (47)

Proof. Suppose that E[b(G)] = 0, and Equation (47) holds true. Let pF be a density of an
invariant measure µ corresponding to a solution of SDE (12). Then, substituting − 1

2 a(x)
in (47) instead of gb(G)(x) in (19) gives that

pG(x) =
pG(β)gb(G)(β)

gb(G))(x)
exp

(
−
∫ x

β

b(y)
gb(G)(y)

dy

)

=
pG(β)a(β)

a(x)
exp

( ∫ x

β

2b(y)
a(y)

dy

)
. (48)

Combining (11) and (48), we obtain

pG(x) =
pG(β)

pF(β)
pF(x). (49)

This Equation (49) shows that supp(pG) = supp(pF). Hence, integrating both sides
of (49) over I = (l, u) yields that

pG(β)

pF(β)
= 1,

which implies that pG = pF on I. If pG = pF on I, then E[b(G)] = 0. From (10) and (42), it
follows that

a(x) =
2
∫ x

l b(y)pF(y)dy
pF(x)

=
2
∫ x

l b(y)pG(y)dy
pG(x)

= −2gb(G)(z),

which gives that (47) holds.

4. Examples
In this section, two examples will be given where invariant measures have the standard

Gaussian and uniform distribution.
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4.1. The Standard Gaussian Distribution

When µ is the standard Gaussian distribution, then the coefficients in (13) are given by
a(x) = 2 and b(x) = −x, and u = ∞ and l = −∞. Then, from (21), we have that

hz = e
x2
2

∫ x

−∞
[1(−∞,z](y))− Φ(z)]e−x22dy

=


√

2πe
x2
2 Φ(x)(1 − Φ(z)) if x ≤ z

√
2πe

x2
2 Φ(z)(1 − Φ(x)) if x > z,

(50)

where Φ(z) = P(Z ≤ z). From (22), we have that, for x > z, taking β = 0,

h̃′z(x) =
√

2πxe
x2
2 Φ(z)(1 − Φ(x))

−
√

2πe
x2
2 pF(x)Φ(z)

= [
√

2πxe
x2
2 (1 − Φ(x))− 1]Φ(z), (51)

and for x < z,

h̃′z(x) =
√

2πxe
x2
2 Φ(x)[1 − Φ(z)]

+
√

2πe
x2
2 pF(x)[1 − Φ(z)]

= [
√

2πxe
x2
2 Φ(x) + 1][1 − Φ(z)]. (52)

If G ∈ D1,2 and the random variable g−G(G) is almost surely strictly positive, then the
density pG of G can be obtained, with β = 0, by

pG(z) =
g−G(0)pG(0)

g−G(z)
exp

( ∫ z

0

x
g−G(x)

dx

)

=
gG(0)pG(0)

gG(z)
exp

(
−
∫ z

0

x
gG(x)

dx

)
. (53)

Since E[G] = 0, from (42), we see that

gG(0)pG(0) = −g−G(0)pG(0)

= −
∫ 0

l
xpG(x)dx

=
1
2
E[|G|]. (54)

Substituting (54) into (53), we have

pG(z) =
E[|G|]
2gG(z)

exp

(
−
∫ z

0

x
gG(x)

dx

)
,

which is the density (19) in Theorem 1. If gG = (z) = 1,

pG(z) =
E[|G|]

2
exp

(
−
∫ z

0
xdx

)

=
1√
2π

exp

(
− x2

2

)
,

which implies that Theorem 3 holds.
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4.2. The Uniform Distribution

When µ is the uniform distribution, i.e., F ∼ U ([0, 1]), then the coefficients in (13) are
given by

a(x) = x(1 − x) and b(x) = −
(

x − 1
2

)
for x ∈ (0, 1).

From (21), we have that

h̃z(x) =
2

pF(1/2)a(1/2)
exp

( ∫ x

1/2

(2y − 1))
y(1 − y)

dy

)
× [(x ∧ z)− zx]

= 8 exp

( ∫ x

1/2

(2y − 1))
y(1 − y)

dy

)
× [(x ∧ z)− zx]

=
2x

1 − x
×
{

z(1 − x) if x ≥ z
x(1 − z) if x < z,

. (55)

Then, the density of G is given by

pG(x) =
pG(β)gb(G)(β)

gb(G)(x)
exp

(
−
∫ x

β

b(y)−E[b(G)]

gb(G)(y)
dy

)
. (56)

Taking β = E[G], then

pG(x) =
pG(E[G])gb(G)(E[G])

gb(G)(x)
exp

(
−
∫ x

E[G]

b(y)−E[b(G)]

gb(G)(y)
dy

)
. (57)

The relation (42) gives that

pG(E[G])gb(G)(E[G]) = −1
2
E[|G −E[G]|].

Hence, (57) can be written as

pG(x) =
E[|G −E[G]|]
−2g−G(x)

exp

( ∫ x

E[G]

y −E[G]

g−G(y)
dy

)

=
E[|G −E[G]|]

2gG(x)
exp

(
−
∫ x

E[G]

y −E[G]

gG(y)
dy

)
. (58)

Putting E[G] = 0, we know, from (58), that the density pG is identical to the density in
Theorem 1. If gG(x) = 1

2 x(1 − x) for x ∈ (0, 1), a direct computation yields that

pG(x) =
1

4x(1 − x)
exp

(
−
∫ x

1/2

y − 1
2

1
2 y(1 − y)

dy

)

=
1

4x(1 − x)
exp

(
−
∫ x

1/2

{
−2(1 − y)
y(1 − y)

+
1

y(1 − y)

}
dy

)

=
1

4x(1 − x)
exp

(
log x + log(1 − x) + log 4

)
= 1[0,1](x),

which implies that Theorem 3 holds true.
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5. Conclusions and Future Works
When a random variable F follows an invariant measure µ that has a density pF, and

a random variable G ∈ D1,2 also allows for density pG, this paper find an explicit formula
of the density pG based on the coefficients in the diffusion associated with the density pF.
The significant feature of our works is that it shows that the density pG can be obtained by
connecting the diffusion with the invariant measure and the density formula obtained in
this paper provides a new and very useful method for solving an existing problem related
to an invariant density of diffusions. If gb(G) is equal to the diffusion coefficient, Theorem 2
in [8] can be easily proven by using our result. A limitation of this study is that it is difficult
for our method to directly prove that gb(G) > 0.

Future works will be carried out in three directions: (1) Using the results worked in
this paper, we plan to derive a density formula associated with an Edgeworth expansion
with general terms given in [11]. (2) In the case when G is a random variable belonging to
a fixed Wiener chaos, we will obtain a more rigorous formula than the formula obtained
in the previous works. (3) We will devise new methods to overcome the limitation of this
study mentioned above.
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