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Abstract: In this paper, we leverage the properties of the swap test to evaluate the similarity
of two qubits and propose a two-party quantum private comparison (QPC) protocol
involving a semi-trusted third party (TP). The TP facilitates the comparison between
participants without accessing their private information, other than the final comparison
results. Our protocol encodes participants’ secret integers directly into the amplitudes of
single-photon states and introduces a novel method for secret-to-secret comparison rather
than the traditional bit-to-bit comparison, resulting in improved scalability. To ensure
security, the encoded single-photon states are concealed using rotation operations. The
comparison results are derived through the implementation of the swap test. A simulation
on the IBM Quantum Platform demonstrates the protocol’s feasibility, and a security
analysis confirms its robustness against potential eavesdropping and participant attacks.
Compared with existing QPC protocols that employ bit-to-bit comparison methods, our
approach offers improved practicality and scalability. Specifically, it integrates single-
photon states, rotation operations, and the swap test as key components for direct secret
comparison, facilitating easier implementation with quantum technology.

Keywords: quantum private comparison (QPC); single photons; semi-trusted third party
(TP); swap test; rotation operation; direct secret comparison
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1. Introduction
Quantum information science has progressed significantly, particularly in quantum

cryptography, which utilizes quantum mechanics for enhanced security compared with
classical methods that depend on mathematical complexity. Following Bennett and Bras-
sard’s introduction of the first unconditional quantum cryptographic protocol in 1984 [1], a
variety of protocols have been developed to tackle different cryptographic tasks, including
quantum key distribution (QKD) [2–6], quantum secret sharing (QSS) [7–10], quantum
key agreement (QKA) [11,12], quantum secure direct communication (QSDC) [13–16], and
quantum private set intersection (QPSI) [17–20].

Secure multiparty computation (MPC) is a cryptographic framework that enables mul-
tiple parties to compute a function collaboratively while keeping their inputs confidential.
A key development in this area is the private comparison proposed by Yao in the context of
the millionaires’ problem [21], which allows two millionaires to determine who is wealthier
without disclosing their actual wealth. Boudot et al. [22] later expanded this concept to the
socialist millionaires’ problem, where two parties seek to establish whether their wealth
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is equal without revealing specific amounts. This issue has garnered significant attention
in the cryptographic community, leading to various privacy-enhancing solutions. How-
ever, Lo [23] identified a significant limitation in two-party settings: it is fundamentally
impossible to securely evaluate a computational function without compromising privacy.
To overcome this challenge, the involvement of a semi-honest third party (TP) is crucial.
The TP facilitates secure comparisons while potentially attempting to glean information
about the participants’ inputs.

The security of private comparison protocols relies on unproven mathematical as-
sumptions, making them susceptible to threats from quantum computers, which exploit
quantum mechanics for efficient parallel computation. Notably, the Shor algorithm [24]
can factor large integers in polynomial time, rendering classical public-key cryptographic
systems like RSA vulnerable to quantum attacks. Additionally, the Grover algorithm [25]
poses a significant risk to symmetric-key cryptography by enabling faster search and func-
tion inversion, effectively reducing the effective key length of symmetric algorithms by
half. In response to these vulnerabilities, quantum private comparison (QPC) has been
developed. QPC utilizes quantum mechanics to enhance security features, ensuring that
sensitive information remains confidential throughout the comparison process.

The first quantum private comparison (QPC) protocol was developed by Yang and
Wen [26], utilizing EPR pairs for quantum information transmission along with decoy
photons and a one-way hash function for security. Since then, various QPC protocols
have emerged, employing different quantum states such as single particles [27–32], Bell
states [33–40], and multi-particle entangled states [41–53]. Beyond merely comparing
equality, researchers have also explored protocols for comparing the sizes of secret integers.
For instance, Lin et al. [54] proposed a size comparison QPC protocol using d-level Bell
states, while Guo et al. [55] utilized entanglement swapping of d-level Bell states. Yu
et al. [56] introduced a similar protocol with d-level single-particle states, and Ye and
Ye [57] presented two multiparty QPC protocols involving one or two semi-honest TPs.
Additionally, Song et al. [58] developed an multiparty quantum private comparison (MQPC)
using single-particle states.

The swap test [59], a fundamental algorithm in quantum computing, has become a
key focus in the development of quantum cryptographic protocols. Its primary objective
is to assess the similarity between two qubits. By measuring the probability of the ancilla
qubit being in the |1⟩ or |0⟩ state, the square of the inner product of the two qubits is deter-
mined. Building on the principles of the swap test, various applications such as quantum
signatures [60], quantum machine learning [61], and the blind millionaires’ problem [62]
have been proposed.

The previously discussed QPC protocols focus on converting secret integers into binary
representations and comparing these classical bits (0 or 1) using a bit-by-bit approach, which
inherently limits their scalability. Additionally, many existing QPC protocols employ multi-
qubit states and d-dimensional states, which further constrain their practicality due to the
complexities associated with manipulating these states. To overcome these limitations, we
propose a two-party quantum private comparison (QPC) protocol that utilizes the swap
test to evaluate the similarity of two encoded qubits. This process involves a semi-honest
third party (TP) who facilitates the comparison between participants without accessing
their private information, except for the final comparison results. In our protocol, the
two participants encode their secret integers directly into the amplitudes of single-photon
states through rotation operations, significantly enhancing scalability by eliminating the
need for binary representations. The encoded single-photon states are secured through
these rotation operations before being sent to the TP, who then derives the comparison
results using the swap test. A simulation conducted on the IBM Quantum Platform confirms
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the feasibility of our protocol, and security analysis demonstrates its resilience against
potential eavesdropping and participant attacks. Compared with existing QPC protocols
that rely on bit-by-bit comparison methods, our approach offers improved practicality and
scalability. Specifically, it integrates single-photon states, rotation operations, and the swap
test as essential components for direct secret comparison, making it easier to implement
with modern technology.

The remainder of this paper is structured as follows. Section 2 introduces the swap test
and rotation operation. A detailed description of the proposed QPC protocol is provided
in Section 3. Sections 4 and 5 present the simulation and analysis, respectively. Section 6
offers a comparison with existing protocols, and, finally, Section 7 concludes the paper.

2. Swap Test and Rotation Operation
2.1. Swap Test

The swap test was first introduced in [59] and is designed to assess the similarity
between two arbitrary qubits. By measuring the probability that the ancilla qubit is in
either state |1〉 or state |0〉, we can determine the square of the inner product of the
two qubits [63]. The quantum circuit implementing the swap test is illustrated in Figure 1.
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The initial quantum states are composed by two quantum states |α1⟩ and |α2⟩, as well
as an ancillary state |0⟩. That is,

|β0⟩ = |0⟩ ⊗ |α1⟩ ⊗ |α2⟩ = |0, α1, α2⟩ (1)

When performing a Hadamard operation on the ancillary state |0⟩, the initial quantum
state |β0⟩ is converted as

|β1⟩ = (H ⊗ I ⊗ I)|β0⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |α1⟩ ⊗ |α2⟩ =

1√
2
(|0, α1, α2⟩+ |1, α1, α2⟩) (2)

When performing the controlled-swap gate where the ancillary is the control qubit,
|β1⟩ is transformed into

|β2⟩ =
1√
2
|0⟩ ⊗ |α1⟩ ⊗ |α2⟩+

1√
2
|1⟩ ⊗ |α2⟩ ⊗ |α1⟩ =

1√
2
(|0, α1, α2⟩+ |1, α2, α1⟩) (3)

When performing the Hadamard operation on the ancillary state |0⟩ again, |β2⟩ is
converted as

|β3⟩ = (H ⊗ I ⊗ I)|β2⟩ = 1√
2

(
|0⟩+|1⟩√

2
⊗ |α1⟩ ⊗ |α2⟩+ |0⟩−|1⟩√

2
⊗ |α2⟩ ⊗ |α1⟩

)
= 1

2 |0⟩ ⊗ |α1⟩ ⊗ |α2⟩+ 1
2 |1⟩ ⊗ |α1⟩ ⊗ |α2⟩+ 1

2 |0⟩ ⊗ |α2⟩ ⊗ |α1⟩ − 1
2 |1⟩ ⊗ |α2⟩ ⊗ |α1⟩

= 1
2 |0⟩(|α1, α2⟩+ |α2, α1⟩) + 1

2 |1⟩(|α1, α2⟩ − |α2, α1⟩)
(4)
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When performing a projective measurement on the ancillary state with an operator
M = |1⟩⟨1|, the probability that the ancillary state is in state |1⟩ can be given by

P(|1⟩) = ⟨β3|M† M|β3⟩ = ⟨β3|M|β3⟩
= 1

4 (⟨1, α1, α2| − ⟨1, α2, α1|)⊗ |1⟩⟨1| ⊗ (|1, α1, α2⟩ − |1, α2, α1⟩)
= 1

4 (⟨α1, α2| − ⟨α2, α1|)⊗ (|α1, α2⟩ − |α2, α1⟩)
= 1

2 − 1
2 |⟨α1|α2⟩|2

(5)

According to Equation (5), we can deduce that

|⟨α1|α2⟩|2 = 1 − 2P(|1⟩) (6)

2.2. Rotation Operation

The rotation operation around the Y-axis can be written as

Ry(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
(7)

Ry(θ) is a unitary operation since Ry
†(θ)Ry(θ) = Ry(−θ)Ry(θ) = I. For quantum

states |1⟩ and |0⟩, when performing the rotation operation on them, we can obtain

Ry(θ)|1⟩ =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)(
0
1

)
=

(
− sin θ

2
cos θ

2

)
= − sin

θ

2
|0⟩+ cos

θ

2
|1⟩ (8)

Ry(θ)|0⟩ =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)(
1
0

)
=

(
cos θ

2
sin θ

2

)
= cos

θ

2
|0⟩+ sin

θ

2
|1⟩ (9)

From Equations (8) and (9), we can know that the single-photon states |1⟩ and |0⟩ are
concealed. Without knowing the angle θ, |1⟩ and |0⟩ cannot be recovered.

To obtain the initial single-photon states |1⟩ and |0⟩, we need to rotate the resulting
state with an angle of θ in the opposite direction. That is, the rotation angle is −θ.

Ry(−θ)

(
− sin

θ

2
|0⟩+ cos

θ

2
|1⟩
)
=

(
cos −θ

2 − sin −θ
2

sin −θ
2 cos −θ

2

)(
− sin θ

2
cos θ

2

)
=

(
0
1

)
= |1⟩ (10)

Ry(−θ)

(
cos

θ

2
|0⟩+ sin

θ

2
|1⟩
)
=

(
cos −θ

2 − sin −θ
2

sin −θ
2 cos −θ

2

)(
cos θ

2
sin θ

2

)
=

(
1
0

)
= |0⟩ (11)

Furthermore, the rotation operation can also be used to encode the secret integer.
For instance, for the integer 10, we can consider it as π

10 , which serves as the angle of the
rotation operation performed on quantum state |0⟩. Then, the encoded single-photon state
is Ry

(
π
10
)
|0⟩ = cos π

20 |0⟩+ sin π
20 |1⟩.

3. The Proposed QPC Protocol
The primary objective of the QPC protocol is to determine whether the secrets x and

y held by Alice and Bob are equal with the assistance of a semi-honest third party (TP).
The TP is expected to adhere to the protocol as designed and will not collude with the
participants. However, despite following the rules, the TP may still attempt to extract
additional information from the data it processes. This determination is achieved without
either party disclosing any information about their respective secrets to one another, the TP,
or any external observers. The protocol guarantees several key properties:

Privacy: Each participant’s secret remains confidential throughout the entire process.
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Correctness: The protocol’s comparison result accurately indicates whether the secrets
are equal.

Fairness: Both parties receive the comparison result simultaneously, ensuring that
neither participant has an advantage over the other.

The protocol assumes the availability of a noise-free and lossless quantum channel,
which allows for the transmission of quantum states without any degradation. Furthermore,
it presumes that the classical channel used for communication between the parties is
authenticated during transmission.

The detailed steps of the proposed QPC protocol are as follows, and its diagram is
depicted in Figure 2.
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Step 1. Alice and Bob share an angle θAB ∈ [0, 2π ) through a QKD protocol. Then,
Alice (Bob) converts her (his) secret x (y) into an angle θA = π

x (θB = π
y ). Specifically, if

x = 0 (y = 0), then θA = 0 (θ B = 0). Finally, Alice (Bob) performs the rotation operation with
the angle θA + θAB (θ B + θAB) on quantum state |0⟩ to obtain the encoded single-photon
state |αA⟩ (|αB⟩).

|αA⟩ = Ry(θA + θAB)|0⟩ =

 cos
(

π
2x + θAB

2

)
− sin

(
π
2x + θAB

2

)
sin
(

π
2x + θAB

2

)
cos
(

π
2x + θAB

2

) ( 1
0

)
=

 cos
(

π
2x + θAB

2

)
sin
(

π
2x + θAB

2

) 
= cos

(
π
2x + θAB

2

)
|0⟩+ sin

(
π
2x + θAB

2

)
|1⟩ = cos

(
π
2x + θAB

2

)
|0⟩+ sin

(
π
2x + θAB

2

)
|1⟩

(12)

|αB⟩ = Ry(θB + θAB)|0⟩ =

 cos
(

π
2y + θAB

2

)
− sin

(
π
2y + θAB

2

)
sin
(

π
2y + θAB

2

)
cos
(

π
2y + θAB

2

) ( 1
0

)
=

 cos
(

π
2y + θAB

2

)
sin
(

π
2y + θAB

2

) 
= cos

(
π
2y + θAB

2

)
|0⟩+ sin

(
π
2y + θAB

2

)
|1⟩ = cos

(
π
2y + θAB

2

)
|0⟩+ sin

(
π
2y + θAB

2

)
|1⟩

(13)

Step 2. Alice (Bob) randomly generates her (his) own secret key θAO ∈ [0, 2π )

( θBO ∈ [0, 2π )). She (he) performs the rotation operation with the angle θAO (θBO) on the
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encoded single-photon state |αA⟩ (|αB⟩). The resulting single-photon state is denoted as
|χA⟩ (|χB⟩).

|χA⟩ = Ry(θAO)|αA⟩ =
(

cos θAO
2 − sin θAO

2
sin θAO

2 cos θAO
2

) cos
(

π
2x + θAB

2

)
sin
(

π
2x + θAB

2

)  =

 cos
(

θAO
2 + π

2x + θAB
2

)
sin
(

θAO
2 + π

2x + θAB
2

) 
= cos

(
θAO

2 + π
2x + θAB

2

)
|0⟩+ sin

(
θAO

2 + π
2x + θAB

2

)
|1⟩

(14)

|χB⟩ = Ry(θBO)|αB⟩ =
(

cos θBO
2 − sin θBO

2
sin θBO

2 cos θBO
2

) cos
(

π
2y + θAB

2

)
sin
(

π
2y + θAB

2

)  =

 cos
(

θBO
2 + π

2y + θAB
2

)
sin
(

θBO
2 + π

2y + θAB
2

) 
= cos

(
θBO

2 + π
2y + θAB

2

)
|0⟩+ sin

(
θBO

2 + π
2y + θAB

2

)
|1⟩

(15)

Step 3. To prevent eavesdropping, Alice (Bob) prepares a decoy-photon sequence
DA (DB), randomly selecting from four nonorthogonal states {|0⟩, |1⟩, |+⟩, |−⟩}. Alice
(Bob) inserts DA into |χA⟩ (DB into |χB⟩) at random positions. Throughout this process,
Alice (Bob) carefully records the states and positions of the decoy photons. After the
insertion of the decoy photons, the modified sequence is denoted as SA (SB). Alice (Bob)
then sends SA (SB) to the TP for further processing.

Step 4. After confirming that the trusted party (TP) has received the sequences SA (SB),
Alice (Bob) will publicly disclose the measurement bases for measuring the decoy photons.
Specifically, the Z-basis was utilized for measuring states |0⟩ and |1⟩, and the X-basis
was used for measuring states |+⟩ and |−⟩. Alice (Bob) will also publish the positions
of the decoy photons DA (DB). The TP then performs quantum measurements on the
decoy photons DA and DB to obtain the measurement results. These results are sent back
to Alice and Bob, who can detect the presence of an eavesdropper (commonly referred
to as “Eve”) by comparing the measurement results with the initially prepared decoy
photons. If the error rate exceeds a pre-agreed threshold, Alice and Bob will conclude
that the communication has been compromised and will restart the protocol from Step
2. Conversely, if the error rates for both Alice and Bob are acceptable, the TP will send a
confirmation message back to them. Subsequently, Alice announces her key θAO and Bob
announces his key θBO to the TP.

Step 5. The TP recovers |χA⟩ (|χB⟩) by discarding all decoy photons in SA (SB). The
TP then performs the rotation operation with the angle −θAO (−θBO) on |χA⟩ (|χB⟩) to
obtain the encoded single-photon state |αA⟩ (|αB⟩). This process can be given by

Ry(−θAO)|χA⟩ =
(

cos −θAO
2 − sin −θAO

2
sin −θAO

2 cos −θAO
2

) cos
(

θAO
2 + π

2x + θAB
2

)
sin
(

θAO
2 + π

2x + θAB
2

)  =

 cos
(

π
2x + θAB

2

)
sin
(

π
2x + θAB

2

) 
= cos

(
π
2x + θAB

2

)
|0⟩+ sin

(
π
2x + θAB

2

)
|1⟩ = |αA⟩

(16)

Ry(−θBO)|χB⟩ =
(

cos −θBO
2 − sin −θBO

2
sin −θBO

2 cos −θBO
2

) cos
(

θBO
2 + π

2y + θAB
2

)
sin
(

θBO
2 + π

2y + θAB
2

)  =

 cos
(

π
2y + θAB

2

)
sin
(

π
2y + θAB

2

) 
= cos

(
π
2y + θAB

2

)
|0⟩+ sin

(
π
2y + θAB

2

)
|1⟩ = |αB⟩

(17)

Finally, the TP performs the swap test on |αA⟩ and |αB⟩ and measures the ancillary
quantum state to obtain the measurement results.

Step 6. By executing Steps 2–5 a total of λ times, the process allows the TP to gather
multiple measurement results from the ancillary quantum state. Once one of the mea-
surement results appears as |1⟩, TP can conclude that x ̸= y; otherwise, x = y. The TP
announces the comparison result to Alice and Bob at the same time.
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4. Simulation
Consider a case in which Alice and Bob hold their own secret x = 3 and y = 20,

respectively, and they want to determine whether x = y without revealing x and y to each
other, the TP, and any eavesdropper.

According to the protocol description, we assume that Alice and Bob share an angle
θAB = 3π

4 through a QKD protocol. Alice (Bob) converts her (his) secret x (y) into an angle
θA = π

3 (θB = π
20 ). When performing the rotation operation with the angle θA = π

3 (θB = π
20 )

on quantum state |0⟩, the encoded single-photon state |αA⟩(|αB⟩) can be expressed as

|αA⟩ = Ry
(

π
3 + 3π

4
)
|0⟩ =

(
cos
(

π
6 + 3π

8
)

− sin
(

π
6 + 3π

8
)

sin
(

π
6 + 3π

8
)

cos
(

π
6 + 3π

8
) )(

1
0

)
=

(
cos
(

π
6 + 3π

8
)

sin
(

π
6 + 3π

8
) )

= cos
(

π
6 + 3π

8
)
|0⟩+ sin

(
π
6 + 3π

8
)
|1⟩ = cos

(
π
6 + 3π

8
)
|0⟩+ sin

(
π
6 + 3π

8
)
|1⟩

(18)

|αB⟩ = Ry
(

π
20 + 3π

4
)
|0⟩ =

(
cos
(

π
40 + 3π

8
)

− sin
(

π
40 + 3π

8
)

sin
(

π
40 + 3π

8
)

cos
(

π
40 + 3π

8
) )(

1
0

)
=

(
cos
(

π
40 + 3π

8
)

sin
(

π
40 + 3π

8
) )

= cos
(

π
40 + 3π

8
)
|0⟩+ sin

(
π
40 + 3π

8
)
|1⟩ = cos

(
π
40 + 3π

8
)
|0⟩+ sin

(
π
40 + 3π

8
)
|1⟩

(19)

Following that, we assume that Alice (Bob) generates her (his) own secret key
θAO = 7π

8 ( θBO = π
3
)
. When performing the rotation operation with the angle θAO = 7π

8
( θBO = π

3
)

on the encoded single-photon state |αA⟩ (|αB⟩), the resulting single-photon state
|χA⟩(|χB⟩) can be given by

|χA⟩ = Ry(θAO)|αA⟩ =
(

cos 7π
16 − sin 7π

16
sin 7π

16 cos 7π
16

)(
cos
(

π
6 + 3π

8
)

sin
(

π
6 + 3π

8
) ) =

(
cos
( 7π

16 + π
6 + 3π

8
)

sin
( 7π

16 + π
6 + 3π

8
) )

= cos
( 7π

16 + π
6 + 3π

8
)
|0⟩+ sin

( 7π
16 + π

6 + 3π
8
)
|1⟩

(20)

|χB⟩ = Ry(θBO)|αB⟩ =
(

cos π
6 − sin π

6
sin π

6 cos π
6

)(
cos
(

π
40 + 3π

8
)

sin
(

π
40 + 3π

8
) ) =

(
cos
(

π
6 + π

68 + 3π
8
)

sin
(

π
6 + π

68 + 3π
8
) )

= cos
(

π
6 + π

40 + 3π
8
)
|0⟩+ sin

(
π
6 + π

40 + 3π
8
)
|1⟩

(21)

Without considering the eavesdropping in Step 3 and Step 4 for simplification, the
TP can recover |χA⟩ (|χB⟩) in Step 5. When performing the rotation operation with the
angle − 7π

8
(
−π

3
)

on |χA⟩ (|χB⟩) to obtain the encoded single-photon state |αA⟩(|αB⟩), this
process can be written as

Ry(−θAO)|χA⟩ =
(

cos −7π
16 − sin −7π

16
sin −7π

16 cos −7π
16

)(
cos
( 7π

16 + π
6 + 3π

8
)

sin
( 7π

16 + π
6 + 3π

8
) ) =

(
cos
(

π
6 + 3π

8
)

sin
(

π
6 + 3π

8
) )

= cos
(

π
6 + 3π

8
)
|0⟩+ sin

(
π
6 + 3π

8
)
|1⟩ = |αA⟩

(22)

Ry(−θBO)|χB⟩ =
(

cos π
6 − sin π

6
sin π

6 cos π
6

)(
cos
(

π
6 + π

68 + 3π
8
)

sin
(

π
6 + π

68 + 3π
8
) ) =

(
cos
(

π
40 + 3π

8
)

sin
(

π
40 + 3π

8
) )

= cos
(

π
40 + 3π

8
)
|0⟩+ sin

(
π
40 + 3π

8
)
|1⟩ = |αB⟩

(23)

When performing the swap test on |αA⟩ and |αB⟩ and measuring the ancillary quantum
state, the probability that the measurement results are |1⟩ is

P(|1⟩) = 1
2 − 1

2

∣∣〈(cos
(

π
6 + 3π

8
)
⟨0|+ sin

(
π
6 + 3π

8
)
⟨1|
)∣∣cos

(
π
40 + 3π

8
)
|0⟩+ sin

(
π
40 + 3π

8
)
|1⟩
〉∣∣2

= 1
2 − 1

2

∣∣cos
(

π
6 + 3π

8
)

cos
(

π
40 + 3π

8
)
+ sin

(
π
6 + 3π

8
)

sin
(

π
40 + 3π

8
)∣∣

= 1
2 − 1

2

∣∣cos
(

π
6 − π

40
)∣∣2 = 1

2 − 1
2 cos2(π

6 − π
40
)
= 1

2 − 1
2 cos2

(
17π
120

)
= 0.09267

(24)

Since the probability that the measurement results appear to be |1⟩ is not 0, we can
conclude that x ̸= y.



Mathematics 2025, 13, 326 8 of 15

The quantum circuit implementation of the above process for determining whether
x = y is shown in Figure 3. The measurement results obtained by executing the quantum
circuit on the IBM Quantum Experience are presented in Figure 4.
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( )
2

1 1 3 3 3 31 cos 0 sin 1 cos 0 sin 1
2 2 6 8 6 8 40 8 40 8

1 1 3 3 3 3          cos cos sin sin
2 2 6 8 40 8 6 8 40 8

1 1           = co
2 2

P π π π π π π π π

π π π π π π π π

æ öæ ö æ ö æ ö æ ö
ç ÷ç ÷ ç ÷ ç ÷ ç ÷= - + + + + + +ç ÷ ç ÷ ç ÷ ç ÷ç ÷è ø è ø è ø è øè ø

æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷= - + + + + +ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø

-
2

2 21 1 1 1 17s = cos = cos =0.09267
6 40 2 2 6 40 2 2 120
π π π π πæ ö æ ö æ ö

ç ÷ ç ÷ ç ÷- - - -ç ÷ ç ÷ ç ÷
è ø è ø è ø  

(24) 

Since the probability that the measurement results appear to be |1⟩ is not 0, we can 
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circuit on the IBM Quantum Experience are presented in Figure 4. 
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Figure 4. The measurement results correspond to the quantum circuit executed on the IBM Quan-
tum Experience.

According to the measurement results, we find that quantum state |1⟩ appears. This
indicates that x ̸= y.

Therefore, we verify the feasibility of the proposed protocol by performing a quantum
circuit to compare x = 3 and y = 20 on the IBM Quantum Platform.

5. Analysis
5.1. Correctness

When performing the swap test on |αA⟩ and |αB⟩, the probability of |1⟩ appearing can
be expressed as

P(|1⟩) = 1
2 − 1

2

∣∣∣〈(cos
(

π
2x + θAB

2

)
⟨0|+ sin

(
π
2x + θAB

2

)
⟨1|
)∣∣∣cos

(
π
2y + θAB

2

)
|0⟩+ sin

(
π
2y + θAB

2

)
|1⟩
〉∣∣∣2

= 1
2 − 1

2

∣∣∣cos
(

π
2x + θAB

2

)
cos
(

π
2y + θAB

2

)
+ sin

(
π
2x + θAB

2

)
sin
(

π
2y + θAB

2

)∣∣∣
= 1

2 − 1
2

∣∣∣cos
(

π
2x − π

2y

)∣∣∣2 = 1
2 − 1

2 cos2
(

π
2x − π

2y

) (25)

From Equation (25), we can know that P(|1⟩) = 0 if and only if x = y. Therefore, we
can conclude that x ̸= y once the measurement results appear as |1⟩; otherwise, x = y.

5.2. Security

For the proposed QPC protocol, the attacks mainly come from the external adversary
often referred to as Eve, who may intercept the quantum sequence transmitted in the
quantum channel and the participants who utilize their intermediate calculation results to
uncover the private information. In the following, we will show that our protocol is secure
against these attacks.



Mathematics 2025, 13, 326 9 of 15

5.2.1. External Attacks

External attacks refer to Eve’s attempts to perform various common attack strategies,
including intercept-resend, direct measurement, entangle-measure, and Trojan horse at-
tacks, to extract information about the participants’ secret integer to the greatest extent
possible. However, the participants’ secret integer is encoded as a single-photon state,
which is transmitted to the TP. The TP’s own secret key and decoy photon technology can
be used to effectively prevent eavesdropping during this process. The following cases
consider different attack strategies.

Case I. The intercept-resend attack

During this attack, Eve attempts to intercept the sequences SA and SB, measure
them on a guessed measurement basis, and resend two fake sequences to the TP. SA

and SB consist of decoy photons that are randomly chosen from four nonorthogonal
states {|0⟩, |1⟩, |+⟩, |−⟩}, which are used to enhance security against eavesdropping. After
intercepting the quantum sequences, Eve can measure them but cannot distinguish between
the decoy photons and the actual encoded qubits since Eve lacks knowledge of the specific
positions of the decoy photons. Her measurements introduce disturbances that can be
detected by Alice and Bob, thereby resulting in the termination of this protocol. For instance,
for a decoy photon in state |+⟩, if Eve chooses the X basis to measure it, she will pass the
eavesdropping detection with a probability of 100%. Conversely, if Eve selects the Z basis to
measure it, she will pass the eavesdropping detection with a probability of 50%. For Alice,
the probability of choosing the X basis or the Z basis is 50%. Therefore, the probability that
Eve can pass the eavesdropping detection is 1

2 × 1 + 1
2 × 1

2 = 3
4 . For m decoy photons, the

probability of this attack being detected is 1 −
( 3

4
)m

. As the number of decoy photons m
increases sufficiently, the probability of detecting an intercept-resend attack approaches
1. This enhancement in detection capability means that Eve, attempting to execute the
intercept-resend strategy, is unable to extract any meaningful information regarding Alice’s
or Bob’s encoded qubits.

Case II. The direct measure attack

In a direct measurement attack, Eve intercepts the sequences SA and SB from Alice
and Bob, respectively, and conducts measurements on them. However, without prior
knowledge of the positions of the decoy photons, Eve faces significant challenges in
accurately distinguishing between these decoys and the actual encoded qubits. Eve might
attempt to substitute the original quantum sequences with a fabricated version when
sending them to the TP. After the TP confirms the receipt of the sequence, Alice and Bob
will disclose the positions of the decoy photons. At this stage, Eve can eliminate the decoy
photons from SA and SB to obtain encoded single-photon states |χA⟩ and |χB⟩. Eve can
then proceed to measure them using the measurement operator M = |1⟩⟨1|, allowing her
to derive the measurement outcomes MA and MB corresponding to Alice’s and Bob’s
encoded qubits, respectively.

MA = |χA⟩|1⟩⟨1||χA⟩
=
(

cos
(

θAO
2 + π

2x + θAB
2

)
⟨0|+ sin

(
θAO

2 + π
2x + θAB

2

)
⟨1|
)
|1⟩⟨1| cos

(
θAO

2 + π
2x + θAB

2

)
|0⟩+ sin

(
θAO

2 + π
2x + θAB

2

)
|1⟩

= sin2
(

θAO
2 + π

2x + θAB
2

) (26)

MB = |χB⟩|1⟩⟨1||χB⟩
=
(

cos
(

θBO
2 + π

2y + θAB
2

)
⟨0|+ sin

(
θBO

2 + π
2y + θAB

2

)
⟨1|
)
|1⟩⟨1| cos

(
θBO

2 + π
2y + θAB

2

)
|0⟩+ sin

(
θBO

2 + π
2y + θAB

2

)
|1⟩

= sin2
(

θBO
2 + π

2y + θAB
2

) (27)
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However, the measurement outcome MA ( MB) is intrinsically linked to the keys
θAO(θBO) and θAB. Consequently, Eve cannot deduce the confidentiality of Alice’s or Bob’s
secret integer without possessing knowledge of these keys.

Case III. The entangle-measure attack

In the entangle-measure attack, Eve intercepts the transmitted qubits and applies a
unitary operation UO to entangle her ancilla qubits |ei⟩ with the intercepted qubits. When
performing the unitary operation UO on the intercepted qubits in states {|0⟩, |1⟩, |+⟩, |−⟩}
and |ei⟩, the process can be described as follows:

UO|0⟩|ei⟩ = c00|0⟩|e00⟩+ c01|1⟩|e01⟩ (28)

UO|1⟩|ei⟩ = c10|0⟩|e10⟩+ c11|1⟩|e11⟩ (29)

UO|+⟩|ei⟩ = 1√
2
(UO|0⟩|ei⟩+ UO|1⟩|ei⟩)

= 1√
2
(c00|0⟩|e00⟩+ c01|1⟩|e01⟩+ c10|0⟩|e10⟩+ c11|1⟩|e11⟩)

= 1
2 |+⟩(c00|e00⟩+ c01|e01⟩+ c10|e10⟩+ c11|e11⟩)

+ 1
2 |−⟩(c00|e00⟩ − c01|e01⟩+ c10|e10⟩ − c11|e11⟩)

(30)

UO|−⟩|ei⟩ = 1√
2
(UO|0⟩|ei⟩ − UO|1⟩|ei⟩)

= 1√
2
(c00|0⟩|e00⟩+ c01|1⟩|e01⟩ − c10|0⟩|e10⟩ − c11|1⟩|e11⟩)

= 1
2 |+⟩(c00|e00⟩+ c01|e01⟩ − c10|e10⟩ − c11|e11⟩)

+ 1
2 |−⟩(c00|e00⟩ − c01|e01⟩ − c10|e10⟩+ c11|e11⟩)

(31)

Four quantum states {|e00⟩, |e01⟩, |e10⟩, |e11⟩} are pure states uniquely defined by the
unitary operation UO, with coefficients that satisfy the conditions |c00|2 + |c01|2 = 1 and
|c10|2 + |c11|2 = 1. Specifically, we have |c00|2 = |c11|2 = F and |c01|2 = |c10|2 = D,
where F represents fidelity and D denotes the quantum bit error rate (QBER). When the
decoy photon is in the states {|0⟩, |1⟩}, the probability of obtaining the correct result
is F. In contrast, when the decoy photon is in the states {|+⟩, |−⟩}, the probability of
correctness drops to 1/2. Therefore, for a decoy photon, the probability of obtaining the
result successfully is written as

Psuccessful =
1
2

(
F +

1
2

)
(32)

The probability of detecting Eve is given by

Pdetected = 1 − pm (33)

where m represents the number of decoy photons. As m increases sufficiently, the probability
of detecting Eve approaches 1.

When performing the entangle-measure attack on single-photon states |χA⟩ and |χB⟩,
the process can be given by

Uo(|χA⟩|ei⟩) = UO

(
cos
(

θAO
2 + π

2x + θAB
2

)
|0⟩+ sin

(
θAO

2 + π
2x + θAB

2

)
|1⟩
)
|ei⟩

= |0⟩
(

c00 cos
(

θAO
2 + π

2x + θAB
2

)
|e00⟩+ c10 sin

(
θAO

2 + π
2x + θAB

2

)
|e10⟩

)
+|1⟩

(
c01 cos

(
θAO

2 + π
2x + θAB

2

)
|e01⟩+ c11 sin

(
θAO

2 + π
2x + θAB

2

)
|e11⟩

) (34)

Uo(|χB⟩|ei⟩) = UO

(
cos
(

θBO
2 + π

2y + θAB
2

)
|0⟩+ sin

(
θBO

2 + π
2y + θAB

2

)
|1⟩
)
|ei⟩

= |0⟩
(

c00 cos
(

θBO
2 + π

2y + θAB
2

)
|e00⟩+ c10 sin

(
θBO

2 + π
2y + θAB

2

)
|e10⟩

)
+|1⟩

(
c01 cos

(
θBO

2 + π
2y + θAB

2

)
|e01⟩+ c11 sin

(
θBO

2 + π
2y + θAB

2

)
|e11⟩

) (35)
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To pass the eavesdropping detection, the coefficients in Equations (34) and (35) should
satisfy c10 = c01 = 0 and c00 = c11 = 1. Therefore, Equations (34) and (35) can be written as

Uo(|χA⟩|ei⟩) = cos
(

θAO
2

+
π

2x
+

θAB
2

)
|0⟩|e00⟩+ sin

(
θAO

2
+

π

2x
+

θAB
2

)
|1⟩|e11⟩ (36)

Uo(|χB⟩|ei⟩) = cos
(

θBO
2

+
π

2y
+

θAB
2

)
|0⟩|e00⟩+ sin

(
θBO

2
+

π

2y
+

θAB
2

)
|1⟩|e11⟩ (37)

From Equations (34) and (35), we know that the resulting quantum states are directly
related to θAO, θBO and θAB. However, Eve has no chance of obtaining θAO, θBO, and θAB;
therefore, it is impossible for Eve to deduce Alice’s and Bob’s secret integer.

Case IV. The Trojan horse attacks

The Trojan horse attacks, including the invisible photon eavesdropping attack and
the delay-photon attack [64], mainly work in two-way quantum communication when
a quantum sequence is transmitted in a bidirectional quantum channel. However, the
quantum sequences SA and SB are transmitted in a unidirectional quantum channel to
the TP. This indicates that our protocol is a one-way communication protocol, which can
prevent the Trojan horse attacks automatically.

Based on the analysis presented above, external eavesdropping performed by Eve
cannot be used to successfully acquire the participants’ secret integer.

5.2.2. Participant Attacks

Participant attacks are, in fact, more formidable than outsider attacks. For participants,
they have a chance of knowing some immediate results and can legally utilize this informa-
tion to infer the participant’s secret integer. The following two cases of participant attacks
are considered.

Case 1. Attacks from Alice (Bob)

In this protocol, the quantum sequence SA (SB) encoding the secret integer is trans-
mitted to the TP, whose security is ensured by the decoy state technology and the rotation
operation with the angle on the secret key. The role of Alice in this protocol is analogous
to that of Bob. We assume that Bob intercepts the sequence SA like Eve does and resends
a fake sequence to the TP who will then announce the positions of the decoy photons in
SA. Bob can recover the quantum state |χA⟩ by discarding all decoy photons in SA. Even
though this behavior has been detected, Bob has obtained the quantum state |χA⟩ and can
deduce the secret integer x. |χA⟩ is generated by performing the rotation operation with the
angle θAO on the encoded single-photon state |αA⟩, and θAO will not be published once the
quantum channel is not secure. Therefore, Bob has no chance of obtaining θAO, resulting in
the quantum state |χA⟩ being concealed. Additionally, the quantum state |χA⟩, in fact, is
unknown to the other participants, and an unknown quantum state is indistinguishable.
This results in it being impossible for Bob to steal Alice’s secret integer x. A similar analysis
can be conducted on Alice with respect to stealing Bob’s secret integer y. To conclude, x
and y remain confidential throughout the whole process.

Case 2. Attacks from the TP

The TP is expected to adhere to the protocol as designed and will not collude with
the participants. However, despite following the rules, the TP may still attempt to extract
additional information from the data it processes. Although the TP has knowledge of
|αA⟩ (|αB⟩) , which are generated by performing the rotation operation with the angle
θA + θAB (θ B + θAB) on quantum state |0⟩, she cannot extract Alice’s or Bob’s private
information without access to the shared secret key θAB. Without knowing θAB, |αA⟩ (|αB⟩)
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is unknown to the TP. Since an unknown quantum state is indistinguishable, the TP has
no chance of knowing Alice’s secret integer x and Bob’s secret integer y. Therefore, the
participants’ secret integers remain undisclosed to the TP.

5.3. Fairness

The fairness of the protocol is guaranteed by the introduction of a TP who announces
the comparison result to both Alice and Bob. This simultaneous disclosure ensures that
neither participant has an advantage over the other.

6. Comparison
A comparison between our protocol and several existing QPC protocols is presented

in Table 1, focusing on the quantum states used, the need for entanglement swapping, quan-
tum communication methods, the technology used, the quantum measurement method,
and the comparison method.

Table 1. A comparison between our protocol and several existing QPC protocols.

Protocol Quantum States
Used

Need of
Entanglement

Swapping

Quantum
Communication

Methods
Technology Used

Quantum
Measurement

Method

Comparison
Method

Ref. [26] EPR pairs No Two-way Unitary operations and
hash function Bell-basis Bit-to-bit

Ref. [27] Single photon No Two-way Unitary operations Single-particle Bit-to-bit
Ref. [41] GHZ states No Two-way Rotation operations GHZ-basis Bit-to-bit

Ref. [42]
Four-particle cluster

and extended
Bell state

Yes One-way quantum-one-time pad Bell-basis and
extended-Bell-basis Bit-to-bit

Ref. [43] hyper-entangled
GHZ states Yes One-way quantum-one-time pad Bell-basis Bit-to-bit

Ref. [54] d-dimensional
Bell state No One-way Unitary operation Single-particle Bit-to-bit

Ours Single photon No One-way Rotation operation Single-particle Secret-to-secret

According to Table 1, our protocol offers several advantages over existing QPC proto-
cols, including the following:

(1) It uses a novel method for secret-to-secret comparison rather than the traditional
bit-to-bit comparison, resulting in improved scalability;

(2) It does not require entanglement swapping technology and integrates single-photon
states, rotation operations, and the swap test as key components, facilitating easier
implementation with quantum technology;

(3) All qubits are transmitted using one-way communication, eliminating the need for
wavelength quantum filters and photon number splitters to mitigate Trojan horse attacks;

(4) It employs single-particle measurements instead of Bell-basis measurements, thereby
reducing the measurement requirements.

7. Conclusions
In this paper, we propose a two-party quantum private comparison (QPC) protocol

that utilizes the properties of the swap test to evaluate the similarity of two qubits. The
participants compare their secret integers by encoding these integers directly into the
amplitudes of single-photon states, which are concealed using rotation operations. Without
knowledge of the rotation angles, the encoded single-photon states remain secure. By
introducing a semi-honest third party (TP) to facilitate the comparison between participants
without accessing their private information, the protocol ensures fairness. Simulations
conducted on the IBM Quantum Platform demonstrate the protocol’s feasibility, while a
security analysis confirms its resilience against potential eavesdropping and participant
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attacks. Compared with existing QPC protocols that employ bit-to-bit comparison methods,
our approach offers enhanced practicality and scalability. The integration of single-photon
states, rotation operations, and the swap test as key components for direct secret comparison
simplifies implementation with modern technology. In the future, we will focus on applying
this protocol to the areas of quantum voting and quantum auctions, exploring its potential
to enhance security and privacy in these critical applications.
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