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Abstract: The S-approximation spaces are significant extension of the rough set model
and have been widely applied in intelligent decision-making. However, traditional S-
approximation spaces are limited to two crisp universes, whereas bi-fuzzy universes (i.e.,
two distinct fuzzy domains) are more prevalent in practical applications. To bridge this
gap, this study introduces the bi-fuzzy S-approximation spaces (BFS approximation spaces)
as an advancement of knowledge space theory’s fuzzy extension. Upper and lower approx-
imation operators are formally defined, and the properties of BFS approximation spaces
under various operations, such as complement, intersection and union are systematically
explored. Special attention is given to a significant form of these operators, under which the
monotonicity and complementary compatibility of BFS approximation spaces are rigorously
analyzed. These results not only extend the theoretical framework of S-approximation
spaces but also pave the way for further exploration of fuzzy extensions within knowledge
space theory.

Keywords: S-approximation spaces; rough sets; fuzzy sets; bi-fuzzy S-approximation
spaces (BFS approximation spaces); monotonicity; complementary compatibility
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1. Introduction
Given the inherent incompleteness and uncertainty of information, effectively manag-

ing uncertain information has become a crucial research focus across diverse applications
in data processing and knowledge discovery. Introduced by Pawlak in 1982 [1], rough
set theory offers a robust framework for addressing these issues [2]. By leveraging lower
and upper approximations, it introduces an innovative method for analyzing information.
Grounded in equivalence relations, the rough set model efficiently handles classification
and reduction tasks within information systems and has found widespread applications in
areas such as data mining, knowledge acquisition, feature selection, and medical diagno-
sis [3–6].

As the volume of uncertain data grows, Pawlak’s rough set model faces notable con-
straints in handling complex information due to its reliance on single universes, strict
equivalence relations, and inclusion-based operators, limiting its flexibility in processing
uncertainty. To address these challenges, researchers have expanded the model by general-
izing its universes, equivalence frameworks, and inclusion principles [7–10]. Wong et al.
introduced compatible relations to propose the two-universe rough set model, effectively
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breaking the traditional rough set model’s reliance on a single universe [7]. Building on
this foundation, S-approximation spaces further extend the two-universe rough set model
by incorporating multi-valued mappings, offering a more flexible approximation approach
that significantly improves the model’s adaptability to complex information.

Introduced by Hooshmandasl et al. [11] and grounded in Dempster’s multi-valued
mapping theory [12], S-approximation spaces provide a novel method for approximate
analysis. Unlike traditional rough set models, S-approximation spaces remove restrictions
on universes, equivalence relations, and inclusion relations, allowing rough sets and their
extended models, such as two-universe rough sets [7], variable precision rough sets [13],
and T-rough sets [14], to be represented within the S-approximation framework [12,15,16].
This adaptability and flexibility make S-approximation spaces particularly well-suited for
processing uncertain data. In recent years, researchers have explored S-approximation
spaces and their extensions from various perspectives. Hooshmandasl et al. examined the
topological properties of S-approximation spaces, highlighting their potential to handle
uncertainty independently of inclusion relations [17]. Shakiba et al. studied the relationship
between evidence theory and S-approximation spaces, showing that belief structures can be
derived from S-approximation spaces under monotonicity conditions [18]. The integration
of three-way decision theory with S-approximation spaces has further expanded their
applicability in complex decision support systems [15,19–22].

Originally proposed by Zadeh, fuzzy set theory is a fundamental mathematical tool
for managing fuzzy information [23] and has found wide application in data science
and artificial intelligence [24]. The integration of fuzzy set theory with rough set theory
enhances their combined ability to address both fuzzy and uncertain information [25–27].
Shakiba et al. incorporated fuzzy set theory into S-approximation spaces by representing
one universe W as a fuzzy power set and extending the mapping S from {0, 1} to [0, 1],
thereby developing both the intuitionistic fuzzy S-approximation spaces [28] and the
fuzzy S-approximation space model [29]. They analyzed the properties of the fuzzy S-
approximation spaces model under conditions of partial monotonicity and complementary
compatibility, and explored its applications in medical diagnosis [29]. However, the fuzzy S-
approximation spaces are primarily constructed based on a single fuzzy universe, whereas
two fuzzy universes are more common in practical applications, which limits the model’s
applicability in scenarios involving two fuzzy universes. Constructing an S-approximation
spaces model based on two fuzzy universes and defining the corresponding approximation
operators would further advance the integration of fuzzy sets with S-approximation spaces,
expanding its range of applications.

In related studies, rough set theory and knowledge space theory (KST) have been
shown to be closely connected [30,31], with each theory’s structure and properties enriching
the other [32,33]. KST, proposed by mathematical psychologists Doignon and Falmagne, is
a significant model in mathematical psychology designed to assess a learner’s knowledge
state and provide personalized learning guidance. KST has found extensive applications in
fields like assisted learning and adaptive testing [34–37]. Knowledge structures and skill
maps are core concepts within knowledge space theory, and constructing knowledge struc-
tures and skill maps is a key issue in knowledge space research [38]. Recently, researchers
have increasingly integrated KST with fuzzy set theory [38]. Traditional skill maps have
been extended to fuzzy skill maps [39–41], and dichotomous knowledge structures have
been expanded to polytomous knowledge structures [42]. Fuzzy knowledge structures,
combined with fuzzy sets, form a special type of polytomous knowledge structures [43–46].
Zhou et al.’s research on fuzzy skill maps and fuzzy knowledge structures [43] provides a
valuable perspective for constructing bi-fuzzy S-approximation spaces (BFS approximation
spaces) models and defining corresponding approximation operators.
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Building on the fuzzy extension model of knowledge space theory, this paper fur-
ther extends S-approximation spaces to bi-fuzzy S-approximation spaces and defines the
corresponding upper and lower approximation operators. This study investigates the
properties of BFS approximation spaces under various decision mapping conditions, with
a particular focus on an important form of the approximation operators, exploring the
behavior and characteristics of BFS approximation spaces under monotonicity and com-
plement compatibility conditions. BFS approximation spaces enable the modeling and
analysis of scenarios involving two fuzzy universes, such as layered knowledge structures
in e-learning, multi-criteria decision-making, etc. This extension provides new theoretical
support for handling uncertain and fuzzy data in broader application scenarios.

The structure of this paper is as follows: Section 2 discusses the core concepts of
fuzzy sets, S-approximation spaces, and fuzzy extensions in knowledge space theory.
Section 3 elaborates on bi-fuzzy S-approximation spaces (BFS approximation spaces),
defines the upper and lower approximation operators, and examines their properties under
complement, intersection and union of BFS approximation spaces. Section 4 explores
the monotonicity properties of BFS approximation spaces and provides rigorous proofs.
Section 5 introduces the notion of complementary compatibility within BFS approximation
spaces and conducts an in-depth analysis of its properties. Finally, Section 6 summarizes
the study’s findings and suggests potential future research directions.

2. Preliminaries
This section provides an overview of essential concepts, including fuzzy sets [39],

S-approximation spaces [11,29], and the fuzzy extension of knowledge spaces [43].

Definition 1. ([39]). Let U be a nonempty set. If A : U → [0, 1] , then A is referred to as a
fuzzy set. The collection of all fuzzy sets on U is denoted as F (U) and is expressed as F (U) =

{A| A : U → [0, 1]}. ∀x ∈ U, A(x) represents the membership degree of x in the fuzzy set A.
Generally, a fuzzy set A on U can be written as A = {(x, A(x))|x ∈ U}.

Definition 2. ([11]). Let G = (U, W, T, S) be a quadruple, where U and W are nonempty
finite sets, 2W denotes the power set of W, T : U → 2W is a knowledge mapping, and
S : 2W × 2W → {0, 1} is a decision mapping. Then, G is called an S-approximation space.
∀A ∈ 2W , the lower and upper approximations of A are defined as:

G(A) = {x ∈ U|S(T(x), A) = 1},
G(A) = {x ∈ U|S(T(x), Ac) = 0}.

Here, Ac denotes the complement of A with respect to W.
In essence, S captures the decision criterion for inclusion relations or degree of overlap in rough

set approximations by extending classical equivalence relations [11].

Following this, we introduce the notions of complement, intersection, and union for
S-approximation spaces.

Definition 3. ([11]). Let G = (U, W, T, S) be an S-approximation space. Define H =

(U, W, T, S′) as the complement of G, where ∀A, B ∈ 2W , S′(A, B) = 1 − S(A, B).

Definition 4. ([11]). Let W be a nonempty finite set, and define:

SS(W) =
{

S
∣∣∣S : 2W × 2W → {0, 1}

}
.
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For S1, S2 ∈ SS(W) and A, B ∈ 2W , define:

(S1 ∧ S2)(A, B) = S1(A, B) ∧ S2(A, B) = min{S1(A, B), S2(A, B)},
(S1 ∨ S2)(A, B) = S1(A, B) ∨ S2(A, B) = max{S1(A, B), S2(A, B)}.

Definition 5. ([11]). Let G1 = (U, W, T, S1) and G2 = (U, W, T, S2) be S-approximation spaces.
The intersection G1 ∧ G2 and union G1 ∨ G2 of G1 and G2 are defined as follows:

(G1 ∧ G2) = (U, W, T, S1 ∧ S2),
(G1 ∨ G2) = (U, W, T, S1 ∨ S2).

Next, we introduce relevant concepts of fuzzy S-approximation spaces.

Definition 6. ([29]). Let FG = (U, W, T, S) be a quadruple, where U and W are nonempty finite
sets, T : U → F (W) , and S : F (W)×F (W) → [0, 1] , with F (W) = {A| A : W → [0, 1]}.
Then, FG is called a fuzzy S-approximation space. ∀A ∈ F (W), the lower and upper approxima-
tions of A are defined as follows:

FG(A)(x) = S(T(x), A),
FG(A)(x) = 1 − S(T(x), Ac).

Definition 7. ([29]). Let FG = (U, W, T, S) be a fuzzy S-approximation space, and let (a, r) be
a pair of thresholds where 0 ≤ r < a ≤ 1. The lower and upper approximations of a set A ∈
F (W) with respect to these thresholds are defined as follows:

FGa(A) = {x ∈ U|S(T(x), A) ≥ a},
FGr(A) = {x ∈ U|S(T(x), Ac) ≤ r}.

The properties of the lower and upper approximation operators in fuzzy S-approximation
spaces primarily depend on decision mappings. By investigating different decision mappings,
two special types of fuzzy S-approximation spaces have been identified: monotonic fuzzy
approximation spaces and weakly complement-compatible fuzzy approximation spaces.

Definition 8. ([29]). Let FG = (U, W, T, S) be a fuzzy S-approximation space. If ∀A, B, X ∈
F (W), the following condition holds:

A ⊆ B ⇒ S(X, A) ≤ S(X, B),

then FG is called a monotonic fuzzy S-approximation space.

Definition 9. ([29]). Let FG = (U, W, T, S) be a fuzzy S-approximation space. If ∀x ∈ U and
A ∈ F (W), the following condition holds:

S(T(x), A) + S(T(x), Ac) ≤ 1,

then FG is called a weakly complement-compatible fuzzy S-approximation space.

Below, we introduce the concepts of skill mapping, fuzzy knowledge state, and fuzzy
skill mapping in KST.

Definition 10. ([43]). A skill mapping is defined as the triple (Q × L+, S, τ), where Q is a
nonempty finite set of items, Q × L+ =

{
(q, l)

∣∣q ∈ Q, l ∈ L+}, L ⊆ [0, 1] with 0, 1 ∈ L, and
L+ = L ∖ {0} ⊆ (0, 1] , S is a nonempty finite set of skills, and τ : Q × L+ → 2S ∖ {∅} .
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Definition 11. ([43]). Let (Q × L+, S, τ) be a skill mapping and M ∈ 2S ∖ {∅}. Define
K = {(q, K(q))|q ∈ Q}, where the fuzzy knowledge state of item q under the conjunctive model is
K(q) = sup

{
l ∈ L+

∣∣τ(q, l) ⊆ M
}

. For convenience, τ(q, l) is used to represent τ((q, l)). The
conjunctive model assumes that “all the skills associated with an item are necessary for solving it.”

Definition 12. ([43]). Let (Q × L+, S, τ) be a skill mapping and M ∈ 2S ∖ {∅}. Define
K = {(q, K(q))|q ∈ Q}, where the fuzzy knowledge state of item q under the disjunctive model is
K(q) = sup

{
l ∈ L+

∣∣τ(q, l) ∩ M ̸= ∅
}

. The disjunctive model assumes that “having any of the
skills associated with an item is sufficient for solving it.”

Definition 13. ([43]). A fuzzy skill mapping is defined as the triple (Q × L+, S, τ), where Q is
a nonempty finite set of items, S is a nonempty finite set of skills, L ⊆ [0, 1] with 0, 1 ∈ L,
L+ = L ∖ {0} ⊆ (0, 1] , and τ : Q × L+ → F (S)∖ {∅} .

3. Bi-Fuzzy S-Approximation Spaces
By simultaneously handling two fuzzy universes, bi-fuzzy S-approximation spaces

surmount the single-fuzzy-universe constraint, making them suitable for layered or multi-
criteria domains.

In this section, building upon the fuzzy extension of knowledge space theory, we
present the concept of bi-fuzzy S-approximation spaces and establish the corresponding
lower and upper approximation operators. Additionally, we explore their properties under
various decision mappings.

Definition 14. The quadruple BFG = (U × L+,W, T, S) is defined as follows: U and W are nonempty
finite sets, T : U × L+ → F(W) is a knowledge mapping, and S : F(W)×F(W) → [0, 1] is a decision
mapping, where F(W) = {A|A : W → [0, 1]}, U × L+ =

{
(x, l)

∣∣x ∈ U, l ∈ L+
}

with L ⊆ [0, 1],
0, 1 ∈ L, and L+ = L∖ {0} ⊆ (0, 1] . In this study, L is set to be finite; therefore, L+ is also finite. The
quadruple BFG is called a bi-fuzzy S-approximation space, abbreviated as BFS approximation space.

Remark 1. The crisp set U can be regarded as a special fuzzy set, where the membership degree
of x ∈ U is 1. Therefore, if L = {0, 1}, then U × L+ = {(x, 1)|x ∈ U} = U. Thus, when
L = {0, 1}, the bi-fuzzy S-approximation space degenerates into a fuzzy S-approximation space.

Remark 2. For convenience, T(x, l) is used to represent T((x, l)).

Example 1. Let U = {x1, x2}, W =
{

y1, y2, y3, y4
}

, L+ = {0.6, 1.0}, U × L+ =

{(x1, 0.6), (x1, 1.0), (x2, 0.6), (x2, 1.0)}. The knowledge mapping T : U × L+ → F (W) is de-
fined as:

T(x1, 0.6) = {(y1, 0.5), (y2, 0.3), (y4, 1.0)},
T(x1, 1.0) = {(y1, 0.7), (y2, 0.3), (y3, 0.6), (y4, 1.0)},

T(x2, 0.6) = {(y1, 0.2), (y3, 0.55)},
T(x2, 1.0) = {(y1, 0.2), (y2, 0.1), (y3, 1.0)}.

The decision mapping S : F (W)×F (W) → [0, 1] is defined as:

S(A, B) = max
w∈W

{
A(w) + B(w)

2

}
, where A, B ∈ F (W).

Then (U × L+, W, T, S) is a BFS approximation space.

According to Definitions 11 and 12, let (Q × L+, S, τ) be a skill mapping and M ∈
2S ∖ {∅}. Define K = {(q, K(q))|q ∈ Q}, where the fuzzy knowledge state of item q under
the conjunctive model is K(q) = sup

{
l ∈ L+

∣∣τ(q, l) ⊆ M
}

; under the disjunctive model,
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the fuzzy knowledge state of item q is K(q) = sup
{

l ∈ L+
∣∣τ(q, l) ∩ M ̸= ∅

}
. In relation

to the definition of S-approximation spaces and their upper and lower approximation

operators in Definition 2, A, B ∈ 2W , with the decision mapping S(A, B) =

{
1 if A ⊆ B
0 otherwise

.

Let τ = T, q = x, M = A, where T and A are the terms defined in Definition 2.
For the conjunctive model, we have:

K(q) = sup
{

l ∈ L+
∣∣τ(q, l) ⊆ M

}
= sup

{
l ∈ L+

∣∣S(T(x, l), A) = 1
}

.

For the disjunctive model, we have:

K(q) = sup
{

l ∈ L+
∣∣τ(q, l) ∩ M ̸= ∅

}
= sup

{
l ∈ L+

∣∣S(T(x, l), Ac) = 0
}

.

This provides an important approach to defining lower and upper approximation
operators. Subsequently, we extend this to a broader framework and define these operators
∀A ∈ F (W) within the BFS approximation space.

Definition 15. Let BFG = (U × L+, W, T, S) be a BFS approximation space, with D1, D2 ⊆
[0, 1], x ∈ U, and ∀A ∈ F (W); the lower and upper approximations of A are defined as follows:

∀x ∈ U,
BFG(A)(x) = sup

{
l ∈ L+

∣∣S(T(x, l), A) ∈ D1
}

,
BFG(A)(x) = sup

{
l ∈ L+

∣∣S(T(x, l), Ac) ∈ D2
}

.

If ∀l ∈ L+, S(T(x, l), A) /∈ D1, then BFG(A)(x) = 0.
If ∀l ∈ L+, S(T(x, l), Ac) /∈ D2, then BFG(A)(x) = 0.

It is evident that specific choices of L, the decision mapping S, and the intervals D1

and D2 can yield special forms for the lower and upper approximations defined above.
Within this context, D1 controls the degree of similarity between elements, while D2

regulates the degree of dissimilarity. These parameters are independent and can be set
based on specific application requirements, allowing for flexibility in defining the lower
and upper approximations. Accurately determining the parameters D1 and D2 is essential
for the effective functioning of the BFS approximation space. Three primary approaches
can be employed to establish appropriate values for these parameters:

(1) Empirical Methods. Utilize historical data and empirical observations relevant
to the specific application domain to estimate suitable values for D1 and D2. Statistical
analysis can help identify patterns and optimal thresholds that best capture the degrees of
similarity and dissimilarity.

(2) Domain-Specific Knowledge. Leverage expert knowledge and insights from the
relevant field to set D1 and D2. Experts can provide valuable information on what consti-
tutes significant similarity or dissimilarity within the context of the application, thereby
guiding the selection of these parameters.

(3) Optimization Techniques. Apply optimization algorithms to determine the optimal
values of D1 and D2 that maximize the performance metrics of the approximation space.
Techniques such as gradient descent, genetic algorithms, or other heuristic methods can be
utilized to fine-tune these parameters for enhanced performance.

Proposition 1. Let BFG = (U × L+, W, T, S) be a BFS approximation space. ∀A ∈ F (W), the
following results hold:
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(1) If L = {0, 1}, then

BFG(A) = {x ∈ U|S(T(x), A) ∈ D1},
BFG(A) = {x ∈ U|S(T(x), Ac) ∈ D2}.

(2) If S : F (W)×F (W) → {0, 1} , then

BFG(A) =
{

x ∈ U
∣∣ ∃l ∈ L+, S(T(x, l), A) ∈ D1

}
,

BFG(A) =
{

x ∈ U
∣∣ ∃l ∈ L+, S(T(x, l), Ac) ∈ D2

}
.

(3) If L = {0, 1}, S : F (W)×F (W) → {0, 1} , D1 = {1}, and D2 = {0}, then

BFG(A) = {x ∈ U|S(T(x), A) = 1},
BFG(A) = {x ∈ U|S(T(x), Ac) = 0}.

Remark 3. It can be seen that if L = {0, 1}, S : F (W)×F (W) → {0, 1} , D1 = {1}, and
D2 = {0}, the BFS approximation space is reduced to an S-approximation space. In this case, the
lower and upper approximations defined in Definition 15 align with those of the S-approximation
space. If L = {0, 1}, the lower and upper approximations defined in Definition 15 generalize two
specific forms of approximations in fuzzy S-approximation spaces.

Next, we investigate the complement of a BFS approximation space and its properties.

Definition 16. Let BFG = (U × L+, W, T, S) be a BFS approximation space. Define BFH =

(U × L+, W, T, S′) as the complement of BFG, ∀A, B ∈ F (W), S′(A, B) = 1 − S(A, B).

It is easy to see that BFH = (U × L+, W, T, S′) is also a BFS approximation space.
Next, we define the complement of an interval D.

Definition 17. ∀D ⊆ [0, 1], the complement interval of D, denoted by D, is defined as:

D = {1 − a|a ∈ D}.

Proposition 2 describes the relationship between the upper and lower approximation
operators of a BFS approximation space and its complement.

Proposition 2. Let BFG = (U × L+, W, T, S) be a BFS approximation space, and let BFH =

(U × L+, W, T, S′) be the complement of BFG, where D1, D2 ⊆ [0, 1] and D2 = D1. ∀A ∈
F (W), the following relationships hold:

(1) BFH(A) = BFG(Ac),
(2) BFH(A) = BFG(Ac).

Proof. (1) Suppose S′(T(x, l), A) /∈ D1 for all l ∈ L+ and x ∈ U. Then by Definition 15,
BFH(A)(x) = 0. Since S′(T(x, l), A) = 1 − S(T(x, l), A) and it does not belong to D1, we get
S(T(x, l), A) /∈ D1 = D2. Consequently, by Definition 15, if S(T(x, l), A) /∈ D2 for all l ∈ L+,
we must have BFG(Ac)(x) = 0. Hence, in this case, BFH(A)(x) = BFG(Ac)(x) = 0.

Otherwise, there exists at least one l ∈ L+ such that S′(T(x, l), A) = 1−S(T(x, l), A) ∈
D1. Equivalently, S(T(x, l), A) ∈ D1 = D2. Therefore, by taking the supremum over all
such l ∈ L+, we get

BFH(A)(x) = sup
{

l ∈ L+
∣∣1 − S(T(x, l), A) ∈ D1

}
= sup

{
l ∈ L+

∣∣S(T(x, l), A) ∈ D2
}

.
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By Definition 15, this is exactly the condition for BFG(Ac)(x) = sup{
l ∈ L+

∣∣S(T(x, l), A) ∈ D2
}

. Hence, BFH(A)(x) = BFG(Ac)(x).
Combining both cases, we conclude that BFH(A) = BFG(Ac).
(2) Suppose S′(T(x, l), Ac) /∈ D2 for all l ∈ L+ and x ∈ U. Then, BFH(A)(x) =

0. Since S′(T(x, l), Ac) = 1 − S(T(x, l), Ac) and it does not belong to D2, we have
S(T(x, l), Ac) /∈ D2 = D1. Consequently, if S(T(x, l), Ac) /∈ D1 for all l ∈ L+, it follows
from Definition 15 that BFG(Ac)(x) = 0. Hence, BFH(A)(x) = BFG(Ac)(x) = 0.

Otherwise, there exists at least one l ∈ L+ such that S′(T(x, l), Ac) = 1− S(T(x, l), Ac)

∈ D2. Equivalently, S(T(x, l), Ac) ∈ D2 = D1. Therefore,

BFH(A)(x) = sup
{

l ∈ L+
∣∣S′(T(x, l), Ac) ∈ D2

}
= sup

{
l ∈ L+

∣∣1 − S(T(x, l), Ac) ∈ D2
}

.

Since 1− S(T(x, l), Ac) ∈ D2 ⇔ S(T(x, l), Ac) ∈ D2 = D1 , we see by Definition 15 that

BFG(Ac)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), Ac) ∈ D1

}
(1)

Thus, BFH(A)(x) = BFG(Ac)(x).
Combining both cases, we conclude that BFH(A) = BFG(Ac). □

Definition 18. Let W be a nonempty finite set. Define:

SS(W) = {S|S : F (W)×F (W) → [0, 1]}.

For S1, S2 ∈ SS(W), A, B ∈ F (W), and D ⊆ [0, 1], the operations of intersection and union
for decision mappings are defined as:

(S1 ∧ S2)(A, B) = S1(A, B) ∧ S2(A, B),
(S1 ∨ S2)(A, B) = S1(A, B) ∨ S2(A, B).

Here, S1(A, B), S2(A, B) ∈ D, and therefore (S1 ∧ S2)(A, B), (S1 ∨ S2)(A, B) ∈ D.

Next, we introduce the concepts of intersection and union for BFS approximation spaces.

Definition 19. Let BFG1 = (U × L+, W, T, S1) and BFG2 = (U × L+, W, T, S2) be BFS
approximation spaces. Define the intersection BFG1 ∧ BFG2 and union BFG1 ∨ BFG2 of BFG1 and
BFG2 as:

BFG1 ∧ BFG2 = (U × L+, W, T, S1 ∧ S2),
BFG1 ∨ BFG2 = (U × L+, W, T, S1 ∨ S2).

It is evident that both BFG1 ∧ BFG2 and BFG1 ∨ BFG2 are BFS approximation spaces.

Proposition 3. Let BFG1 = (U × L+, W, T, S1) and BFG2 = (U × L+, W, T, S2) be BFS approx-
imation spaces. Define BFG = (U × L+, W, T, S1 ∧ S2) and BFM = (U × L+, W, T, S1 ∨ S2),
with D1, D2 ⊆ [0, 1]. Then ∀A ∈ F(W), the following properties hold:

(1) BFG(A) = BFG1(A) ∩ BFG2(A),
(2) BFG(A) = BFG1(A) ∩ BFG2(A),
(3) BFM(A) = BFG1(A) ∪ BFG2(A),
(4) BFM(A) = BFG1(A) ∪ BFG2(A).

Proof. (1) ∀l ∈ L+, if S1(T(x, l), A) /∈ D1, then BFG1(A)(x) = 0. Since S(A, B) =

S1(A, B) ∧ S2(A, B), it follows that S(T(x, l), A) /∈ D1, and thus BFG(A)(x) = 0. Simi-
larly, ∀l ∈ L+, if S2(T(x, l), A) /∈ D1, then BFG2(A)(x) = 0. Otherwise:
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BFG(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), A) ∈ D1

}
=

sup
{

l ∈ L+
∣∣(S1(T(x, l), A) ∧ S2(T(x, l), A)) ∈ D1

}
=

sup
{

l ∈ L+
∣∣S1(T(x, l), A) ∈ D1

}
∧ sup

{
l ∈ L+

∣∣S2(T(x, l), A) ∈ D1
}
=

BFG1(A)(x) ∧ BFG2(A)(x).

Hence, BFG(A) = BFG1(A) ∩ BFG2(A).
(2) ∀l ∈ L+, if S1(T(x, l), Ac) /∈ D2, then BFG1(A)(x) = 0. Since S(A, B) = S1(A, B)∧

S2(A, B), it follows that S(T(x, l), Ac) /∈ D2, and thus DFG(A)(x) = 0. Similarly, if
S2(T(x, l), Ac) /∈ D2, then BFG2(A)(x) = 0. Otherwise:

BFG(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), Ac) ∈ D2

}
=

sup
{

l ∈ L+
∣∣(S1(T(x, l), Ac) ∧ S2(T(x, l), Ac)) ∈ D2

}
= sup

{
l ∈ L+

∣∣S1(T(x, l), Ac) ∈ D2
}
∧

sup
{

l ∈ L+
∣∣S2(T(x, l), Ac) ∈ D2

}
= BFG1(A)(x) ∧ BFG2(A)(x).

Hence, BFG(A) = BFG1(A) ∩ BFG2(A).
(3) ∀l ∈ L+, if S1(T(x, l), A) /∈ D1 and S2(T(x, l), A) /∈ D1, then BFG1(A)(x) = 0 and

BFG2(A)(x) = 0. Since S(A, B) = S1(A, B) ∨ S2(A, B), it follows that S(T(x, l), A) /∈ D1,
and thus BFM(A)(x) = 0. Otherwise:

BFM(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), A) ∈ D1

}
=

sup
{

l ∈ L+
∣∣(S1(T(x, l), A) ∨ S2(T(x, l), A)) ∈ D1

}
= sup

{
l ∈ L+

∣∣S1(T(x, l), A) ∈ D1
}
∨

sup
{

l ∈ L+
∣∣S2(T(x, l), A) ∈ D1

}
= BFG1(A)(x) ∨ BFG2(A)(x).

Hence, BFM(A) = BFG1(A) ∪ BFG2(A).
(4) ∀l ∈ L+, if S1(T(x, l), Ac) /∈ D2 and S2(T(x, l), Ac) /∈ D2, then BFG1(A)(x) = 0

and BFG2(A)(x) = 0. Since S(A, B) = S1(A, B) ∨ S2(A, B), it follows that S(T(x, l), Ac) /∈
D2, and thus BFM(A)(x) = 0. Otherwise:

BFM(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), Ac) ∈ D2

}
=

sup
{

l ∈ L+
∣∣(S1(T(x, l), Ac) ∨ S2(T(x, l), Ac)) ∈ D2

}
=

sup
{

l ∈ L+
∣∣S1(T(x, l), Ac) ∈ D2

}
∨ sup

{
l ∈ L+

∣∣S2(T(x, l), Ac) ∈ D2
}
=

BFG1(A)(x) ∨ BFG2(A)(x).

Hence, BFM(A) = BFG1(A) ∪ BFG2(A). □

Based on Proposition 3 and employing the method of induction, the following corollary
is established.

Corollary 1. Let BFGi = (U × L+, W, T, Si) for i = 1, 2 · · · n be BFS approximation spaces, and
define BFG =

(
U × L+, W, T,∧n

i=1Si
)

and BFM =
(
U × L+, W, T,∨n

i=1Si
)
, where D1, D2 ⊆

[0, 1]. Then, the following statements hold ∀A ∈ F (W):

(1) BFG(A) = ∩n
i=1BFGi(A),

(2) BFG(A) = ∩n
i=1BFGi(A),

(3) BFM(A) = ∪n
i=1BFGi(A),

(4) BFM(A) = ∪n
i=1BFGi(A).

In the definitions of the upper and lower approximation operators provided in Defini-
tion 15, the intervals D1 and D2 are general subsets of [0, 1]. From the perspectives of rough
sets and fuzzy set theory, it is observed that this model gains wider applicability when
the intervals are specified as D1 = [a, 1] and D2 = [0, b], where a, b ∈ [0, 1]. Therefore, in
subsequent discussions, we adopt these intervals and analyze the properties of the upper
and lower approximation operators under this setting in BFS approximation spaces.
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4. Monotonicity
This section introduces specific conditions for BFS approximation spaces to construct

monotonic BFS approximation spaces and prove their properties. Throughout this section,
the intervals for the upper and lower approximation operators are set as D1 = [a, 1] and
D2 = [0, b], where a, b ∈ [0, 1].

Definition 20. Let BFG = (U × L+, W, T, S) be a BFS approximation space. For A, B, C ∈
F (W) and ∀l ∈ L+, the following conditions hold:

(1) A ⊆ B ⇒ S(T(x, l), A) ≤ S(T(x, l), B) ,
(2) If l1 ≤ l2, S(T(x, l1), C) ≤ S(T(x, l2), C).

Then, BFG is called a monotonic BFS approximation space.

Proposition 4. Let BFG = (U × L+, W, T, S) be a monotonic BFS approximation space. ∀A, B ∈
F (W), the following properties hold:

(1) A ⊆ B ⇒ BFG(A) ⊆ BFG(B) ,
(2) A ⊆ B ⇒ BFG(A) ⊆ BFG(B) ,
(3) BFG(A ∪ B) ⊇ BFG(A) ∪ BFG(B),
(4) BFG(A ∩ B) ⊆ BFG(A) ∩ BFG(B),
(5) BFG(A ∪ B) ⊇ BFG(A) ∪ BFG(B),
(6) BFG(A ∩ B) ⊆ BFG(A) ∩ BFG(B).

Proof. (1) If ∀l ∈ L+, S1(T(x, l), A) /∈ D1, then by Definition 15, BFG(A)(x) = 0. Conse-
quently, BFG(A)(x) ≤ BFG(B)(x). Otherwise,

BFG(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), A) ∈ D1

}
= sup

{
l ∈ L+

∣∣S(T(x, l), A) ≥ a
}

.

Since BFG is monotonic,

sup
{

l ∈ L+
∣∣S(T(x, l), A) ≥ a

}
≤ sup

{
l ∈ L+

∣∣S(T(x, l), B) ≥ a
}
= BFG(B)(x).

Thus, A ⊆ B ⇒ BFG(A) ⊆ BFG(B) .
(2) If ∀l ∈ L+, S1(T(x, l), Ac) /∈ D2, then by Definition 15, BFG(A)(x) = 0. Conse-

quently, BFG(A)(x) ≤ BFG(B)(x). Otherwise, since BFG is monotonic and A ⊆ B, we
have S(T(x, l), A) ≤ S(T(x, l), B). This implies Bc ⊆ Ac, and S(T(x, l), Bc) ≤ S(T(x, l), Ac).
Therefore,

BFG(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), Ac) ≤ b

}
≤ sup

{
l ∈ L+

∣∣S(T(x, l), Bc) ≤ b
}
=

BFG(B)(x).

Thus, A ⊆ B ⇒ BFG(A) ⊆ BFG(B) .
(3) Since A ⊆ A ∪ B, by Property (1), BFG(A) ⊆ BFG(A ∪ B). Similarly,

B ⊆ A ∪ B ⇒ BFG(B) ⊆ BFG(A ∪ B) .
Therefore, BFG(A ∪ B) ⊇ BFG(A) ∪ BFG(B).
(4) Since A ∩ B ⊆ A, by Property (1), BFG(A ∩ B) ⊆ BFG(A). Similarly,

A ∩ B ⊆ B ⇒ BFG(A ∩ B) ⊆ BFG(B) .
Therefore, BFG(A ∩ B) ⊆ BFG(A) ∩ BFG(B).
(5) Since A ⊆ A ∪ B, by Property (2), BFG(A) ⊆ BFG(A ∪ B). Similarly, B ⊆ A ∪ B ⇒

BFG(B) ⊆ BFG(A ∪ B).
Therefore, BFG(A ∪ B) ⊇ BFG(A) ∪ BFG(B).
(6) Since A ∩ B ⊆ A, by Property (2), BFG(A ∩ B) ⊆ BFG(A). Similarly,

A ∩ B ⊆ B ⇒ BFG(A ∩ B) ⊆ BFG(B) .
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Therefore, BFG(A ∩ B) ⊆ BFG(A) ∩ BFG(B). □

Based on Proposition 4 and the method of induction, the following corollary is derived.

Corollary 2. Let BFG = (U × L+, W, T, S) be a monotonic BFS approximation space. ∀A ∈
F (W), the following statements hold:

(1) BFG
(
∪n

i=1 Ai
)
⊇ ∪n

i=1BFG(Ai),
(2) BFG

(
∩n

i=1 Ai
)
⊆ ∩n

i=1BFG(Ai),
(3) BFG

(
A ∪n

i=1 Ai
)
⊇ ∪n

i=1BFG(Ai),
(4) BFG

(
∩n

i=1 Ai
)
⊆ ∩n

i=1BFG(Ai)

Proof. (1) For n = 2, Proposition 4(3) implies:

BFG(A1 ∪ A2) ⊇ BFG(A1) ∪ BFG(A2).

Assume the statement holds for n = k, i.e.,

BFG
(
∪k

i=1 Ai

)
⊇ ∪k

i=1BFG(Ai).

For n = k + 1, let A = ∪k
i=1 Ai. Using Proposition 4(3),

BFG
(
∪k+1

i=1 Ai

)
= BFG(A ∪ Ak+1)⊇ BFG(A) ∪ BFG(Ak+1).

By the induction hypothesis,

BFG(A) ⊇ ∪k
i=1BFG(Ai).

Thus, BFG
(
∪k+1

i=1 Ai

)
⊇ ∪k+1

i=1 BFG(Ai).
This completes the induction step.
(2) For n = 2, Proposition 4(4) implies:

BFG(A1 ∩ A2) ⊆ BFG(A1) ∩ BFG(A2).

Assume the statement holds for n = k, i.e.,

BFG
(
∩k

i=1 Ai

)
⊆ ∩k

i=1BFG(Ai).

For n = k + 1, let A = ∪k
i=1 Ai. Using Proposition 4(4),

BFG
(
∩k+1

i=1 Ai

)
= BFG(A ∩ Ak+1) ⊆ BFG(A) ∩ BFG(Ak+1).

By the induction hypothesis,

BFG(A) ⊆ ∩k
i=1BFG(Ai).

Thus,BFG
(
∩k+1

i=1 Ai

)
⊆ ∩k+1

i=1 BFG(Ai).
This completes the induction step.
The proofs of statements (3) and (4) follow similarly from Proposition 4(5) and (6),

using induction on n. The base cases n = 2 hold by Proposition 4, and the induction steps
are analogous to those for statements (1) and (2). □
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Definition 21. Let U be a nonempty finite set. Define:

ℓT(U) =
{

T
∣∣T : U × L+ → F (W)

}
.

This represents the set of all knowledge mappings defined on U × L+ and taking
values in F (W).

Next, we introduce the concepts of intersection and union of BFS approximation
spaces concerning different knowledge mappings.

To define the intersection and union of these BFS approximation spaces concerning
different knowledge mappings, we introduce two operators, “3” for intersection and “◦”
for union. For all (x, l) ∈ U × L+ and w ∈ W, T1, T2 ∈ ℓT(U), the operator “3” aggregates
the knowledge mappings by taking the pointwise minimum of their membership degrees:

((T13T2)(x, l))(w) = min{(T1(x, l))(w), (T2(x, l))(w)}.

Similarly, the operator “◦” aggregates them by taking the pointwise maximum:

((T1 ◦ T2)(x, l))(w) = max{(T1(x, l))(w), (T2(x, l))(w)}.

Definition 22. Let BFG1 = (U × L+, W, T1, S) and BFG2 = (U × L+, W, T2, S) be BFS
approximation spaces, where T1, T2 ∈ ℓT(U). The intersection BFG13BFG2 and the union BFG1 ◦
BFG2 of BFG1 and BFG2, with respect to knowledge mappings, are defined as follows:

BFG13BFG2 = (U × L+, W, T13T2, S),
BFG1 ◦ BFG2 = (U × L+, W, T1 ◦ T2, S).

These resulting spaces are also valid BFS approximation spaces since the aggregated
knowledge mappings T13T2 and T1 ◦ T2 remain within the set of allowable knowledge
mappings ℓT(U).

Definition 23. For BFG132 = BFG13BFG2 = (U × L+, W, T13T2, S), let D1 = [a, 1] ,
D2 = [0, b], and x ∈ U. ∀A ∈ F (W), the lower and upper approximations are defined as follows:

BFG132(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A) ∧ S(T2(x, l), A)) ∈ D1

}
,

BFG132(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac) ∧ S(T2(x, l), Ac)) ∈ D2

}
.

For BFG1◦2 = BFG1 ◦ BFG2 = (U × L+, W, T1 ◦ T2, S), let D1 = [a, 1], D2 = [0, b], and
x ∈ U. ∀A ∈ F (W), the lower and upper approximations are defined as follows:

BFG1◦2(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A) ∨ S(T2(x, l), A)) ∈ D1

}
,

BFG1◦2(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac) ∨ S(T2(x, l), Ac)) ∈ D2

}
.

Example 2. Consider two BFS approximation spaces BFG1 = (U × L+, W, T1, S)and BFG2 =

(U × L+, W, T2, S) where U = {x1, x2}, W = {y1, y2}, L+ = {0.5, 1.0}. The knowledge
mappings T1 and T2 are given by:

T1(x1, 0.5) = {(y1, 0.3), (y2, 0.3)},

T1(x1,1.0) = {(y1, 0.5), (y2, 0.5)},

T1(x2,0.5) = {(y1, 0.3), (y2, 0.6)},
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T1(x2,1.0) = {(y1, 0.4), (y2, 0.6)}

T2(x1,0.5) = {(y1, 0.2), (y2, 0.4)},

T2(x1,1.0) = {(y1, 0.3), (y2, 0.7)},

T2(x2,0.5) = {(y1, 0.3), (y2, 0.2)},

T2(x2,1.0) = {(y1, 0.5), (y2, 0.4)}.

The decision mapping S is defined as:

S(A, B) = max
w∈W

{
A(w) + B(w)

2

}
, where A, B ∈ F (W).

Knowledge Mappings for BFG13BFG2 and BFG1 ◦ BFG2 are shown in Table 1.

Table 1. Knowledge mappings for BFG13BFG2 and BFG1 ◦ BFG2.

(x,l) w ((T13T2)(x,l))(w) ((T1#T2)(x,l))(w)

(x1, 0.5) y1 min{0.3, 0.2} = 0.2 max{0.3, 0.2} = 0.3
(x1, 0.5) y2 min{0.3, 0.4} = 0.3 max{0.3, 0.4} = 0.4
(x1, 1.0) y1 min{0.5, 0.3} = 0.3 max{0.5, 0.3} = 0.5
(x1, 1.0) y2 min{0.5, 0.7} = 0.5 max{0.5, 0.7} = 0.7
(x2, 0.5) y1 min{0.3, 0.3} = 0.3 max{0.3, 0.3} = 0.3
(x2, 0.5) y2 min{0.6, 0.2} = 0.2 max{0.6, 0.2} = 0.6
(x2, 1.0) y1 min{0.4, 0.5} = 0.4 max{0.4, 0.5} = 0.5
(x2, 1.0) y2 min{0.6, 0.4} = 0.4 max{0.6, 0.4} = 0.6

Let a = 0.5, b = 0.5. Then D1 = [0.5, 1], D2 = [0, 0.5]. let A = {(y1, 0.6), (y2, 0.4)} ∈
F (W), thus Ac = {(y1, 0.4), (y2, 0.6)}. Decision mapping values for T1 and T2 with A and
Ac are shown in Table 2.

Table 2. Decision mapping values for T1 and T2 with A and Ac.

(x,l) S(T1(x,l),A) S(T2(x,l),A) S(T1(x,l),Ac) S(T2(x,l),Ac)

(x1, 0.5) 0.45 0.45 0.45 0.50
(x1, 1.0) 0.55 0.55 0.55 0.65
(x2, 0.5) 0.50 0.45 0.60 0.40
(x2, 1.0) 0.50 0.55 0.60 0.50

Here, W = {y1, y2}. Hence, for each pair (x, l),we evaluate A(w)+B(w)
2 over w ∈ {y1, y2} and

take the maximum. As an illustration, T1(x1, 0.5) = {(y1, 0.3), (y2, 0.3)} implies

S(T1(x1, 0.5), A) = max
{

0.3 + 0.6
2

,
0.3 + 0.4

2

}
= max{0.45, 0.35} = 0.45.

Then we obtain the intersection-based and union-based lower and upper approximations as
shown in Table 3 below.

Table 3. Intersection-based and union-based lower and upper approximations.

x BFG132(A)(x) BFG132(A)(x) BFG132(A)(x) BFG132(A)(x)

x1 1.0 0.5 1.0 0.5
x2 1.0 1.0 1.0 0

In Table 3, we illustrate the case x = x1 for BFG132(A)(x) and BFG132(A)(x).
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For the lower approximation BFG132(A)(x1), we require

(S(T1(x1, l), A) ∧ S(T2(x1, l), A)) = min(S(T1(x1, l), A), S(T2(x1, l), A)) ∈ D1 = [0.5, 1].

As min(S(T1(x1, 0.5), A), S(T2(x1, 0.5), A)) = min(0.45, 0.45) = 0.45 < 0.5 and
min(S(T1(x1, 1.0), A), S(T2(x1, 1.0), A)) = min(0.55, 0.55) = 0.55 ≥ 0.5, then we have
BFG132(A)(x1) = 1.0.

For the upper approximation BFG132(A)(x1), we require

(S(T1(x1, l), A) ∧ S(T2(x1, l), Ac)) = min(S(T1(x1, l), A), S(T2(x1, l), Ac)) ∈ D2 = [0, 0.5].

As min(S(T1(x1, 0.5), Ac), S(T2(x1, 0.5), Ac)) = min(0.45, 0.50) = 0.45 ≤ 0.5 and
min(S(T1(x1, 1.0), Ac), S(T2(x1, 1.0), Ac)) = min(0.55, 0.65) = 0.55 > 0.5, then we have
BFG132(A)(x1) = 0.5.

In practice, the intersection-based and union-based BFS approximation operators
illustrated here can be used to aggregate multiple criteria or multi-faceted fuzzy knowledge
from different data sources. For instance, in decision-making, one could treat different
knowledge mappings T1 and T2 as separate experts or distinct decision criteria. The
intersection-based BFS approximation space models the scenario where decisions must
satisfy all criteria, whereas union-based BFS approximation space interprets the union of
expert opinions. In pattern recognition, different knowledge mappings can represent fuzzy
feature sets extracted from an image or signals. By taking intersections and unions of BFS
approximation spaces, one could refine or expand the matching criteria for a pattern, thus
improving classification results.

Given the monotonicity property and the definitions of lower and upper approxima-
tion operators, the following properties hold.

Proposition 5. Let BFG1 = (U × L+, W, T1, S) and BFG2 = (U × L+, W, T2, S) be mono-
tonic BFS approximation spaces with D1 = [a, 1] and D2 = [0, b]. Let BFG13BFG2 =

(U × L+, W, T13T2, S) and BFG1 ◦ BFG2 = (U × L+, W, T1 ◦ T2, S). Then, ∀A, B ∈ F (W),
the following properties hold:

(1) A ⊆ B ⇒ BFG132(A) ⊇ BFG1(A) ∩ BFG2(B) ,
(2) A ⊆ B ⇒ BFG132(A) ⊇ BFG1(A) ∩ BFG2(B) ,
(3) A ⊆ B ⇒ BFG1◦2(A) ⊇ BFG1(A) ∪ BFG2(B) ,
(4) A ⊆ B ⇒ BFG1◦2(A) ⊇ BFG1(A) ∪ BFG2(B) ,
(5) BFG132(A ∪ B) ⊇ BFG1(A) ∪ BFG2(B),
(6) BFG132(A ∩ B) ⊆ BFG1(A) ∩ BFG2(B),
(7) BFG1◦2(A ∪ B) ⊇ BFG1(A) ∪ BFG2(B),
(8) BFG1◦2(A ∩ B) ⊆ BFG1(A) ∩ BFG2(B).

Proof. (1) The lower approximation under 3 is:

BFG132(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A) ∧ S(T2(x, l), A)) ∈ D1

}
.

Monotonicity ensures

A ⊆ B ⇒ S(T1(x, l), A) ≤ S(T1(x, l), B), S(T2(x, l), A) ≤ S(T2(x, l), B).

Thus, BFG132(A)(x) ⊇ BFG1(A)(x) ∩ BFG2(B)(x).
Hence, A ⊆ B ⇒ BFG132(A) ⊇ BFG1(A) ∩ BFG2(B) .
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(2) The upper approximation under 3 is:

BFG132(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac) ∧ S(T2(x, l), Ac)) ∈ D2

}
.

Monotonicity ensures

A ⊆ B ⇒ Ac ⊇ Bc ⇒ S(T1(x, l), Ac) ≥ S(T1(x, l), Bc), S(T2(x, l), Ac) ≥ S(T2(x, l), Bc).

Thus, BFG132(A)(x) ⊇ BFG1(A)(x) ∩ BFG2(B)(x).
Hence, A ⊆ B ⇒ BFG132(A) ⊇ BFG1(A) ∩ BFG2(B) .
(3) The lower approximation under ◦ is:

BFG1◦2(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A) ∨ S(T2(x, l), A)) ∈ D1

}
.

Monotonicity ensures

A ⊆ B ⇒ S(T1(x, l), A) ≤ S(T1(x, l), B), S(T2(x, l), A) ≤ S(T2(x, l), B).

Thus, BFG1◦2(A)(x) ⊇ BFG1(A)(x) ∪ BFG2(B)(x).
Hence, A ⊆ B ⇒ BFG1◦2(A) ⊇ BFG1(A) ∪ BFG2(B) .
(4) The upper approximation under ◦ is:

BFG1◦2(A)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac) ∨ S(T2(x, l), Ac)) ∈ D2

}
.

Monotonicity ensures

A ⊆ B ⇒ Ac ⊇ Bc ⇒ S(T1(x, l), Ac) ≥ S(T1(x, l), Bc), S(T2(x, l), Ac) ≥ S(T2(x, l), Bc).

Thus, BFG1◦2(A)(x) ⊇ BFG1(A)(x) ∪ BFG2(B)(x).
Hence, A ⊆ B ⇒ BFG1◦2(A) ⊇ BFG1(A) ∪ BFG2(B) .
(5) The lower approximation under 3 for A ∪ B is:

BFG132(A ∪ B)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A ∪ B) ∧ S(T2(x, l), A ∪ B)) ∈ D1

}
.

Since A ⊆ A ∪ B and A ⊆ A ∪ B, monotonicity ensures:

BFG1(A)(x) ⊆ BFG132(A ∪ B)(x), BFG2(B)(x) ⊆ BFG132(A ∪ B)(x).

Thus, BFG132(A ∪ B)(x) ⊇ BFG1(A)(x) ∪ BFG2(B)(x).
Hence, BFG132(A ∪ B) ⊇ BFG1(A) ∪ BFG2(B).
(6) The upper approximation under 3 for A ∩ B is:

BFG132(A ∩ B)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac ∪ Bc) ∧ S(T2(x, l), Ac ∪ Bc)) ∈ D2

}
.

Since A ∩ B ⊆ A and A ∩ B ⊆ A, monotonicity ensures:

BFG132(A ∩ B)(x) ⊆ BFG1(A)(x) ∩ BFG2(B)(x).

Hence, BFG132(A ∩ B) ⊆ BFG1(A) ∩ BFG2(B).
(7) The lower approximation under ◦ for A ∪ B is:

BFG1◦2(A ∪ B)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), A ∪ B) ∨ S(T2(x, l), A ∪ B)) ∈ D1

}
.
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Since A ⊆ A ∪ B and A ⊆ A ∪ B, monotonicity ensures:

BFG1◦2(A ∪ B)(x) ⊇ BFG1(A)(x) ∪ BFG2(B)(x)

Hence, BFG1◦2(A ∪ B) ⊇ BFG1(A) ∪ BFG2(B).
(8) The upper approximation under ◦ for A ∩ B is:

BFG1◦2(A ∩ B)(x) = sup
{

l ∈ L+
∣∣(S(T1(x, l), Ac ∪ Bc) ∨ S(T2(x, l), Ac ∪ Bc)) ∈ D2

}
.

Since A ∩ B ⊆ A and A ∩ B ⊆ A, monotonicity ensures:

BFG1◦2(A ∩ B)(x) ⊆ BFG1(A)(x) ∩ BFG2(B)(x).

Hence, BFG1◦2(A ∩ B) ⊆ BFG1(A) ∩ BFG2(B). □

Monotonicity is a crucial property in BFS approximation spaces, ensuring that the
inclusion relationships between fuzzy sets are reasonably reflected in their approximation
results. Specifically, the monotonicity condition guarantees that if a fuzzy set A is included
in another fuzzy set B (i.e., A ⊆ B), then the lower approximation of A does not exceed that
of B, and similarly, the upper approximation of A does not exceed that of B. This property
plays a significant role in various practical applications, including:

(1) Maintaining consistency in knowledge hierarchies. In applications such as knowl-
edge assessment and skill evaluation, knowledge or skills often possess hierarchical struc-
tures. For instance, a partial mastery of a skill is naturally contained within a near-complete
mastery level. Monotonicity ensures that the lower approximation result of partial mastery
does not exceed that of near-complete mastery, aligning with our intuitive understanding
of knowledge hierarchy. This consistency is crucial for building reliable assessment models
and ensuring the rationality of evaluation outcomes.

(2) Enhancing consistency in decision-making processes. In multi-criteria decision-
making and intelligent decision support systems, decision-makers often need to balance
multiple fuzzy criteria. Monotonicity ensures that as a criterion set expands (i.e., more
options are included), its approximation results appropriately reflect this change, avoid-
ing contradictions and inconsistencies in the decision-making process. This is vital for
maintaining the coherence and reliability of decision-making procedures.

5. Complementary Compatibility
In the fuzzy S-approximation space, the concept of weak complementary compatibility

was introduced [29] to ensure that the lower approximation of a set is always contained
within its upper approximation. Similarly, this section introduces the concept of comple-
mentary compatibility in the BFS approximation space.

Definition 24. Let BFG = (U × L+, W, T, S) be a BFS approximation space. If ∀x ∈ U,
∀l ∈ L+, and ∀A ∈ F (W), the intervals for the upper and lower approximation operators are

set as D1 = [a, 1] and D2 = [0, b], where a, b ∈ [0, 1] and a + b = 1. The following condition
is satisfied:

S(T(x, l), A) + S(T(x, l), Ac) ≤ 1,

then BFG is said to be complementary compatible.

Proposition 6. Let BFG = (U × L+, W, T, S) be a complementary compatible BFS approximation
space. Then, ∀A ∈ F (W), BFG(A) ⊆ BFG(A).
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Proof. If ∀l ∈ L+, S(T(x, l), A) /∈ D1, then, BFG(A)(x) = 0. Thus, BFG(A)(x) ≤
BFG(A)(x). Otherwise, suppose there exists l ∈ L+ with S(T(x, l), A) ∈ D1. Since BFG is
complementary compatible, that implies S(T(x, l), A) + S(T(x, l), Ac) ≤ a + b = 1. Hence

S(T(x, l), A) ≥ a ⇒ S(T(x, l), Ac) ≤ b.

Taking the supremum over all such l ∈ L+, it follows

BFG(A)(x) = sup
{

l ∈ L+
∣∣S(T(x, l), A) ∈ D1

}
≤ sup

{
l ∈ L+

∣∣S(T(x, l), A) ∈ D2
}
= BFG(A)(x).

Hence, BFG(A)(x) ≤ BFG(A)(x).
Combining the above results, we have BFG(A) ⊆ BFG(A).□

Example 3. Let us consider the BFS approximation space (U × L+, W, T, S) in Example 1. Take
a = 0.6 and b = 0.4. Let

A = {(y1, 0.2), (y2, 0.8), (y3, 0.1), (y4, 0.5)} ∈ F(W),

then its complement is

Ac = {(y1, 0.8), (y2, 0.2), (y3, 0.9), (y4, 0.5)}.

Taking (x1, 0.6)as an example, according to the definition in Example 1, T(x1, 0.6) =

{(y1, 0.5), (y2, 0.3), (y3, 0), (y4, 1)}. Then,

S(T((x1, 0.6)), A) = max
{

0.5+0.2
2 , 0.3+0.8

2 , 0+0.1
2 , 1+0.5

2

}
= max{0.35, 0.55, 0.05, 0.75

}
= 0.75.

S(T((x1, 0.6)), Ac) = max
{

0.5+0.8
2 , 0.3+0.2

2 , 0+0.9
2 , 1+0.5

2

}
= max{0.65, 0.25, 0.45, 0.75

}
= 0.75.

S(T((x1, 0.6)), A) + S(T((x1, 0.6)), Ac) = 0.75 + 0.75 = 1.5 ≥ 1.

Therefore, the BFS approximation space in Example 1 does not satisfy the complementary
compatibility condition. To achieve complementary compatibility, one may consider adjusting the
knowledge mapping T or redefining the decision mapping S.

In data mining tasks, BFS approximation spaces allow flexible thresholds through D1

and D2 to discover fuzzy patterns of co-occurrence or to identify partial associations be-
tween concepts in large-scale data. Moreover, complementary compatibility considerations
ensure that the lower and upper approximations are internally consistent, which is crucial
in intelligent decision support systems. For example, when mining customer preferences
(fuzzy sets of features), BFS approximation can unify partial knowledge across multiple
product categories, enabling more robust recommendation and segmentation strategies.

6. Conclusions
Building on the fuzzy extension of knowledge space theory, this paper extends S-

approximation spaces to BFS approximation spaces and defines their corresponding upper
and lower approximation operators. Through rigorous analysis, the study demonstrates
that these operators exhibit distinct mathematical properties under various operations and
assumptions. Additionally, the paper explores a significant form of the approximation
operators, highlighting the monotonicity and complementary compatibility inherent in
BFS approximation spaces. These findings not only expand the theoretical framework of S-
approximation spaces but also provide fresh insights into the fuzzy extension of knowledge
space theory. Looking ahead, future research could delve deeper into the connections
between BFS approximation spaces, fuzzy skill mappings, and fuzzy knowledge structures.
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Such endeavors would further enrich the theoretical foundation of BFS approximation
spaces and enhance their practical applications in the broader context of fuzzy knowledge
space theory.

Building on these results, BFS approximation spaces play a key role in facilitating
the transition from single-fuzzy to bi-fuzzy universes. Nonetheless, there remain several
aspects that warrant additional investigation. First, the choice of intervals D1 and D2

may be application-dependent and can require extensive parameter tuning. Second, in
high-dimensional or large-scale settings, computing these approximations for multiple
fuzzy universes simultaneously might become computationally intensive, thus prompting
a need for efficient algorithms and distributed implementations. Third, complementary
compatibility imposes specific constraints on the sum of membership evaluations, which
may not always hold in real-world fuzzy data. In future work, more advanced parameter
optimization or machine-learning-based calibration methods could be investigated to auto-
matically set a and b. Moreover, a tighter integration with fuzzy skill maps in knowledge
space theory might yield deeper insights, and exploring BFS approximation spaces in
emerging fields such as explainable AI, cognitive modeling, or big data analytics could
further broaden their applicability.

Author Contributions: Writing—original draft preparation, R.W. and X.X.; writing—review and edit-
ing, R.W., H.Z. and X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China,
grant number “12271191” and in part by the Natural Science Foundation of Fujian Province, China,
grant number “2024J01793”.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors extend their heartfelt gratitude to the anonymous reviewers and
editors for their meticulous review and valuable suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
2. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 1991; Volume 9.
3. Pawlak, Z.; Skowron, A. Rough sets and Boolean reasoning. Inf. Sci. 2007, 177, 41–73. [CrossRef]
4. Ilczuk, G.; Mlynarski, R.; Wakulicz-Deja, A.; Drzewiecka, A.; Kargul, W. Rough set techniques for medical diagnosis systems. In

Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September 2005; pp. 837–840.
5. Inbarani, H.H. A novel neighborhood rough set based classification approach for medical diagnosis. Procedia Comput. Sci. 2015,

47, 351–359.
6. El-Bably, M.K.; Abu-Gdairi, R.; El-Gayar, M.A. Medical diagnosis for the problem of Chikungunya disease using soft rough sets.

AIMS Math. 2023, 8, 9082–9105. [CrossRef]
7. Wong, S.M.; Wang, L.; Yao, Y. Interval structure: A framework for representing uncertain information. In Proceedings of the

Uncertainty in Artificial Intelligence, Stanford University, Stanford, CA, USA, 17–19 September 1992; pp. 336–343.
8. Skowron, A.; Dutta, S. Rough sets: Past, present, and future. Nat. Comput. 2018, 17, 855–876. [CrossRef] [PubMed]
9. D’eer, L.; Cornelis, C.; Yao, Y. A semantically sound approach to Pawlak rough sets and covering-based rough sets. Int. J. Approx.

Reason. 2016, 78, 62–72. [CrossRef]
10. Abu-Gdairi, R.; El-Gayar, M.A.; El-Bably, M.K.; Fleifel, K.K. Two different views for generalized rough sets with applications.

Mathematics 2021, 9, 2275. [CrossRef]
11. Hooshmandasl, M.R.; Shakiba, A.; Goharshady, A.; Karimi, A. S-Approximation: A New Approach to Algebraic Approximation.

J. Discret. Math. 2014, 2014, 909684. [CrossRef]
12. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [CrossRef]
13. Ziarko, W. Variable precision rough set model. J. Comput. Syst. Sci. 1993, 46, 39–59. [CrossRef]
14. Davvaz, B. A short note on algebraic T-rough sets. Inf. Sci. 2008, 178, 3247–3252. [CrossRef]

https://doi.org/10.1007/BF01001956
https://doi.org/10.1016/j.ins.2006.06.007
https://doi.org/10.3934/math.2023455
https://doi.org/10.1007/s11047-018-9700-3
https://www.ncbi.nlm.nih.gov/pubmed/30524217
https://doi.org/10.1016/j.ijar.2016.06.013
https://doi.org/10.3390/math9182275
https://doi.org/10.1155/2014/909684
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1016/0022-0000(93)90048-2
https://doi.org/10.1016/j.ins.2008.03.014


Mathematics 2025, 13, 324 19 of 20

15. Shakiba, A.; Hooshmandasl, M.R. S-approximation spaces: A three-way decision approach. Fundam. Inform. 2015, 139, 307–328.
[CrossRef]

16. Shakiba, A. S-approximation Spaces. In Algebraic Methods in General Rough Sets; Birkhäuser: Cham, Switzerland, 2018;
pp. 697–725.

17. Hooshmandasl, M.R.; Meybodi, M.A.; Goharshady, A.K.; Shakiba, A. A combinatorial approach to certain topological spaces
based on minimum complement s-approximation spaces. arXiv 2016, arXiv:1602.00998.

18. Shakiba, A.; Goharshady, A.K.; Hooshmandasl, M.; Meybodi, M.A. A note on belief structures and S-approximation spaces. arXiv
2018, arXiv:1805.10672.

19. Shakiba, A. Distributed decision making with S-approximation spaces. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2021, 29,
281–311. [CrossRef]

20. Xu, W.; Jia, B.; Li, X. A generalized model of three-way decision with ranking and reference tuple. Int. J. Approx. Reason. 2022, 144,
51–68. [CrossRef]

21. Li, X.; Chen, Y. Matroidal structures on S-approximation spaces. Soft Comput. 2022, 26, 11231–11242. [CrossRef]
22. Li, X.; Yan, Y. Three-way decision: A unification of two-universe models of rough sets. Appl. Intell. 2024, 54, 460–469. [CrossRef]
23. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
24. Zimmermann, H.J. Fuzzy set theory. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 317–332. [CrossRef]
25. Yao, Y. A comparative study of fuzzy sets and rough sets. Inf. Sci. 1998, 109, 227–242. [CrossRef]
26. Feng, F.; Li, C.; Davvaz, B.; Ali, M.I. Soft sets combined with fuzzy sets and rough sets: A tentative approach. Soft Comput. 2010,

14, 899–911. [CrossRef]
27. Abd El-latif, A. New generalized fuzzy soft rough approximations applied to fuzzy topological spaces. J. Intell. Fuzzy Syst. 2018,

35, 2123–2136. [CrossRef]
28. Shakiba, A.; Hooshmandasl, M.R.; Davvaz, B.; Fazeli, S.A.S. An intuitionistic fuzzy approach to S-approximation spaces. J. Intell.

Fuzzy Syst. 2016, 30, 3385–3397. [CrossRef]
29. Shakiba, A.; Hooshmandasl, M.; Davvaz, B.; Shahzadeh Fazeli, S.A. S-approximation spaces: A fuzzy approach. Iran. J. Fuzzy

Syst. 2017, 14, 127–154.
30. Doignon, J.-P.; Falmagne, J.-C. Spaces for the assessment of knowledge. Int. J. Man-Mach. Stud. 1985, 23, 175–196. [CrossRef]
31. Falmagne, J.C.; Doignon, J.P. A class of stochastic procedures for the assessment of knowledge. Br. J. Math. Stat. Psychol. 1988, 41,

1–23. [CrossRef]
32. Yang, L.; Li, J.; Zhang, C.; Lin, Y. A New Approach of Knowledge Reduction in Knowledge Context Based on Boolean Matrix.

Symmetry 2022, 14, 850. [CrossRef]
33. Liu, G. Rough set approaches in knowledge structures. Int. J. Approx. Reason. 2021, 138, 78–88. [CrossRef]
34. Anselmi, P.; Robusto, E.; Stefanutti, L.; de Chiusole, D. An upgrading procedure for adaptive assessment of knowledge.

Psychometrika 2016, 81, 461–482. [CrossRef] [PubMed]
35. Brancaccio, A.; de Chiusole, D.; Stefanutti, L. Algorithms for the adaptive assessment of procedural knowledge and skills. Behav.

Res. Methods 2023, 55, 3929–3951. [CrossRef] [PubMed]
36. de Chiusole, D.; Stefanutti, L.; Anselmi, P.; Robusto, E. Stat-Knowlab. Assessment and learning of statistics with competence-based

knowledge space theory. Int. J. Artif. Intell. Educ. 2020, 30, 668–700. [CrossRef]
37. Cosyn, E.; Uzun, H.; Doble, C.; Matayoshi, J. A practical perspective on knowledge space theory: ALEKS and its data. J. Math.

Psychol. 2021, 101, 102512. [CrossRef]
38. Zhou, Y.; Li, J.; Yang, H.; Xu, Q.; Yang, T.; Feng, D. Knowledge structures construction and learning paths recommendation based

on formal contexts. Int. J. Mach. Learn. Cybern. 2024, 15, 1605–1620. [CrossRef]
39. Sun, W.; Li, J.; Ge, X.; Lin, Y. Knowledge structures delineated by fuzzy skill maps. Fuzzy Sets Syst. 2021, 407, 50–66. [CrossRef]
40. Xu, B.; Li, J. The inclusion degrees of fuzzy skill maps and knowledge structures. Fuzzy Sets Syst. 2023, 465, 108540. [CrossRef]
41. Xu, B.; Li, J.; Sun, W.; Wang, B. On delineating forward-and backward-graded knowledge structures from fuzzy skill maps. J.

Math. Psychol. 2023, 117, 102819. [CrossRef]
42. Stefanutti, L.; Anselmi, P.; de Chiusole, D.; Spoto, A. On the polytomous generalization of knowledge space theory. J. Math.

Psychol. 2020, 94, 102306. [CrossRef]
43. Zhou, Y.; Li, J.; Wang, H.; Sun, W. Skills and fuzzy knowledge structures. J. Intell. Fuzzy Syst. 2022, 42, 2629–2645. [CrossRef]
44. Sun, W.; Li, J.; Lin, F.; He, Z. Constructing polytomous knowledge structures from fuzzy skills. Fuzzy Sets Syst. 2023, 461, 108395.

[CrossRef]

https://doi.org/10.3233/FI-2015-1236
https://doi.org/10.1142/S021848852150013X
https://doi.org/10.1016/j.ijar.2022.01.014
https://doi.org/10.1007/s00500-022-07473-2
https://doi.org/10.1007/s10489-023-05209-9
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1002/wics.82
https://doi.org/10.1016/S0020-0255(98)10023-3
https://doi.org/10.1007/s00500-009-0465-6
https://doi.org/10.3233/JIFS-172076
https://doi.org/10.3233/IFS-152086
https://doi.org/10.1016/S0020-7373(85)80031-6
https://doi.org/10.1111/j.2044-8317.1988.tb00884.x
https://doi.org/10.3390/sym14050850
https://doi.org/10.1016/j.ijar.2021.08.003
https://doi.org/10.1007/s11336-016-9498-9
https://www.ncbi.nlm.nih.gov/pubmed/27071952
https://doi.org/10.3758/s13428-022-01998-y
https://www.ncbi.nlm.nih.gov/pubmed/36526887
https://doi.org/10.1007/s40593-020-00223-1
https://doi.org/10.1016/j.jmp.2021.102512
https://doi.org/10.1007/s13042-023-01985-5
https://doi.org/10.1016/j.fss.2020.10.004
https://doi.org/10.1016/j.fss.2023.108540
https://doi.org/10.1016/j.jmp.2023.102819
https://doi.org/10.1016/j.jmp.2019.102306
https://doi.org/10.3233/JIFS-212018
https://doi.org/10.1016/j.fss.2022.09.003


Mathematics 2025, 13, 324 20 of 20

45. Sun, W.; Li, J.; He, Z.; Ge, X.; Lin, Y. Well-graded polytomous knowledge structures. J. Math. Psychol. 2023, 114, 102770. [CrossRef]
46. He, Z. Polytomous Knowledge Structures Based on Entail Relations. Mathematics 2024, 12, 2504. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jmp.2023.102770
https://doi.org/10.3390/math12162504

	Introduction 
	Preliminaries 
	Bi-Fuzzy S-Approximation Spaces 
	Monotonicity 
	Complementary Compatibility 
	Conclusions 
	References

