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Abstract: Rotor motor fault diagnosis in Unmanned Aerial Vehicles (UAVs) presents
significant challenges under variable speeds. Recent advances in deep learning offer
promising solutions. To address challenges in extracting spatial, temporal, and hierarchical
features from raw vibration signals, a hybrid CNN-BiLSTM-MHSA model is developed.
This model leverages Convolutional Neural Networks (CNNs) to identify spatial patterns,
a Bidirectional Long Short-Term Memory (BiLSTM) network to capture long- and short-
term temporal dependencies, and a Multi-Head Self-Attention (MHSA) mechanism to
highlight essential diagnostic features. Experiments on raw rotor motor vibration data
preprocessed with Butterworth band-stop filters were conducted under laboratory and
real-world conditions. The proposed model achieves 99.33% accuracy in identifying faulty
bearings, outperforming traditional models like CNN (93.33%) and LSTM (62.00%) and
recent advances including CNN-LSTM (98.87%), the Attention Recurrent Autoencoder
hybrid Model (ARAE) (66.00%), Lightweight Time-focused Model Network (LTFM-Net)
(96.67%), and Wavelet Denoising CNN-LSTM (WDCNN-LSTM) (96.00%). The model’s
high accuracy and stability under varying conditions underscore its robustness, making
it a reliable solution for rolling bearing fault diagnosis in rotor motors, particularly for
dynamic UAV applications.

Keywords: rotor motor; fault diagnosis; convolutional neural network; bidirectional long
short-term memory network; multi-head self-attention

MSC: 37M05

1. Introduction
The rotor motor in UAVs is critical to ensuring the reliability and safety of flight

operations, as its performance directly impacts the efficiency of each UAV’s power system.
Health monitoring is, thus, essential for the early detection of anomalies, reducing the
risk of catastrophic failures, particularly in demanding environments. UAV rotor sys-
tems commonly utilize brushless outer rotor motors, with speed regulation managed by
Electronic Speed Controllers (ESCs). In this configuration, the rotor—integrated with a
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permanent magnet—rotates with the motor casing and output shaft, while the stator houses
the winding coils. Research on rotor motor fault diagnosis holds significant theoretical and
practical importance, as it directly influences flight stability, operational reliability, and the
broader application potential of UAVs.

However, the highly integrated and compact design of UAVs presents significant
challenges for motor health monitoring. Space constraints limit the integration of multiple
diagnostic measures, while the size and weight of traditional diagnostic devices often
conflict with the lightweight and miniaturized design requirements of UAVs. Furthermore,
sensor placement and data acquisition become increasingly complex in such confined
layouts, making fault detection more difficult. Mechanical failures in UAV motors typically
involve bearing, rotor, and stator faults, with bearing failures accounting for approximately
40% of all motor issues, making them the most common type of failure [1]. Effective
bearing fault diagnosis relies on identifying fault characteristics, signal processing, and
feature extraction techniques, all of which are crucial for ensuring the reliable operation of
mechanical systems.

To address these challenges, recent advancements in Artificial Intelligence (AI) have
led to the integration of sophisticated fault diagnosis models, such as neural networks and
Support Vector Machines (SVMs), into bearing and rotor fault diagnostics. These models
effectively automate fault identification by learning from large datasets of fault-related
information, substantially increasing diagnostic accuracy and efficiency [2–4]. Machine
learning, particularly Deep Learning (DL), has significantly improved fault diagnosis in
bearing systems by enabling more accurate predictions and better processing of complex,
nonlinear data. This development represents a paradigm shift in motor-bearing fault
diagnosis, moving from traditional physical mechanism analysis toward AI-integrated
diagnostic systems that utilize vibration signal analysis and DL techniques for enhanced
fault feature extraction [5–7].

Several studies highlight these advancements. An et al. developed an Efficient Convo-
lutional Neural Network (ECNN) for edge computing, enabling real-time fault diagnosis
and dynamic control of electric motors [8]. Evangeline et al. proposed a hybrid deep
residual-based neural network combined with multi-SVM for the diagnosis of mechanical
and electrical faults in synchronous motors [9]. Fan et al. proposed a CNN model with
adaptive batch normalization for diagnosis of rotor-bearing faults using gray texture images
derived from vibration signals, achieving improved fault identification [10]. Additionally,
Zhang et al. introduced a novel approach for diagnosing Electro-Hydraulic Steer-By-Wire
(EH-SBW) systems, employing a 1DCNN-LSTM model with attention mechanisms and
transfer learning, which proved highly accurate in identifying fault types and severities,
even with limited data [11]. Kim et al. developed a machine learning-based approach
for diagnosing faults in induction motors, with CNN and SVM models achieving supe-
rior accuracy, while XGBoost exhibited the highest computational efficiency for real-time
applications [12]. Yang et al. introduced the LTFM-Net framework, which features an
LTFM with an innovative Weighted Diminish Recurrent Unit (WDRU), demonstrating high
accuracy, robustness, and interpretability under complex conditions [13]. Izaz Raouf et al.
proposed an attention-guided Feature Aggregation Network (FAN) for detecting faults in
industrial robot servo motor bearings, effectively supporting predictive maintenance [14].
Liu et al. proposed the LOODG framework, a three-stage causal feature-learning method
for bearing fault diagnosis. It excels in generalizing across diverse operating conditions
without needing domain labels [15]. Ma et al. introduced an adaptive-embedding Flex-
ible Tensor Singular Spectrum Decomposition (FTSSD) method, utilizing the Trajectory
Dimension Ratio (TDR) index for optimal embedding dimension selection. This approach
was applied to multichannel signal fusion for fault diagnosis, demonstrating enhanced
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accuracy and robustness in extracting fault features compared to traditional methods such
as Tensor Robust Principal Component Analysis (TRPCA) [16]. On the basis of this re-
search, Huang et al. proposed a novel tensor decomposition method, the first-Kind Flexible
Tensor Singular Value Decomposition (1K-FTSVD), which avoids tensor flattening and
offers stable decompositions. They utilized this method to develop 1K-FTSSD for multi-
channel data fusion, demonstrating its effectiveness through simulations and experimental
validations, which showed superior performance compared to existing techniques [17]. Xu
et al. proposed the Graph-Embedded Low-Rank Tensor Learning Machine (GE-LRTLM)
for semi-supervised, multi-sensor data fusion in fault diagnosis, effectively handling tensor
data to preserve multi-dimensional structure. By incorporating tensor nuclear norm and
manifold regularization, the method achieved high accuracy of up to 97%, even with scarce
labeled data, offering a robust framework for industrial applications [18].

Looking forward, continued integration of sensing, signal processing, and artificial
intelligence technologies is expected to enhance both the accuracy and real-time capabilities
of fault diagnosis systems, ensuring the stable operation of motors and advancing the
reliability of industrial processes [19–22].

Bearing fault diagnosis methods share a common goal of ensuring reliable system
operation by detecting anomalies through feature extraction and signal processing. Tra-
ditional techniques, such as vibration analysis and spectral methods, provide practical
and accessible solutions. However, their effectiveness is often limited under dynamic
conditions, such as varying speeds and loads, which are common in real-world scenarios.
To address these limitations, modern approaches leveraging artificial intelligence have
demonstrated significant advancements by automating feature extraction and improv-
ing diagnostic accuracy. These AI-driven methods enhance adaptability and precision
but also face challenges, particularly in resource-constrained environments, such as UAV
applications where computational power and labeled data are limited.

Building on this progress, current data-driven fault diagnosis methods for rotor motors
focus on analyzing specific fault types or operating conditions, often employing standalone
models such as CNN or LSTM. While these methods achieve reasonable accuracy, their
ability to generalize under diverse operational conditions remains limited. Many existing
approaches struggle to capture and integrate spatial, temporal, and long-range depen-
dencies within vibration signals, which is essential for distinguishing between subtle
differences in fault severity and type. These challenges highlight the need for more ad-
vanced models capable of balancing accuracy, generalization, and efficiency, particularly in
lightweight and dynamic application scenarios like UAVs.

In UAV applications, where constraints on weight, size, and power consumption are
critical, our model is designed to be both lightweight and efficient. Experimental results
show that the model can be deployed on UAV platforms equipped with specific hardware,
ensuring real-time bearing fault detection with minimal power consumption. This makes
the model highly suitable for onboard monitoring systems integrated in UAVs used in
industrial inspections and other practical applications.

The main contributions of this paper are summarized as follows:

1. A CNN-BiLSTM-MHSA-based fault diagnosis model was developed for rotor motors,
combining the strengths of CNN, BiLSTM, and MHSA to extract spatial, temporal,
and attention-based features for accurate fault detection.

2. Advanced signal processing techniques, including Fast Fourier Transform (FFT) and
Butterworth band-stop filters, were applied to enhance the quality of vibration data,
improving feature extraction and the robustness of the fault diagnosis model under
varying operational conditions.
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3. A comprehensive diagnostic framework was proposed to classify different bearing
fault severities, achieving a high accuracy of 99.33% on a test set, significantly outper-
forming traditional CNN and LSTM models in fault classification tasks.

4. The model’s performance was validated using experimental data from a rotor motor
fault simulation test bench, demonstrating its effectiveness and reliability in real-world
applications.

2. Theoretical Basis
2.1. CNN

CNNs are deep learning models specifically designed to automatically extract features
from data through convolutional operations. A schematic representation of the CNN
architecture is provided in Figure 1.
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Figure 1. Schematic diagram of a convolutional neural network.

The key components of a CNN model include the following:

1. The convolutional layer applies a filter (or convolution kernel) to the input data,
performing weighted summation over local regions to extract relevant features. This
operation is defined by Equation (1):

y(i, j, k) =
C

∑
c=1

Fw

∑
m=1

Fh

∑
n=1

x(i + m− 1, j + n− 1, c) · w(m, n, c, k) + b(k) (1)

where y(i, j, k) is the position (i, j) and k channel of the output feature map; x is the
input feature map; w is the convolution kernel; b is the bias; Fw and Fh are the width
and height of the convolution kernel, respectively; m and n are the row and column
indexes of the convolution kernel, respectively; and C is the number of channels of
the input feature map.

2. The activation function introduces nonlinearity into the network, enhancing its ability
to model complex patterns. The Rectified Linear Unit (ReLU) is one of the most
commonly used activation functions. It is defined as shown in Equation (2):

f (x) = max(0, x) (2)

3. The pooling layer reduces the spatial dimensions of the features and reduces the
amount of computation. Common pooling operations are maximum pooling and
average pooling. Their calculation formulas are expressed as follows in Equation (3):

y(i, j, k) = max
(m,n)∈R

x(i + m, j + n, k) (3)

where y(i, j, k) is the output value of position (i, j) after pooling operation and channel
k, x(i + m, j + n, k) is the pixel value of the position (i + m, j + n) in the output feature
map and channel k, x is the input feature map, R is the range of the pooled window, m
and n represent the current position offset in the pooled window, and k is the channel
index of the feature map.
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4. Located at the end of the network, the fully connected layer maps the features ex-
tracted from the convolutional and pooling layers to the final output classification.
The formula of the fully connected layer is expressed as follows in Equation (4):

y = W · x + b (4)

where y is the output vector, x is the input eigenvector, W is the weight matrix, and b
is the bias.

CNNs have shown significant effectiveness in bearing fault diagnosis due to their
ability to automatically learn complex patterns in bearing vibration signals. This allows for
high-precision fault identification and provides a robust technical foundation for intelligent
predictive maintenance in mechanical systems [23,24].

2.2. BiLSTM

LSTM networks are specialized Recurrent Neural Networks (RNNs) designed to
capture long-term dependencies, making them effective for sequential data analysis. They
can process vibration signals or sensor data to assess bearing health or predict failure, as
illustrated in Figure 2.
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Figure 2. Schematic diagram of the LSTM network.

The LSTM network consists of the following parts [25,26]:

1. Cell state: The core component of an LSTM network is the cell state, responsible
for storing and transferring information, enabling the network to retain long-term
dependencies and excel in processing sequential data.

2. Forget gate: The forget gate determines which information to discard from the cell
state. Using a sigmoid activation function, it evaluates each cell’s state value to decide
how much to retain, allowing the network to flexibly adapt its memory. The forget
gate operation is defined by Equation (5):

ft = σ
(

W f ·[ht−1, xt] + b f

)
(5)

where ft is the output of the forgetting gate, W f is the weight matrix of the oblivion
gate, ht−1 is the hidden state of the previous time step, xt is the input at the current
time, and b f is the bias term of the oblivion gate.

3. Input gate: The input gate contains a sigmoid layer that selects values to update
the cell state and a tanh layer that generates candidate values for addition. These
functions are defined by Equations (6) and (7):

it = σ(Wi·[ht−1, xt] + bi) (6)

∼
Ct = tanh(Wc·[ht−1, xt] + bC) (7)
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where it is the output of the input gate; Wi is the weight matrix of the input gate;
∼
Ct is

the new candidate message; Wc is the weight matrix of the new candidate message;
and bi and bC are the bias terms of the input gate and the new candidate information,
respectively.

4. Module status update: The process of updating the cell state involves multiplying
the output of the forget gate by the original cell state, then adding the output of the
input gate. This operation maintains the validity and continuity of the cell state. The
formula for updating a cell is expressed as follows in Equation (8):

Ct = ft ⊙ Ct−1 + it ⊙
∼
Ct (8)

where Ct is the cell state at the current moment, ft is the output of the oblivion gate, ⊙
refers to the elemental multiplication operation, Ct−1 is the cell state at the previous

time step, it is the output of the input gate, and
∼
Ct is the candidate cell state generated

by the input gate.
5. Hidden state: The hidden state is the output of the LSTM unit, containing information

from the current time step, which is passed to the next time step to ensure coherence
and consistency of the data.

6. Output gate: The output gate determines the value of the next hidden state, which
is the actual output of the LSTM network. The output gate is adjusted so that the
network output reflects the key information of the current time step. The formula for
the output gate is expressed as follows in Equations (9) and (10).

Ot = σ(WO·[ht−1, xt] + bO) (9)

ht = Ot ⊙ tanh(Ct) (10)

where Ot is the output of the output gate, WO is the weight matrix of the output gate, ht

is the hidden state of the current time step, and bO is the bias term of the output gate.

LSTM networks are particularly effective at capturing and preserving long-term de-
pendencies in sequential data due to their memory cells and gate mechanisms. However,
LSTMs perform unidirectional propagation, which limits their ability to capture dependen-
cies in both directions. To address this, BiLSTM was developed.

BiLSTM extends the LSTM architecture by incorporating both forward and backward
propagation, enabling the model to capture dependencies in both directions of sequential
data. This bidirectional mechanism shown in Figure 3 enhances feature extraction from
temporal sequences, making BiLSTM a robust solution for tasks that require complex,
time-sensitive pattern recognition [27]. The dual propagation in BiLSTM greatly improves
the accuracy and reliability of model outputs, particularly for applications requiring com-
prehensive temporal feature extraction in sequence analysis.
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The cycle calculations in both directions are shown in Equations (11) and (12):

→
ht = LSTM f orward

(
xt,
−−→
ht−1, −−→ct−1

)
(11)

←
ht = LSTMbackward

(
xt,
←−−
ht+1, ←−−ct+1

)
(12)

where xt is the input vector of the current time step (t); ht−1 and ht are the hidden states of
the previous time step and the current time step, respectively; and ct−1 and ct are the cell
states of the previous time step and the current time step, respectively.

The final output hidden state (Ht) is a splice in both directions:

Ht =

[→
ht;
←
ht

]
(13)

2.3. MHSA

MHSA is a deep learning technique in deep learning models that is the state of the art
in the field of Natural Language Processing (NLP) that allows models to pay more attention
to relevant features and prevents overfitting. The traditional fault diagnosis workflow is
simplified in the model.

Attention is a mechanism that allows a model to capture dependencies within a
sequence by focusing on different locations within the sequence as it is processed. The
multi-head self-attention mechanism replicates this process several times, with each “head”
learning a different representation of the input data. Finally, the output vectors from all
heads are stitched together and processed through a linear layer to obtain the final output.
The model can learn different relationships between different locations, which makes it
more flexible when dealing with long-distance dependencies [28,29]. The output matrix of
the attention layer in the MHSA mechanism (query (Q), key (K), and value (V)) is shown in
Equation (14):

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (14)

where dk is the feature dimension of each key, which is used for weight scaling and
normalized to the interval of [0,1] by softmax. The MHSA used in this paper is four
attention heads, and the calculation of each attention head is shown in Equation (15):

headi = Attention
(

QWi
Q, KWi

K, VWi
V
)

(15)

where Wi
Q, Wi

K, and Wi
V denote the weight matrices of Q, K, and V, respectively, and

headi is the ith head in the MHSA.
The MHSA mechanism combines multiple attention heads, each with its linear trans-

formation matrix. The output is shown in Equation (16):

MHSA(x) = Concat(head1, . . . , head4)WO (16)

Linear represents the linear mapping operation, WO is the weight of linear mapping,
and Concat is the splicing operation. The model structure of MHSA is shown in Figure 4.

An attention mechanism is therefore introduced to filter the features during their
extraction to improve the correctness of fault diagnosis. In fault identification, certain
anomalies may involve multiple locations in the sequence rather than just locally specific
parts [30,31]. By introducing MHSA, the model can focus on different parts of the sequence
at the same time to better capture the global dependencies, improving the perception of the
overall sequence pattern. The MHSA used in this paper is a four-attention head.
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2.4. The Proposed Diagnostic Model

Before feeding the vibration signals into the diagnostic model, a preprocessing step
is applied to enhance the quality of the raw data. The preprocessing includes the use of a
Butterworth band-stop filter to eliminate noise and interference within specific frequency
ranges, ensuring that the signals are clean and free from distortions. Additionally, FFT is
employed to show the frequency-domain characteristics of the vibration signals, providing
valuable insights into fault-related features. This step ensures that the input data retain
only the most relevant information, which is crucial for accurate fault diagnosis.

The proposed fault diagnosis model adopts a hybrid architecture that integrates CNN,
BiLSTM, and MHSA. This design addresses the challenges of diagnosing UAV rotor motor
bearing faults by comprehensively capturing spatial, temporal, and contextual features
from the input data.

In this model, the CNN module extracts spatial features from the preprocessed vi-
bration signals, identifying local patterns and anomalies that are indicative of faults. The
convolutional and pooling operations reduce data dimensionality while retaining essential
features, ensuring efficiency and preserving critical information for further analysis.

The BiLSTM module processes the spatial features to capture temporal dependencies
in the sequential vibration data. Its bidirectional structure enables the integration of
information from both past and future time steps, which is essential for recognizing fault
signatures distributed over time. This temporal modeling enhances the model’s ability to
identify complex and subtle patterns in the data.

To refine the extracted features, the MHSA mechanism emphasizes the most relevant
information by assigning higher attention weights to critical data points. This mechanism
allows the model to focus on key diagnostic features, ensuring that subtle yet significant
fault characteristics are highlighted. The multi-head structure further enhances robustness
by enabling the model to learn diverse feature representations, improving adaptability to
different fault scenarios.

The CNN-BiLSTM-MHSA model achieves a comprehensive and hierarchical repre-
sentation of the input data. The final features are passed through a fully connected layer,
which maps them to specific fault categories. This integrated approach not only ensures
high diagnostic accuracy but also maintains robustness across diverse operating conditions,
including variable rotational speeds.
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Despite its complexity, the model is computationally efficient. The combination
of CNN, BiLSTM, and MHSA minimizes redundancy in feature extraction and focuses
computational resources on the most informative aspects of the data. This efficiency makes
it suitable for real-time fault diagnosis in UAV systems, meeting the constraints of limited
onboard computational power and the demand for rapid decision making.

3. Experimental Verification
3.1. Experimental Design and Data Acquisition
3.1.1. Experimental Overview

The experiment was conducted under controlled conditions with the rotor motor
running without load. Deep-groove ball bearings with various types and degrees of failure
were artificially induced through wire-cut machining. While this method is effective for
generating clear and reproducible fault scenarios, it is important to note that real-world
bearing faults in UAV applications may develop over time due to gradual wear, fatigue, and
environmental influences rather than the abrupt fault simulations used in this study. Thus,
while these fault types serve as useful test cases, further studies will need to incorporate
more realistic fault development processes.

As depicted in Figure 5, the vibration response of the rotor, both under normal condi-
tions and with implanted faulty bearings, was simulated across different rotational speeds.
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During the experiment, the rotational speed of the rotor motor was gradually increased
from 0 to 1600 r/min to better emulate real-world operational conditions. Five distinct
speeds—200 r/min, 500 r/min, 800 r/min, 1200 r/min, and 1600 r/min—were tested,
allowing for controlled data collection across a range of operating conditions. This variable-
speed approach is designed to emulate real scenarios, capturing the rotor’s vibrational
behavior under both normal and faulty conditions.

Testing at multiple speeds enables the collection of a comprehensive dataset encom-
passing both normal and fault-specific conditions, forming a robust foundation for fault
diagnosis and improving the reliability and accuracy of the diagnostic model.

As illustrated in Figure 6, the rotor motor was firmly affixed to an experimental table,
with vibration acceleration sensors positioned along the vertical (x-axis) and horizontal
(y-axis) axes. This arrangement ensures comprehensive monitoring of the rotor’s vibrational
dynamics, facilitating accurate data acquisition.
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3.1.2. Laboratory Equipment and Test Instruments

The main experimental equipment and test instruments are listed in Table 1. The
testbench system includes both hardware and software configurations. The hardware
consists of sensors, a host computer, a data acquisition processor, and an industrial power
supply. The software includes data acquisition software, data management software,
middleware communication software, alarm management software, and a standalone
version of the client software.

Table 1. Main equipment used in the fault simulation experiment.

Equipment Model Number Parameters Brand

Acceleration sensors BH5011
Sensitivity: 10 mV/g

BHAmplitude range: ±500 g
Frequency range: 0–13 kHz

Data acquisition
processor AC5000

Resolution: 16-bit
BHEnter path: 32

Maximum sampling rate: 102.4 KSPS

Deep-groove
ball bearings 6907

Rolling body diameter: 5.2 mm

NSK

Section diameter: 45 mm
Inside diameter: 35 mm

External diameter: 55 mm
Thickness: 10 mm

Number of rolling bodies: 13

3.1.3. Bearing Failure Implantation

In this experiment, fault simulations were conducted on NSK6907 rolling bearings used
in a specific rotor motor. Faults were introduced in the inner and outer rings through wire-
cut machining, creating both mild and severe defects to simulate real bearing failures [32,33].
The sealing rings were removed, and precise cuts were made on the bearing rings, as
outlined in Table 2. The wire-cut machining setup and the resulting faulty bearings are
shown in Figure 7.

Table 2. Bearing machining allowance table.

Fault Type

Fault Severity Minor
(Width mm × Depth mm)

Severe
(Width mm × Depth mm)

Outer ring failure 0.5 × 0.5 0.5 × 1
Inner ring failure 0.5 × 0.5 0.5 × 1



Mathematics 2025, 13, 334 11 of 28Mathematics 2025, 13, x FOR PEER REVIEW 11 of 28 
 

 

 

Figure 7. Wire-cut implantation fault: outer ring with a severely failed bearing and inner ring with 
a severely failed bearing. 

Table 2. Bearing machining allowance table. 

Fault Severity
Fault Type 

Minor 
(Width mm × Depth mm) 

Severe 
(Width mm × Depth mm) 

Outer ring failure 0.5 × 0.5 0.5 × 1 
Inner ring failure 0.5 × 0.5 0.5 × 1 

3.1.4. Test Procedure 

The online monitoring and diagnostic systems were used to record the vibration 
acceleration of the motor rotor at various rotational speeds. After completing the 
experiments, the motor was turned off, and the systems, along with the control interface, 
were shut down. Ensuring the integrity and accuracy of the recorded data was essential 
(Figure 8). 

 

Figure 8. Diagram of the test architecture for rotor motor failure simulation. 

3.2. The Preprocessing Process of Raw Collected Data 

Signal processing of vibration data is crucial for machinery fault diagnosis, as 
effective preprocessing significantly enhances the accuracy of feature extraction and 
subsequent fault diagnosis. In this study, a band-stop filter is utilized to eliminate noise 
and interference within specific frequency ranges, and FFT is employed to assess the 
frequency-domain characteristics of the vibration signals. The raw data comprise the 
vibration acceleration of the rotor motor collected at various rotational speeds, with a 

Figure 7. Wire-cut implantation fault: outer ring with a severely failed bearing and inner ring with a
severely failed bearing.

3.1.4. Test Procedure

The online monitoring and diagnostic systems were used to record the vibration accel-
eration of the motor rotor at various rotational speeds. After completing the experiments,
the motor was turned off, and the systems, along with the control interface, were shut
down. Ensuring the integrity and accuracy of the recorded data was essential (Figure 8).
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3.2. The Preprocessing Process of Raw Collected Data

Signal processing of vibration data is crucial for machinery fault diagnosis, as effective
preprocessing significantly enhances the accuracy of feature extraction and subsequent fault
diagnosis. In this study, a band-stop filter is utilized to eliminate noise and interference
within specific frequency ranges, and FFT is employed to assess the frequency-domain char-
acteristics of the vibration signals. The raw data comprise the vibration acceleration of the
rotor motor collected at various rotational speeds, with a sampling frequency of 25,600 Hz.
The vibration signals are analyzed in the frequency domain to extract relevant features.

3.2.1. Band-Stop Filters

Filtering is a critical step in signal processing, aimed at removing or suppressing
noise or interference within specified frequency ranges. A Butterworth band-stop filter is
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employed for this purpose. The Butterworth filter was chosen due to its relatively smooth
frequency response and minimal ripple, making it suitable for applications requiring signal
smoothing. The design is based on its transfer function, which is shown in Equation (17):

H(s) =
1

1 +
(

s
ωc

)2N (17)

where s is the complex frequency-domain variable, ωc is the cutoff frequency, and N is the
order of the filter.

The following parameters are set for the filter:

1. The filter order is set to 4. A higher filter order yields a steeper frequency response,
enhancing the effectiveness of the filter in attenuating specific frequency bands.

2. The band-stop frequency range is defined from 5000 Hz to 10,000 Hz, targeting a range
where noise and interference is notably significant and, thus, requires suppression.

The filtering process is executed using the scipy.signal.filtfilt function, which provides
bidirectional filtering. This approach helps avoid phase shifts in the signal, ensuring that
the phase of the filtered signal remains consistent—a critical aspect for time-domain signal
analysis. The results of vibration signal filtering from the experimental data are presented
in Figures 9 and 10. The preprocessed data are then saved for subsequent bearing diagnosis.
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Figure 9. Time-domain diagram of vibration acceleration in the x direction after band-stop filtering.
(a) Time-domain waveform of inner ring failure; (b) time-domain waveform of outer ring failure;
(c) time-domain waveform of normalcy.
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3.2.2. FFT

FFT is an efficient algorithm for Discrete Fourier Transform (DFT) that utilizes the
symmetry and periodicity of the signal to drastically reduce the amount of computation.
The basic formula of DFT is shown in Equation (18):

X(k) =
N−1

∑
n=0

x(n)·e−j 2π
N kn (18)

where x(n) is the time-domain discrete signal, X(k) is the time-domain discrete signal, and
N is the number of sampling points of the signal.

To eliminate the zero-frequency component from the signal, the first step involves
applying a de-mean operation. Following this, the FFT computes the frequency compo-
nents of the signal, retaining only the positive spectral part of the frequency vector. The
data processing result is subsequently obtained by taking the absolute value of the FFT
coefficients and normalizing the results [34,35]. The outcomes of the FFT applied to the
experimental vibration signals are illustrated in Figures 11 and 12.
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3.3. Model Design and Construction

The CNN-BiLSTM-MHSA model was implemented in PyTorch (version 2.4.1) under
Python 3.12. Training and testing were conducted on a Windows 11 system equipped with
an Intel Core i9-14900HX CPU and an NVIDIA GeForce RTX 4060 Laptop GPU. The model
components were implemented using correlation functions, and the layers were assembled
sequentially according to the specified network architecture.

The CNN extracts spatial features through convolutional layers, batch normalization,
ReLU activation, pooling, and dropout layers. The BiLSTM captures sequential dependen-
cies by processing features bidirectionally, while the MHSA mechanism highlights critical
features for classification. Finally, a fully connected layer maps the features to the fault
categories, and a softmax layer provides the classification output. Equation (19) illustrates
the process of mapping fault categories from the fully connected layer to the final output.

Output = So f tmax
(

H f inalW f c + b f c

)
(19)

where H f inal is the feature input of the last layer, i.e., the feature vector from the MHSA
mechanism; W f c is the weight matrix of the fully connected layer; and b f c is the bias term
of the fully connected layer.

After building the network model, the training options, including the optimization
algorithm, number of iterations, batch size, and validation data, are defined. The prepared
training data are then fed into the model, which is trained based on these configurations.
Upon completing the training process, the model’s performance on the training data and
its ability to generalize to unseen samples are evaluated using a separate validation set,
ensuring robustness and accuracy.

The detailed network parameter settings and hyperparameter configurations are sum-
marized in Tables 3 and 4, respectively. Figure 13 illustrates the rolling bearing diagnosis
process implemented using the CNN-BiLSTM-MHSA model.

Table 3. Detailed parameter settings for network structure.

Layer Name Input Size Kernel Size Stride Number of Output
Channels Output Size

Conv1 (16, 1, 10,000, 1) (3, 1) (1, 1) 64 (16, 64, 9998, 1)
Pool1 (16, 64, 9998, 1) (2, 1) (2, 1) — (16, 64, 4999, 1)
Conv2 (16, 64, 4999, 1) (3, 1) (1, 1) 128 (16, 128, 4997, 1)
Pool2 (16, 128, 4997, 1) (2, 1) (2, 1) — (16, 128, 2498, 1)
Conv3 (16, 128, 2498, 1) (3, 1) (1, 1) 256 (16, 256, 2496, 1)
Pool3 (16, 256, 2496, 1) (2, 1) (2, 1) — (16, 256, 1248, 1)

Flatten (16, 256, 1248, 1) — — — (16, 319, 488)
Dropout (16, 319, 488) — — — (16, 319, 488)
BiLSTM (16, 1248, 256) — — 256 (16, 1248, 256)
MHSA (16, 1248, 256) — — 256 (16, 1248, 256)

FC (16, 256) — — 5 (16, 5)

Table 4. Network training hyperparameter configuration table.

Parameter Name Parameter Value Description

Learning Rate 0.0005 Used to adjust the update magnitude of the model parameters.

Batch Size 16 The number of samples used in each training iteration.

Number of Epochs 50 Total training rounds (may end early due to the early stopping mechanism).

Patience 5 Early stopping mechanism parameter that stops training if there is no
improvement in 5 consecutive epoch losses.

Loss Function Cross-entropy Loss Loss functions for multi-categorization problems.

Optimizer Adam Optimizers with adaptive learning capabilities.

Learning Rate Scheduler Optimizer; step size = 10; γ = 0.1 The learning rate is updated every 10 epochs with a decay factor of 0.1.

Dropout 50% The dropout ratio is applied in the model to minimize overfitting.
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4. Model Verification and Performance Analysis
4.1. Efficient Data Selection for Enhanced Model Training and Generalization

A selective data interception method is applied to isolate vibration data corresponding
to steady-state rotational speeds, constructing a refined dataset for input into the diag-
nostic network. This method reduces the dataset size by focusing on key samples, which
minimizes storage requirements and improves data management efficiency. By emphasiz-
ing critical data, the method accelerates model training, reduces computational demands,
and supports faster convergence toward optimal solutions. This approach is particularly
advantageous in resource-constrained environments.

4.1.1. Advantages of Selective Data Extraction

The selective data extraction method optimizes the dataset size, which enhances com-
putational efficiency and reduces training time. By focusing on vibration data from stable
operating conditions, the quality of the input data is improved, minimizing the influence
of noise and transient interference. This targeted approach increases the model’s ability to
generalize to new data, effectively lowering the risk of overfitting. Additionally, the use of
a refined dataset simplifies the interpretability of the model by ensuring that training is
based on meaningful samples, thereby improving trust in the model’s predictions.
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4.1.2. Dataset Design

The dataset is constructed following fault simulation experiments conducted at various
rotational speeds. After acquiring the vibration signals in both the x and y directions, the
data undergo filtering and preprocessing to remove noise and other irrelevant components.
The dataset is categorized into five conditions—minor inner ring faults, severe inner
ring faults, minor outer ring faults, severe outer ring faults, and normal operation—with
160 samples for each condition. Each sample consists of 10,000 data points—5000 from the
x direction and 5000 from the y direction. These 5000 data points for each direction are
extracted from the preprocessed signals recorded at different rotational speeds, ensuring a
comprehensive representation of fault behaviors under varying operating conditions.

The dataset contains a total of 800 samples, with each of the five conditions equally
represented. After preprocessing, the dataset is randomly shuffled and divided into a
training set containing 650 samples and a test set containing 150 samples, with no overlap
between the two sets. The labels are encoded as integers ranging from 0 to 4, corresponding
to the five fault conditions. The data are flattened to fit the input format for the model.

This dataset is designed to ensure a complete representation of fault scenarios, covering
different severities and fault locations, which is essential for effective model training. The
high-dimensional vibration data capture rich temporal information, facilitating robust
feature extraction and fault detection. Additionally, the dataset is carefully balanced,
with each fault condition represented equally, preventing issues with class imbalance and
improving the model’s robustness and diagnostic accuracy.

The combination of well-structured data extraction, high-quality preprocessing, and
balanced dataset organization ensures efficient model training, enhanced fault detection
performance, and improved generalization across different fault scenarios.

4.2. Training

A training loop is implemented to train deep learning models. The training progress
of bearing fault diagnosis based on CNN-BiLSTM-MHSA is shown in Figure 14.
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4.2.1. Training Mechanism and Model Optimization

The training process of the deep learning model is designed to maximize performance
while minimizing overfitting. A total of 50 training rounds (epochs) are defined, during
which the loss value of each epoch is recorded to monitor performance and facilitate
subsequent analysis and visualization. The initial “best loss” is set to a very high value
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(positive infinity), providing a benchmark for tracking improvements in model performance
over time.

To prevent overfitting and computational inefficiency, an early stopping mechanism
is implemented. The patience parameter, set at 5 epochs, defines the tolerance threshold
for consecutive epochs without improvement. A counter variable tracks the number of
non-improving epochs; if this count reaches the patience threshold, training halts early.
This mechanism ensures the retention of the best-performing model parameters throughout
training, improving both stability and resource efficiency.

Each epoch begins with the model in training mode, activating dropout and batch
normalization layers to enhance generalization. Training data are fed in small batches to
optimize GPU usage, particularly for large datasets. During each batch iteration,

1. The optimizer is reset to avoid gradient accumulation;
2. The model generates predictions for the input data, computes the loss by comparing

predictions with actual labels, and performs backpropagation;
3. The computed gradients are used by the optimizer to update the model weights,

improving its performance.

At the end of each epoch, the current loss is compared to the best historical loss. If the
current loss improves, the best loss value is updated, and the counter is reset. If there is no
improvement, the counter increments. When the counter reaches the patience threshold,
the early stopping mechanism halts training. This iterative process, as shown in Figure 14,
demonstrates that the model minimized loss to 0.003, prompting early termination.

4.2.2. Adaptive Learning Rate Adjustment

To accelerate convergence and improve stability, a dynamic learning rate adjustment
strategy is employed. The learning rate scheduler modifies the learning rate as described
by Equation (20):

ηt+1 = ηt·γt/step_size (20)

where ηt is the current learning rate, ηt+1 is the updated learning rate, γ is the decay factor,
and t is the iteration step.

The model utilizes the cross-entropy loss function shown in Equation (21) to measure
the divergence between predicted probabilities and actual labels:

L = − 1
N

N

∑
i=1

C

∑
c=1

yi,clog(ŷi,c) (21)

where L is the average cross-entropy loss; N is the number of samples in the batch (i.e., batch
size); C is the number of categories; and ŷi,c is the predicted probability of the model for
sample i in category c, calculated by the softmax function, which satisfies Equation (22):

ŷi,c =
exp(zi,c)

∑C
j=1 exp

(
zi,j

) (22)

where zi,c is the un-normalized output of the model.
The Adam optimizer updates the weights according to the rule described in Equation (22):

θt+1 = θt − η·∇θt L (23)

where θt is the model parameter before updating, θt+1 is the model parameter after updat-
ing, and ∇θt is the loss-function (L) gradient with respect to parameter θt.
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4.2.3. Key Optimization Strategies and Regularization

Key optimization strategies include early stopping, dynamic learning rate adjust-
ment, and small-batch processing. Small batches efficiently utilize memory, reducing
computational overhead while maintaining training stability.

Dropout regularization, as described in Equation (24), is employed to prevent overfitting:

xdrop = Dropout
(
x f lat, p

)
(24)

where x f lat is the output of the final pooling layer being flattened and p is the
dropout probability.

By deactivating a random subset of neurons in each iteration, dropout encourages the
model to learn robust and generalized features, thereby mitigating overfitting.

4.3. Comparative Analysis of Diagnosis Results and Algorithms

The selective interception method improves both data management and computational
efficiency, ensuring data quality and enhancing model generalization and interpretabil-
ity. This approach is especially valuable in real-world applications where resources may
be limited, providing an efficient and reliable solution for diagnosing faults in mechani-
cal equipment.

The CNN-BiLSTM-MHSA model’s predictive accuracy on the test set is illustrated in
Figure 15 following training on a dataset of 650 samples derived from a rotor motor fault
simulation, and Figure 16 presents the confusion matrix and t-SNE plot for the test set,
where the horizontal axis represents the predicted category and the vertical axis represents
the actual category.
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Figure 15. Comparison of test-set results.

As shown in Figures 15 and 16, the model achieves a prediction accuracy of 99.33%
on the test set. In the confusion matrix, the horizontal axis represents the predicted labels,
while the vertical axis represents the true labels. The matrix reveals clear distinctions
among fault types. The t-SNE visualization demonstrates strong clustering of samples,
with distinct separations among fault categories. The model achieves high accuracy in
identifying normal, trouble-free conditions and both serious and minor faults in the outer
and inner circles. However, slight misclassifications occur in distinguishing faults of a
certain degree in the inner circle, with one sample misidentified.
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Precision (Prec), Recall (Rec), and F1 score are key metrics for evaluating the per-
formance of classification models. The following metrics are used to assess the fault
identification model:

1. Precision measures the proportion of samples predicted to be positive that are actually
positive. It is calculated using Equation (25):

Prec =
TP

TP + FP
(25)

2. Recall evaluates the proportion of true-positive samples correctly identified by the
model. It is calculated using Equation (26):

Rec =
TP

TP + FN
(26)

Here, TP (True Positive) is the number of correctly predicted positive samples, FP
(False Positive) represents negative samples incorrectly classified as positive, and FN
(False Negative) represents positive samples incorrectly classified as negative.

3. The F1 score is the harmonic mean of precision and recall, balancing the two metrics.
It is computed using Equation (27):

F1 = 2× Rec× Prec
Rec + Prec

(27)

Table 5 presents the recall, precision, and F1 score for the CNN-BiLSTM-MHSA-based
bearing diagnosis model. These results underscore the model’s ability to achieve high
accuracy and reliability in practical fault diagnosis applications.

Table 5. Calculation of recall rate, precision rate, and F1 scores.

Fault Type
Indicator Minor Failure of

the Inner Ring
Severe Failure of

the Inner Ring
Minor Failure of
the Outer Ring

Severe Failure of
the Outer Ring Normalcy

Precision (%) 100 97.0588 100 100 100
Recall (%) 95.8333 100 100 100 100

F1 score (%) 97.8723 98.5075 100 100 100

To quantitatively evaluate the overall performance of the fault diagnosis methods,
several error metrics, including Root Mean Square Error (RMSE), Mean Absolute Error



Mathematics 2025, 13, 334 21 of 28

(MAE), Mean Square Error (MSE), and Mean Absolute Percentage Error (MAPE), are used.
These are supplemented by the calculation of precision, recall, and F1 scores.

1. RMSE represents the square root of the average squared differences between predicted
and true values. A lower RMSE indicates a better fit between the predicted and actual
values. RMSE is calculated using Equation (28):

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (28)

where n is the sample size, yi is the true value, and ŷi is the predicted value.
2. MSE is the mean of the squared deviations between the predicted and true values,

reflecting the degree of model error accumulation. MSE is calculated using Equation (29):

MSE =
1
n∑n

i=1(yi − ŷi)
2 (29)

3. MAE is the mean of the absolute differences between predicted and true values. A
smaller MAE signifies a smaller deviation between predicted and true values. MAE is
calculated using Equation (30):

MAE =
1
n∑n

i=1|yi − ŷi| (30)

4. MAPE calculates the percentage difference between the predicted and true values.
MAPE is calculated using Equation (31):

MAPE =
100
n ∑n

i=1
|yi − ŷi|

yi
(31)

To validate the model’s diagnostic ability, traditional CNN and LSTM models were also
trained and tested using the same dataset. Four recent studies using motor bearing fault
diagnosis models based on LTFM-Net [13], ARAE [36], CNN-LSTM [37], and WDCNN-
LSTM [38] serve as the basis for comparison. The confusion matrices and t-SNE plots for
the test set are shown in Figures 17–22. Figure 23 compares the performance metrics, and
the results for each metric on the test set are presented in Table 6.

In Figures 17–22, the fault types are categorized as follows: label 0 represents a minor
failure of the inner bearing ring, label 1 denotes a severe failure of the inner bearing ring,
label 2 indicates a minor failure of the outer bearing ring, label 3 corresponds to a severe
failure of the outer bearing ring, and label 4 represents a normal bearing.

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 28 
 

 

fault diagnosis models based on LTFM-Net [13], ARAE [36], CNN-LSTM [37], and 
WDCNN-LSTM [38] serve as the basis for comparison. The confusion matrices and t-SNE 
plots for the test set are shown in Figures 17–22. Figure 23 compares the performance 
metrics, and the results for each metric on the test set are presented in Table 6. 

 
(a) (b) 

Figure 17. CNN model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 18. LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 17. CNN model (a) test-set confusion matrix and (b) test-set t-SNE plot.



Mathematics 2025, 13, 334 22 of 28

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 28 
 

 

fault diagnosis models based on LTFM-Net [13], ARAE [36], CNN-LSTM [37], and 
WDCNN-LSTM [38] serve as the basis for comparison. The confusion matrices and t-SNE 
plots for the test set are shown in Figures 17–22. Figure 23 compares the performance 
metrics, and the results for each metric on the test set are presented in Table 6. 

 
(a) (b) 

Figure 17. CNN model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 18. LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 18. LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot.

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 28 
 

 

fault diagnosis models based on LTFM-Net [13], ARAE [36], CNN-LSTM [37], and 
WDCNN-LSTM [38] serve as the basis for comparison. The confusion matrices and t-SNE 
plots for the test set are shown in Figures 17–22. Figure 23 compares the performance 
metrics, and the results for each metric on the test set are presented in Table 6. 

 
(a) (b) 

Figure 17. CNN model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 18. LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 19. CNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot.

Mathematics 2025, 13, x FOR PEER REVIEW 23 of 28 
 

 

Figure 19. CNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 20. ARAE model (a) test-set confusion matrix (b) and test-set t-SNE plot. 

  
(a) (b) 

Figure 21. LTFM-Net model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

 
(a) (b) 

Figure 22. WDCNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

Figure 20. ARAE model (a) test-set confusion matrix (b) and test-set t-SNE plot.



Mathematics 2025, 13, 334 23 of 28

Mathematics 2025, 13, x FOR PEER REVIEW 23 of 28 
 

 

Figure 19. CNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 20. ARAE model (a) test-set confusion matrix (b) and test-set t-SNE plot. 

  
(a) (b) 

Figure 21. LTFM-Net model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

 
(a) (b) 

Figure 22. WDCNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

Figure 21. LTFM-Net model (a) test-set confusion matrix and (b) test-set t-SNE plot.

Mathematics 2025, 13, x FOR PEER REVIEW 23 of 28 
 

 

Figure 19. CNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

  
(a) (b) 

Figure 20. ARAE model (a) test-set confusion matrix (b) and test-set t-SNE plot. 

  
(a) (b) 

Figure 21. LTFM-Net model (a) test-set confusion matrix and (b) test-set t-SNE plot. 

 
(a) (b) 

Figure 22. WDCNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot. Figure 22. WDCNN-LSTM model (a) test-set confusion matrix and (b) test-set t-SNE plot.

Mathematics 2025, 13, x FOR PEER REVIEW 24 of 28 
 

 

 

Figure 23. Comparison of performance indicators. 

Table 6. Calculation results of test-set performance metrics. 

Model RMSE MSE MAE MAPE Accuracy 
CNN 0.43 0.19 0.11 3.42% 93.33% 
LSTM 1.26 1.58 0.69 33.20% 62.00% 
ARAE 1.00 1.00 0.53 26.24% 66.00% 

CNN-LSTM 0.18 0.03 0.02 1.37% 98.87% 
LTFM-Net 0.18 0.03 0.03 4.17% 96.67% 

WDCNN-LSTM 0.20 0.04 0.04 4.76% 96.00% 
CNN-BiLSTM-MHSA 0.08 0.01 0.01 0.79% 99.33% 

In Figures 17–22, the fault types are categorized as follows: label 0 represents a minor 
failure of the inner bearing ring, label 1 denotes a severe failure of the inner bearing ring, 
label 2 indicates a minor failure of the outer bearing ring, label 3 corresponds to a severe 
failure of the outer bearing ring, and label 4 represents a normal bearing. 

A comparative evaluation of various models for rolling bearing fault diagnosis was 
conducted, highlighting differing levels of performance across methods. The LSTM and 
ARAE models exhibited limited fault identification capabilities. Specifically, their t-SNE 
diagrams showed chaotic clustering, with insufficient separation between fault categories. 
While LSTM captures temporal dependencies, it struggles with multi-scale datasets due 
to its fixed time scales, leading to suboptimal performance in varying operational 
conditions. Similarly, ARAE, as a self-supervised learning model, extracts low-
dimensional features but fails to capture complex, non-linear fault characteristics, limiting 
its sensitivity and diagnostic accuracy. 

In contrast, the CNN, CNN-LSTM, and WDCNN-LSTM models performed better, 
achieving accuracies of 93.33%, 98.87%, and 96.00%, respectively. CNN’s robust feature 
extraction abilities contribute to its relatively high accuracy, while incorporating LSTM in 
the CNN-LSTM model improves its ability to capture temporal features, leading to higher 
accuracy. The t-SNE diagrams for these models show clearer fault separations, though 
some misclassifications persist, particularly for minor inner ring faults. 

The proposed CNN-BiLSTM-MHSA model further enhances diagnostic 
performance. By integrating BiLSTM, it captures global temporal dependencies and better 
handles non-stationary fault features, surpassing traditional LSTM. The addition of the 

Figure 23. Comparison of performance indicators.



Mathematics 2025, 13, 334 24 of 28

Table 6. Calculation results of test-set performance metrics.

Model RMSE MSE MAE MAPE Accuracy

CNN 0.43 0.19 0.11 3.42% 93.33%
LSTM 1.26 1.58 0.69 33.20% 62.00%
ARAE 1.00 1.00 0.53 26.24% 66.00%

CNN-LSTM 0.18 0.03 0.02 1.37% 98.87%
LTFM-Net 0.18 0.03 0.03 4.17% 96.67%

WDCNN-LSTM 0.20 0.04 0.04 4.76% 96.00%
CNN-BiLSTM-MHSA 0.08 0.01 0.01 0.79% 99.33%

A comparative evaluation of various models for rolling bearing fault diagnosis was
conducted, highlighting differing levels of performance across methods. The LSTM and
ARAE models exhibited limited fault identification capabilities. Specifically, their t-SNE
diagrams showed chaotic clustering, with insufficient separation between fault categories.
While LSTM captures temporal dependencies, it struggles with multi-scale datasets due to
its fixed time scales, leading to suboptimal performance in varying operational conditions.
Similarly, ARAE, as a self-supervised learning model, extracts low-dimensional features
but fails to capture complex, non-linear fault characteristics, limiting its sensitivity and
diagnostic accuracy.

In contrast, the CNN, CNN-LSTM, and WDCNN-LSTM models performed better,
achieving accuracies of 93.33%, 98.87%, and 96.00%, respectively. CNN’s robust feature
extraction abilities contribute to its relatively high accuracy, while incorporating LSTM in
the CNN-LSTM model improves its ability to capture temporal features, leading to higher
accuracy. The t-SNE diagrams for these models show clearer fault separations, though
some misclassifications persist, particularly for minor inner ring faults.

The proposed CNN-BiLSTM-MHSA model further enhances diagnostic performance.
By integrating BiLSTM, it captures global temporal dependencies and better handles
non-stationary fault features, surpassing traditional LSTM. The addition of the MHSA
mechanism enables the model to focus on critical features, thereby enhancing its sensitivity
to key diagnostic characteristics. As a result, the CNN-BiLSTM-MHSA model achieves a
remarkable fault diagnosis accuracy of 99.33%, outperforming the CNN (93.33%), LSTM
(62.00%), ARAE (66.00%), CNN-LSTM (98.87%), LTFM-Net (96.67%), and WDCNN-LSTM
(96.00%) models. Its t-SNE diagrams show clear fault separations, further reinforcing its
superior diagnostic reliability.

Evaluation metrics for the CNN-BiLSTM-MHSA model, such as RMSE (0.08), MSE
(0.01), MAE (0.01), and MAPE (0.79%), demonstrate significantly lower values compared
to other models, emphasizing its superior predictive accuracy and robust data fit. The
model also achieves an exceptional precision (100%) and F1 score (99.83%) in diagnosing
normal bearings and outer ring faults. However, the recall rate for inner ring faults,
particularly severe ones, is slightly lower than expected, suggesting challenges in capturing
subtle variations in fault severity. This is reflected in the confusion matrix, where minor
misclassifications between mild and severe inner ring faults occasionally occur. These
discrepancies indicate that while the model performs well across most fault types, its
sensitivity to nuanced inner ring faults requires improvement.

For outer ring faults, the CNN-BiLSTM-MHSA model outperforms the CNN and
LSTM models, achieving a higher accuracy (99.33%) and F1 score (99.34%) while maintain-
ing lower error metrics. To further enhance its robustness, especially in real-world rotor
motor applications with varying conditions, expanding the training dataset to include more
instances of severe outer ring faults could improve diagnostic accuracy and adaptability.
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5. Conclusions
This study introduces the CNN-BiLSTM-MHSA model, a hybrid deep learning archi-

tecture combining convolutional neural networks, bidirectional long short-term memory
networks, and multi-head self-attention mechanisms, tailored for rotor motor bearing fault
diagnosis. The model effectively extracts spatial, temporal, and attention-based features
from vibration signals, achieving a remarkable diagnostic accuracy of 99.33%. Compara-
tive analysis reveals that it outperforms traditional models such as CNN (93.33%), LSTM
(62.00%), ARAE (66.00%), CNN-LSTM (98.87%), LTFM-Net (96.67%), and WDCNN-LSTM
(96.00%) across multiple fault categories. Metrics like RMSE, MSE, MAE, and MAPE further
highlight its reliability, and its high precision, recall, and F1 scores demonstrate superior
fault classification performance. These results affirm the model’s robustness under diverse
operational conditions, making it suitable for dynamic environments like UAV systems
and industrial machinery.

Despite these significant achievements, the study identifies notable limitations. First,
the model’s focus on vibration signals under variable speeds leaves a gap in evaluating
performance under fluctuating load conditions and real-world fault signals. Second, while
the model achieves high accuracy in diagnosing inner ring faults, its sensitivity to subtle
differences between minor and severe inner ring faults is limited, likely due to imbalanced
feature representation in the training dataset. Addressing these issues is essential to further
enhance the model’s diagnostic accuracy and generalization ability.

Future work will focus on expanding the dataset to include real-world fault scenarios
characterized by gradual fault progression, fluctuating loads, and diverse environmental
influences. Addressing these complexities will bridge the gap between controlled simula-
tions and practical applications. Enhancing feature extraction techniques and incorporating
advanced attention mechanisms will improve the model’s ability to capture subtle fault
characteristics. Additionally, refining the model architecture and training strategies will
ensure adaptability and robustness in varied and dynamic operational conditions, such
as those encountered in UAVs. These efforts will solidify the model’s applicability in
real-world environments while maintaining its high diagnostic accuracy.

In conclusion, the CNN-BiLSTM-MHSA model represents a significant advancement
in rotor motor bearing fault diagnosis, demonstrating high accuracy, robustness, and
reliability. By addressing its limitations, the model can further solidify its role as a ro-
bust solution for deployment in complex and dynamic environments, such as UAVs and
industrial systems.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
BiLSTM Bidirectional Long Short-Term Memory
MHSA Multi-Head Self-Attention
ARAE Attention Recurrent Autoencoder
WD Wavelet Denoising
ESC Electronic Speed Controller
SVM Support Vector Machine
DL Deep Learning
AI Artificial Intelligence
ECNN Efficient Convolutional Neural Network
EH-SBW Electro-Hydraulic Steer-By-Wire
1DCNN One-Dimensional Convolutional Neural Network
LTFM Lightweight Time-Focused Model
WDRU Weighted Diminish Recurrent Unit
FAN Feature Aggregation Network
FTSVD Flexible Tensor Singular Value Decomposition
TDR Trajectory Dimension Ratio
TRPCA Tensor Robust Principal Component Analysis
GE-LRTLM Graph-Embedded Low-Rank Tensor Learning Machine
RNN Recurrent Neural Network
NLP Natural Language Processing
FFT Fast Fourier Transform
ReLU Rectified Linear Unit
DFT Discrete Fourier Transform
CPU Central Processing Unit
GPU Graphics Processing Unit
FC Fully Connected
t-SNE t-distributed Stochastic Neighbor Embedding
Prec Precision
Rec Recall
TP True Positive
FP False Positive
FN False Negative
RMSE Root Mean Square Error
MAE Mean Absolute Error
MSE Mean Square Error
MAPE Mean Absolute Percentage Error
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