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Abstract: Land use/land cover (LULC) nomenclature is commonly organized as a tree-like
hierarchy, contributing to hierarchical LULC mapping. The hierarchical structure is typ-
ically defined by considering natural characteristics or human activities, which may not
optimally align with the discriminative features and class relationships present in remotely
sensed imagery. This paper explores a novel cluster-based class hierarchy modeling frame-
work that generates data-driven hierarchical structures for LULC semantic segmentation.
First, we perform spectral clustering on confusion matrices generated by a flat model, and
then we introduce a hierarchical cluster validity index to obtain the optimal number of clus-
ters to generate initial class hierarchies. We further employ ensemble clustering techniques
to yield a refined final class hierarchy. Finally, we conduct comparative experiments on
three benchmark datasets. Results demonstrating that the proposed method outperforms
predefined hierarchies in both hierarchical LULC segmentation and classification.

Keywords: data-driven hierarchy; hierarchical segmentation; LULC; remote sensing

MSC: 68T07

1. Introduction
Land use/land cover (LULC) mapping is an important variable in the study of Earth’s

surface properties, playing a crucial role in understanding global environmental change [1].
The rapid development of remote sensing technologies has advanced our ability to char-
acterize diverse land cover classes and derive precise land use information. In particular,
hyperspectral and high spatial resolution (HSR) imaging is capable of capturing rich spec-
tral and spatial information, which can better distinguish surface features and objects,
enabling finer discrimination of these two properties. This abundant semantic information
presents the opportunity for fine-grained LULC mapping and also bring challenges such as
large intra-class variance and class imbalance [2,3]. Therefore, understanding the content
in remote sensing images has become an increasingly urgent practical need.

LULC nomenclatures are commonly organized as tree-like hierarchical structures [4],
which vary across different products due to differences in spatial scale, data sources, and
application requirements. For instance, China’s land use/cover datasets (CLUDs) [5]
organize land cover into 6 primary classes (cropland, forest, grassland, water, built-up area,
and barren) and further subdivide into 25 secondary classes to capture specific types within
each primary class. The MODIS Collection 5 Global Land Cover Type product [6] employs
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a three-level hierarchical framework with 6 top-level classes and 32 detailed land cover
classes. The CORINE system divides land cover classes into a hierarchical structure of
three levels, with 5 primary classes (artificial surfaces, agricultural land, forest and semi-
natural land, wetlands, and water), 25 secondary classes, and 44 detailed classes [7]. These
multi-level hierarchies enable detailed and scalable representation of LULC information
for various applications.

LULC mapping methodologies can be categorized into flat and hierarchical approaches
based on their consideration of class hierarchical relationships [8]. Flat methods directly
classify each pixel in the imagery without considering hierarchical relationships between
classes. Support vector machine (SVM) [9], neural networks [10], and multinomial logistic
regression [11] were traditionally used. Recently, deep learning methods have gained
popularity due to their ability to automatically learn complex patterns and relationships in
data [12]. U-Net is one of the most popular deep learning-based semantic segmentation
algorithms for LULC mapping [13]. A fully convolutional network (FCN) is employed to
perform pixel-wise semantic segmentation of remotely sensed imagery, demonstrating the
capability in LULC mapping [14,15]. The emergence of vision transformer (ViT) has further
advanced the field, and various transformer-based semantic segmentation models are
proposed for LULC mapping [16,17]. In contrast, hierarchical methods take advantage of
structured relationships between classes, which have shown potential for enhancing LULC
mapping accuracy. Recent studies [18,19] have explored the extent to which hierarchical
methods can improve the accuracy of land cover mapping, and comparative studies were
conducted using the Sentinel-2 dataset with random forest (RF). A three-stage hierarchical
framework is proposed to map peatland sub-classes using multi-sensor data [20]. The class
hierarchy is considered in the loss function for training to achieve consistent hierarchical
land use classification [21]. HierU-Net [22] is proposed to improve land cover segmentation
by incorporating tree-like hierarchical information of land cover classes with U-Net.

However, the hierarchical structures are typically predefined based on domain ex-
pertise, which may not optimally reflect the discriminative patterns present in remotely
sensed imagery. The potential of data-driven approaches for class hierarchy modeling
remains unexplored in LULC semantic segmentation. Attempts at data-driven hierarchy
construction have shown promise in image classification tasks. The authors of [23] identi-
fied the hierarchical structure by performing spectral cluster on the confusion matrix (CM)
generated by preliminary validation, which is flexible without relying on input features
and successfully adopted in HD-CNN for hierarchical classification [24]. A hierarchical
cluster validity index (HCVI) [25] is developed to select the optimal number of clusters
for K-means clustering, and a reasonable hierarchical structure is built by using deep
features extracted by a VGG16 model. However, the authors of [26] pointed out that the
performance of HCVI is still facing the unstable issue. Furthermore, there are methods for
constructing hierarchies by means of building visual trees from the perspective of class
similarity, e.g., HAP [27], JHCSL [28], and MTHL [29].

The hierarchy generation-related literature mainly focuses on classification tasks, and
it is challenging when applied to dense pixel-wise segmentation involving large-scale pixels.
In this paper, we contribute to a cluster-based class hierarchy modeling framework, which,
to the best of our knowledge, is the first practical hierarchy generation workflow in LULC
semantic segmentation. Inspired by CM [23], initial data-driven hierarchies are generated
through spectral clustering on confusion matrices obtained by a flat model. We introduce a
robust method for determining optimal cluster numbers by introducing HCVI and further
integrate with ensemble clustering techniques, enhancing the stability and reliability of the
generated hierarchies. The proposed method potentially advances the state of the art in
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hierarchical LULC semantic segmentation by introducing a novel class hierarchy modeling
framework by incorporating ensemble techniques and mitigating class imbalance.

2. Methodology
Given a set of n fine classes X = {x1, x2, · · · , xn}, our goal is to model a class hierarchy

that will be able to group the most detailed classes into primary classes. We performed
spectral clustering based on the confusion matrix from the flat segmentation or classification
results. While cluster results can be independently sampled from K clusters, represented
as C = {C1, · · · , Ck}, where Ki is the cluster number for the i-th BP, 1 ≤ πi(xj) ≤ Ki, and
1 ≤ i ≤ r, 1 ≤ j ≤ n. HCVI is introduced to assess the clustering results from a perspective
of imbalance and to obtain a basic partition (BP) by iterating through each cluster center. A
set of BPs is obtained and fed into an ensemble clustering algorithm to achieve the final
clustering result as the class hierarchy. An illustration of the proposed method is given in
Figure 1. The details of our approach are described below.

Figure 1. Illustration of the proposed hierarchy generation method.

Initial class hierarchy discovery. U-Net has been widely used and proven to be
effective in image segmentation tasks. It has a unique architecture that combines convo-
lutional and deconvolutional layers, allowing it to capture both local and global features
of the input image. We firstly employed a U-Net as the flat approach to conduct semantic
segmentation experiments to obtain a confusion matrix F and construct a distance matrix
D by the following equation:

D =
1
2
[(I − F) + (I − F)T ], (1)

where F stands for the obtained confusion matrix and I stands for the unit matrix. In the
formula, (I − F) and (I − F)T are used to construct a symmetrical matrix that can facilitate
the calculation of spectral clustering and ensures that the distance measure is consistent.
Each entry Dij in matrix D represents the distance or dissimilarity between class i and
class j. Spectral clustering does not rely on assumptions that the data lie in convex sets or
depend on the Euclidean distance metric, making it well suited for capturing non-linear
data structures. This advantage makes it an appropriate choice compared to some other
clustering methods, like K-Means, when clustering on confusion matrices. We perform the
spectral cluster algorithm on matrix D based on the number of clusters to group secondary
classes into primary classes, thereby creating a two-level hierarchy that maps multiple fine
classes into a single coarse class.
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Optimal number of clusters. However, the hierarchies we obtained in the previous
step were obtained without choosing the optical number of clusters, which will affect
the performance of the clustering algorithm. We follow HCVI by introducing a balance
parameter δ(q) and the Calinski–Harabasz index (CH) [30] to assess the quality of the
generated hierarchy. δ(q) takes into account the effects of sample data imbalance within
the data and the imbalance of clustering classes in a comprehensive way. The index is
formulated to evaluate the hierarchical clustering, as given by the following formula:

δ(q) =
1
q

k

∑
q=1

((
rk − rE

rE
)2 + 1)((

mk − mE
mE

)2 + 1), (2)

where the parameter of ∑k
q=1((

rk−rE
rE

)2 + 1) is to indicate category balance in the clustering,

the parameter of ∑k
q=1((

mk−mE
mE

)2 + 1) is to indicate sample balance, q is the number of
clusters, rk is the number of fine-grained classes within superclass k, rE is the average of
the number of fine-grained classes within all superclasses, mk is the number of samples
within superclass k, and mE is the average of the number of samples within all superclasses.
The CH index reflects the degree of goodness of the clustering by the ratio of the inter-
cluster distance within the clusters to the intra-cluster distance, which is calculated by the
formula as

CH =
tr(Bk)(N − K)
tr(Wk)(K − 1)

, (3)

Bk =
k

∑
q=1

nq(cq − ce)(cq − ce)
T , (4)

Wk =
k

∑
q=1

∑
x∈cq

(x − cq)(x − cq)
T , (5)

where N is the total number of samples, K is the number of classes formed by clustering,
ce represents the class centroid, nq represents the number of samples in class q, and cq

represents the data set of q. The HCVI is calculated by the formula as

HCVI = CH/δ(q). (6)

Ensemble clustering for class hierarchy. Although we are able to generate class
hierarchy efficiently using cluster algorithms, the category hierarchies obtained suffer from
instability due to the robustness problems inherent in the cluster algorithms. Therefore, the
ensemble clustering method [31] is introduced to obtain a refined class hierarchy.

We perform the cluster algorithm 100 times to obtain a set of BPs. We denote Π =

{π1, π2, · · · , πr} as r BPs, each of which divides X into Ki crisply partitioned and maps X
into a label set πi = {πi(x1), πi(x2), · · · , πi(xn)}. Ensemble clustering methods summarize
r BPs as a co-association matrix S ∈ Rn×n which calculates the number of times two
instances occur in the same cluster based on Π. It can be defined as

S(xp, xq) =
r

∑
i=1

δ(πi(xp), πi(xq)), (7)

where xp, xq ∈ X and δ(a, b) are 1 if a = b; 0 otherwise. Obviously, S could be normalized
by S = S/r. Its trace minimization form is calculated by following

min
H

tr(H⊤LsH) s.t. H⊤H = I, (8)
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where Ls = I − D−1/2
s SD−1/2

s is the normalized Laplacian matrix of S, with degree matrix
Ds ∈ Rn×n being a diagonal matrix whose jth diagonal element is the sum of the jth row of
S, and H ∈ Rn×K is defined as the scaled partition matrix of π:

Hjk =


1√
|Ck |

, if xj ∈ Ck in π,

0, otherwise.
(9)

The final ensemble clustering result is represented as H, which will be applied to the
hierarchical mapping.

3. Results and Discussion
3.1. Experiment Setup

To evaluate our proposed clustering-based class hierarchy modeling framework, we
conducted experiments on three benchmark datasets for hierarchical semantic segmentation
(GID-15 and HierToulouse) and hierarchical classification (DFC18). These three datasets
differ in their location, size, and class structure, and are suitable for a comprehensive
evaluation of the proposed mechanism. All the experiments are implemented using Pytorch
on a workstation with a NVIDIA RTX 4090 GPU.

The GID-15 dataset primarily covers urban and rural areas in 60 different cities
in China, with a total annotated area exceeding 50,000 square kilometers. It con-
tains 25,200 patches of 512 × 512 pixels, and we divide them into two subsets, with
20,160 patches used for training and 5040 patches for testing. For the GID-15 dataset,
we consider the predefined hierarchy as organized by [32]. It contains a total of 15 of the
most detailed and 5 primary land cover classes.

The HierToulouse dataset is a high-resolution remote sensing dataset focused on the
urban area of Toulouse, France. It contains 11,528 paired image patches of 512 × 512 pixels,
8624 images for training, 1452 images for validation, and another 1452 images for testing.

The DFC18 dataset is provided by the 2018 Data Fusion Contest, which includes
spectral data with 48 bands ranging from 380 to 1050 nm with 1 m spatial resolution. It
covers a real urban scene in and around the University of Houston and contains a total
number of 20 land use classes. We organized it as a two-level hierarchy by referring to the
OCS GE LULC system, as shown in Figure 2. The predefined hierarchy contains six primary
classes, namely vegetation, natural surfaces, buildings, transportation, public facilities, and
others, corresponding to the class codes in the dataset as 1–5, 6–7, 8–9, 10–16, 17–18, and
19–20. We followed [33] to sample the data for the DFC18 dataset.

To assess hierarchical classification and segmentation performance, we use four metrics
including Overall Accuracy (OA) and Kappa coefficient for classification and mIoU and
FWIoU for semantic segmentation. The formulas are as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
, (10)

Kappa =
2 ∗ TP

2 ∗ TP + FP + FN
, (11)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

, (12)

FWIoU =
∑c Pc · IoUc

∑c Pc
, (13)

where TP, TN, FP, FN, Pc, and IoUc represent true positive, true negative, false positive,
false negative, weight of class c, and IoU score of class c, respectively.
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Figure 2. The predefined hierarchy for the DFC18 dataset.

3.2. Experiment Results on the HierToulouse Dataset

To validate the effectiveness of our data-driven hierarchy approach for LULC seg-
mentation tasks, we conducted hierarchical segmentation experiments on the GID-15 and
HierToulouse datasets using HierU-Net by considering three hierarchies: predefined, CM,
and ours. The loss curves of the three hierarchies during model training is shown in
Figure 3.

Figure 3. Loss curves during model training.

The IoU scores for each class, mIoU, OA, and FWIoU scores achieved by HierU-
Net with different hierarchies on the HierToulouse dataset are presented in Table 1. All
three methods demonstrate good performance, with our proposed hierarchy achieving the
highest score on mIoU, OA, and FWIoU. On the mIoU score, ours achieves the highest score
of 45.7%, representing a significant improvement of 2.99% over the predefined hierarchy
method and 1.29% over the CM-based hierarchy method. In terms of the OA score, our
proposed method achieves the highest value of 88.98%, outperforming the predefined
hierarchy by 1.80% and the CM-based hierarchy by 0.79%. On the FWIoU score, our
proposed method achieves the highest value of 81.97%, outperforming the predefined
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hierarchy by 4.21% and the CM-based hierarchy by 1.32%. For per-class comparison,
our proposed hierarchy consistently outperforms the other two methods, suggesting the
proposed hierarchy is better suited to model class relationships for semantic segmentation.
The predefined hierarchy has the worst results, particularly for Construction and Non-
Construction classes, comparatively.

Table 1. Hierarchical segmentation performance on the HierToulouse dataset.

Class Names Predefined CM Ours Proportion of Pixels (%)

No. of clusters 4 4 3
δ(q) 2.1448 1.9445 1.7459

Construction 69.69 75.3 75.39 13.52
Non-construction 64.65 69.59 70.07 12.06
Mineral material 30.61 29.26 39.29 1.88

Water surface 74.85 78.72 80.5 2.19
Broad leaved forest 57.40 58.53 58.67 10.89

Shrubbery 24.67 23.14 27.55 1.60
Herage 87.26 88.48 88.53 57.50
mIoU 42.71 44.41 45.7

FWIoU 77.76 80.62 81.97
OA 87.18 88.19 88.98

Figure 4 presents a visual comparison of the outcomes obtained using HierU-Net
with all three hierarchies. These three methods achieve satisfactory segmentation results.
for Construction area and Water Surface, the segmentations produced by all three methods
align well with the LC labels. In comparison, the predefined hierarchy exhibits the worst
performance. For Non-construction area, the segmentation results of the predefined hierarchy
are worse compared to CM and ours, as reflected by the boundaries and integrity of roads.

Figure 4. Segmentation results with HierU-Net framework on the HierToulouse dataset (From left to
right are Optical image, LC label, results from predefined hierarchy, CM, Ours).
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3.3. Experiment Results on the GID-15 Dataset

Table 2 summarizes the IoU scores for each class on the GID-15 dataset, mIoU, OA, and
FWIoU scores obtained with three different hierarchies. Our proposed method achieves
the highest mIoU of 54.53%, outperforming the predefined hierarchy by 1.08% and the
CM-based hierarchy by 1.06%. On the OA score, our proposed method achieves the
highest value of 77.22%, outperforming the predefined hierarchy by 2.84% and the CM-
based hierarchy by 1.31%. Similarly, for the FWIoU score, our proposed method achieves
the highest value of 67.97%, outperforming the predefined hierarchy by 3.23% and the
CM-based hierarchy by 1.86%.

Table 2. Hierarchical semantic segmentation performance on the GID-15 dataset.

Class Names Predefined CM Ours Proportion of Pixels (%)

No. of clusters 5 5 5
δ(q) 2.0768 1.89 1.4258

Irrigated land 71.58 49.23 47.87 2.97
Paddy field 73.89 75.26 75.67 38.92

Dry cropland 15.78 63.9 62.58 11.06
Artificial meadow 21.75 30.8 35.39 0.92

Arbor forest 86.69 68.79 60.5 8.67
Shrub land 74.92 37.34 65.6 4.26

Natural meadow 36.27 40.36 52.45 1.09
Garden land 0 35.29 33.97 0.30

Industrial land 61.4 63.88 61.45 2.90
Urban residential 72.37 69.07 75.34 5.68
Rural residential 63.5 66.91 67.63 4.76

Traffic land 58.48 58.42 61.35 2.48
River 57.64 49.62 39.56 4.60
Lake 78.24 65.41 70.23 9.80
Pond 28.93 27.72 23.44 1.60
mIoU 53.45 53.47 54.53

FWIoU 64.74 66.11 67.97
OA 74.38 75.91 77.22

When examining per-class IoU scores, our method performs particularly well on cer-
tain classes. Specifically, it achieves the highest IoU score in six classes, including frequently
occurring classes Rural residential, Urban residential, and Traffic land, demonstrating that our
framework is able to effectively capture the characteristics of these classes and improve
the segmentation results. There are also some classes where the performance difference
between the three methods is not significant, such as IoU scores for Industrial residential,
ranging from 61.4% to 63.88%.

Figure 5 illustrates segmentation results obtained using HierU-Net with both data-
driven and predefined hierarchies. All three methods performed well on Urban residential,
Industrial land, Traffic land, and Irrigated land. Compared with CM and predefined hierarchies,
ours achieved clear boundary of Traffic land. By modeling the hierarchical relationships
between classes, semantic segmentation with our proposed class hierarchy achieved im-
proved performance on easily confused classes, particularly between Urban residential and
Industrial land.
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Figure 5. Segmentation results with HierU-Net framework on the GID dataset (From left to right are
Optical image, LC label, results from predefined hierarchy, CM, Ours).

3.4. Evaluation on Hierarchical Classification

To further demonstrate the flexibility of our proposed method, we investigate its
applicability to hierarchical classification tasks. We conduct experiments on the DFC18
dataset using HD-CNN, employing four distinct hierarchies: predefined, CM, HCVI, and
our proposed hierarchy. Additionally, comparative analysis is performed with three flat
classification methods, namely SVM, RF, and CNN.

Table 3 presents performance comparisons of flat and hierarchical methods on the
DFC18 dataset. The results indicate that hierarchical classification methods consistently out-
perform flat approaches and highlight the advantages of utilizing structured relationships
among classes. Our proposed method achieves the highest overall accuracy of 53.64% and a
Kappa coefficient of 0.511, demonstrating its effectiveness in classification tasks. Compared
to the CM-based method, our approach improves overall accuracy by 1.46%. Similarly,
it outperforms the HCVI-based method by 0.22% and the predefined hierarchy by 0.87%.
When comparing our hierarchical method to flat classifications (SVM, RF, and CNN), the
advantages become even more obvious. Figure 6 illustrates classification results obtained
using flat and hierarchical methods. Visual comparison shows that the hierarchical way
reduces some errors, particularly among classes prone to be confused such as evergreen
trees and deciduous trees.
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Table 3. Hierarchical and flat classification performance on the DFC18 dataset

Hierarchy δ(q) No. of Clusters Method Accuracy (%) Kappa

CM 2.1730 6 HD-CNN 52.18 0.495
HCVI 2.0249 6 HD-CNN 53.42 0.507
Ours 1.9731 6 HD-CNN 53.64 0.511

Predefined 2.5919 6 HD-CNN 52.77 0.489

- - SVM 42.38 0.393
- - - RF 43.65 0.401

- - CNN 33.42 0.293

Figure 6. Classification results of flat and hierarchical classification with different hierarchies: (a) RGB
image; (b) Ground truth; (c) Ours; (d) CM; (e) HCVI; (f) Predefined; (g) SVM; (h) RF; (i) CNN.

3.5. Advantages and Disadvantages

Unlike predefined hierarchies that may be constrained by expert assumptions, we
proposed a data-driven approach to generate hierarchical structures. Instead of clustering
directly using image features, we adopted the idea of CM by performing clustering on
confusion matrices obtained by a flat model, which alleviate the challenge of large-scale
dense pixels. For the class imbalance issue, we considered spectral clustering to generate
initial hierarchies and further refine with ensemble clustering. The objective function of
spectral clustering penalizes unbalanced partitions, hence encouraging balanced trees. By
analyzing the balancing parameter of δ(q), we can observe that our approach achieves
better balanced class hierarchy. The larger the parameter of δ(q), the more imbalanced it is.
Specifically, for the HierToulouse experiment, the balancing parameter for our method is
1.75, while the predefined hierarchy has a value of 2.14 and the CM method has a value
of 1.94. This indicates the advantage of our approach in effectively mitigating the class
imbalance problem compared to other methods.

The proposed approach is particularly advantageous in LULC mapping using remotely
sensed imagery, where the spectral properties of the detailed classes may vary depending
on the region and the sensor. The comparative experiments on three datasets showed that
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our proposed hierarchy generation framework consistently leads to better performance,
as evidenced by higher mIoU score in semantic segmentation and increased accuracy in
classification. We observed considerable improvement in accuracy for classes with small
samples, which is meaningful in the context of real-world applications. For instance, in
the HierToulouse dataset, the Shurberry class, which has the smallest number of pixels
with a proportion of 1.6%, exhibited an improvement in accuracy from 24.67% (predefined
hierarchy) to 27.55% with our proposed hierarchy. The Arti f icial meadow class in the GID-
15 dataset, having a proportion of 0.92%, also showed substantial improvements in mIoU
scores. Compared to the predefined hierarchy, our proposed approach and the CM-based
approach increased the mIoU score for Arti f icial meadow to 35.39% and 30.8%, respectively.

Our method has a dependency on the dataset with fine-grained classes. Experiments
were conducted mainly in urban and peri-urban areas, and the application to agriculture
areas has not been explored. Additionally, another disadvantage of our method is the
increased computational complexity. In certain circumstances, there is a need to make
trade-offs between accuracy and computational efficiency.

4. Conclusions
In this study, we propose a cluster-based class hierarchy modeling framework for

LULC mapping using remotely sensed imagery. The hierarchical structure is constructed
through three stages, ensuring the hierarchy aligns closely with the intrinsic characteristics
of the data. We conducted experiments on three benchmark datasets, utilizing HierU-Net
for hierarchical segmentation and HD-CNN for hierarchical classification. Our proposed hi-
erarchy consistently outperforms predefined hierarchy, demonstrating its success in LULC
mapping; it also has the potential to make a broader contribution to scene understanding
with structured semantic knowledge. By capturing the relationships between different
classes, the hierarchical model can help in better understanding the context and semantics
of the scene. The approach can also be applied to other domains where hierarchical rela-
tionships exist in the data. For example, in medical imaging, hierarchical models can be
used to represent different levels of anatomical structures or disease classifications.

Future work could explore hybrid approaches that integrate the strengths of different
hierarchies by considering the use of mixture of experts (MoE), which is a technique that
combines multiple expert models to make predictions. Each expert model specializes in a
particular subset of the input space, and a gating mechanism is used to determine which
experts to use for a given input. For example, we can have one set of experts for the
predefined hierarchy and another set of experts for the data-driven hierarchy. The gating
mechanism can then be used to determine which experts to use based on the input data.
This can help to capture the advantages of both predefined and data-driven hierarchies,
leading to more accurate and reliable semantic segmentation results.
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