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Abstract: This article uses an approach based on the triad model–algorithm–program. The
model is a nonlinear dynamic Selkov system with non-constant coefficients and fractional
derivatives of the Gerasimov–Caputo type. The Adams–Bashforth–Multon numerical
method from the predictor–corrector family of methods is selected as an algorithm for
studying this system. The ABMSelkovFracSim 1.0 software package acts as a program, in
which a numerical algorithm with the ability to visualize the research results is implemented
to build oscillograms and phase trajectories. Examples of the ABMSelkovFracSim 1.0
software package operation for various values of the model parameters are given. It is
shown that with an increase in the values of the parameter responsible for the characteristic
time scale, regular and chaotic modes are observed. Further in this work, bifurcation
diagrams are constructed, which confirm this. Aperiodic modes are also detected and a
singularity is revealed.

Keywords: fractional Selkov dynamic system; fractional derivative of variable order;
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trajectories; oscillograms; bifurcation diagrams; Python
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1. Introduction
Dynamic systems play an important role in various fields of knowledge, and it often

happens that the same dynamic system of different nature can describe similar processes.
The Selkov dynamic system is no exception. It is often encountered in biology when
studying glycolytic reactions that have self-oscillatory modes [1].

The article by [2] proposed the use of the Selkov dynamic system to describe self-
oscillatory modes of microseisms—small-amplitude oscillations of the earth’s surface,
the source of which are natural and man-made processes.

In the work [3,4], a generalization of a dynamic system to the case of heredity is carried
out. A property of a dynamic system is retaining the memory of its evolution, i.e., the
current state of the system depends on its previous states. It is known that viscoelastic and
plastic media can have heredity, and they are considered within the framework of hereditary
mechanics [5]; heredity naturally arises in biology during the spread of viruses [6], and
in economics to describe cycles and crises [7]. From a mathematical point of view, heredity
in the general case can be described using Volterra-type integro-differential equations [8],
and under certain conditions using derivatives of fractional constants or variables of
order, which are studied within the framework of the theory of fractional calculus [9,10].
Therefore, we will further call Selkov’s dynamic system with fractional derivatives a
fractional dynamic Selkov system.
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A quantitative and qualitative analysis of the Selkov dynamic system with constant co-
efficients, taking into account heredity, which was described using derivatives of fractional
constant orders in the Gerasimov–Caputo sense, was carried out. The following aspects of
this dynamic system were investigated: equilibrium points, spectra of maximum Lyapunov
exponents, and the development of a numerical algorithm based on the Adams–Bashforth–
Multon method. The main results of the study were presented in the article [4]. Further,
in the articles [11,12], a generalization of the Selkov system with constant coefficients was
carried out for the case of derivatives of fractional variables of the Gerasimov–Caputo type.
Numerical algorithms for finding a solution to the system were developed, and the Test 0-1
algorithms were applied to study regular and chaotic regimes.

In this paper, within the framework of the triad model–algorithm–program, a further
generalization of the fractional dynamic Selkov system is proposed, associated with the
dependence of its coefficients on time and on a certain parameter—the characteristic
time scale. To obtain a solution to the generalized dynamic Selkov system, the Adams–
Bashforth–Multon numerical algorithm is used, which was adapted for it. Then, based
on the previously obtained results, as well as new results, the ABMSelkovFracSim 1.0
software package is developed in the Python programming language [13] in the PyCharm
environment [14]. Then, using the software package, calculations of oscillograms and phase
trajectories are carried out, characterizing various dynamic modes on bifurcation diagrams.

The research plan in this article has the following structure: the introduction reveals
the problems of the article, Section 2 provides a description of the fractional dynamic Selkov
system with non-constant coefficients, Section 3 provides a numerical algorithm for solving
the proposed system based on the Adams–Bashforth–Multon method, Section 4 describes
the software package in which the numerical algorithm is implemented, Section 5 provides
examples of the software package operation, Section 6 studies bifurcation diagrams for
various parameters of the system under study using the software package, and Section 7
provides conclusions based on the research results.

2. Statement of the Problem
Consider the following dynamic system:∂

α1(t)
0t x(t) = −v1(t)x(t) + w1(t)y(t) + h1(t)x2(t)y(t), x(0) = x0,

∂
α2(t)
0t y(t) = v2(t)− w2(t)y(t)− h2(t)x2(t)y(t), y(0) = y0.

(1)

where x(t), y(t) ∈ C1[0, T]—solution functions; v1(t) = θ1−α1(t), v2(t) = v0θ1−α2(t),
w1(t) = w0θ1−α1(t), w2(t) = w0θ1−α2(t), h1(t) = h0θ1−α1(t), h2(t) = h0θ1−α2(t)—functions
from class C[0, T]; θ—parameter with time dimension; v0, w0, h0—given constants; t ∈
[0, T]—current process time; T > 0—simulation time; x0, y0—positive constants responsi-
ble for the initial conditions. Fractional derivative operators have the following form:

∂
α1(t)
0t x(t) =

1
Γ(1 − α1(t))

t∫
0

ẋ(τ)dτ

(t − τ)α1(t)
, ∂

α2(t)
0t y(t) =

1
Γ(1 − α2(t))

t∫
0

ẏ(τ)dτ

(t − τ)α2(t)
,

which is understood in the sense of Gerasimov–Caputo [15,16], the orders of which are
0 < α1(t), α2(t) < 1, functions from the class C[0, T].

Definition 1. We will call the system (1) a fractional dynamic Selkov system with variable memory
or simply a fractional dynamic Selkov system.
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Definition 2. The system (1) with the parameter value α1(t) = α2(t) = 1 will be called the
classical dynamic Selkov system.

Remark 1. The parameter θ has the dimension of time; it determines a certain characteristic time
scale in the process under consideration [17], and also coordinates the dimensions between the left
and right parts of the equations in the system (1). Note that if θ = 1 in the system (1), then we
arrive at the results of [11,12]. If the orders of the fractional derivatives α1(t) and α2(t) do not
depend on time t and θ = 1, then we arrive at the fractional dynamic Selkov system considered in
the author’s articles [3,4]. In the case where α1 = α2 = 1, we obtain the classical dynamic Selkov
system [1].

Remark 2. Note that more detailed information on fractional derivatives of variable order can be
found in the review articles [18,19].

3. Adams–Bashforth–Multon Method
To study the fractional dynamical Selkov system (1), we use the Adams–Bashforth–

Moulton numerical method from the family of predictor–corrector methods. The Adams–
Bashforth–Moulton method has been studied and discussed in detail in [20–22]. We adapt
this method to solve the fractional dynamical Selkov system (1). To do this on a uniform
grid N with step τ = T/N, we introduce the functions xp

k+1, yp
k+1, k = 0, ..., N − 1, which

will be determined by the Adams–Bashforth formula (predictor):
xp

k+1 = x0 +
τα1,k

Γ(α1,k + 1)

k
∑

j=0
θ1

j,k+1

(
−v1,jxj + w1,jyj + h1,jx2

j yj

)
,

yp
k+1 = y0 +

τα2,k

Γ(α2,k + 1)

k
∑

j=0
θ2

j,k+1

(
v2,j − w2,jyj − h2,jx2

j yj

)
,

θi
j,k+1 = (k − j + 1)αi,k − (k − j)αi,k , i = 1, 2.

(2)

For the corrector (Adams–Moulton formula), we obtain

xk+1 = x0 + K1,k

(
−v1,k+1xp

k+1 + w1,k+1yp
k+1 + h1,k+1xp 2

k+1yp
k+1

)
+

+ K1.k

(
k

∑
j=0

ρ1
j,k+1

(
−v1,jxj + w1,jyj + h1,jx2

j yj

))
,

yk+1 = y0 + K2,k

(
v2,k+1 − w2,k+1yp

k+1 − h2,k+1xp 2
k+1yp

k+1

)
+

+ K2,k

k

∑
j=0

ρ2
j,k+1

(
v2,j − w2,jyj − h2,jx2

j yj

)
.

(3)

where K1,k =
τα1,k

Γ(α1,k + 2)
, K2,k =

τα2,k

Γ(α2,k + 2)
, and weight coefficients in (3) are determined

by the following formula:

ρi
j,k+1 =



kαi,k+1 − (k − αi,k)(k + 1)αi,k , j = 0,

(k − j + 2)αi,k+1 + (k − j)αi,k+1-2(k − j + 1)αi,k+1, 1 ≤ j ≤ k,

1, j = k + 1,

i = 1, 2.

Remark 3. A study of the properties of the Adams–Bashforth–Multon method was carried out in a
previous article [11].
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4. Software Package ABMSelkovFracSim
The Adams–Bashforth–Multon numerical algorithm (2), (3) is implemented in the

Python programming language in the PyCharm 2024.1 environment in the form of the
ABMSelkovFracSim software package. The ABMSelkovFracSim application has a clear
user interface (Figure 1).

Figure 1. Interface of the software package ABMSelkovFracSim.

The user can enter the values of the parameters of the fractional dynamic Selkov
system (1) in the left part of the interface, and the right part has the ability to visualize the
simulation results: oscillograms and phase trajectories are displayed.

The ABMSelkovFracSim application has the ability to perform calculations using the
model (1) (ABMSelkovFracConst method), as well as the model proposed in the article [4]
(ABMSelkovFracCos method). The ABMSelkovFracConst method implements the case
where the orders of the fractional derivatives α1 and α2 are constants.

In the ABMSelkovFracCos method, the orders of fractional derivatives are functions
of the form

α1(t) = α1 − k1 cos(ϕ2 + f1), α2(t) = α2 − k2 cos(ϕ2 + f2),

where α1, α2 are given constants, k1, k2 are amplitudes, ϕ1, ϕ2 are frequencies, and f1, f2

are phases.

5. Simulation Results
Using the ABMSelkovFracSim software package, we will calculate oscillograms and

phase trajectories for different values of θ. We will select the following parameters for
calculation within the framework of the fractional dynamic Selkov system: v0 = 0.6,
w0 = 0.03, h0 = 1.3, x0 = 1, y0 = 0.5, t ∈ [0, 300], N = 2000 (Figure 2).
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(a) (b)

(c) (d)

Figure 2. Calculation results: (a) α1 = 0.8, α2 = 0.9, θ = 1 [4]. (b) α1 = 0.8, α2 = 0.9, k1 = 0.02,
k2 = 0.01, ϕ1 = 3, ϕ2 = 1.5, f1 = 0.01, f2 = 0.03, θ = 0.5. (c) α1 = 0.8, α2 = 0.9, k1 = 0.02,
k2 = 0.01, ϕ1 = 3, ϕ2 = 1.5, f1 = 0.01, f2 = 0.03, θ = 1.5. (d) α1 = 0.8, α2 = 0.9, k1 = 0.02, k2 = 0.01,
ϕ1 = 3, ϕ2 = 1.5, f1 = 0.01, f2 = 0.03, θ = 3.

Figure 2a shows the case obtained by the ABMSelkovFracConst method, when the
orders of the fractional derivatives α1(t) and α2(t) are constants and the value of the param-
eter θ = 1. This case was considered in the article [4]. The remaining graphs (Figure 2b,c,d)
correspond to the case when α1(t) and α2(t) are functions and are constructed by the
ABMSelkovFracCos method for different values of the parameter θ.

We see that with increasing values of θ, a transition from regular to chaotic modes
occurs. Therefore, we need to analyze dynamic modes. We will analyze them using the
construction of bifurcation diagrams.
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6. Bifurcation Diagrams
Definition 3. A bifurcation diagram is a graphical representation of changes in the structure of
solutions of a dynamic system when the parameters change. It shows how the stable and unstable
states of the system change depending on the values of the parameters.

Let us look at some examples of constructing bifurcation diagrams.

Example 1. Figure 3 shows a graph of 3D surfaces x(α1, α2) and y(α1, α2), where α1, α2 ∈ [0.1, 1],
v0 = 0.6, w0 = 0.03, h0 = 1.3, θ = 1, x0 = 0.1, y0 = 0.1, t ∈ [0, 100], N = 3000, α1, α2 are
constants.

Figure 3. Surfaces: (a) x = x(α1, α2); (b) y = y(α1, α2).

Figure 3 shows bifurcation diagrams in the form of surfaces of the sought solution x
and y from the values of the orders of fractional derivatives α1 and α2. Note that on the
surfaces of Figure 3a,b, there are regions that are responsible for regular modes; for example,
damped oscillations correspond to regions without spikes, and in the region with spikes,
limit cycles can form, as well as pre-chaotic or chaotic modes. In addition, we see a region
of torn regions, which, as we will show later, is associated with singularity.

In Figure 4, a bifurcation diagram is given—a section of the surface in Figure 3 at
α2 = 1 for the solution x (Figure 4a) and at α1 = 1 for the solution y (Figure 4b). We see three
regimes in these bifurcation diagrams, for example, in Figure 4a: First, there is a decaying
regime up to α1 = 0.6, and the dashed line at the beginning indicates a singularity. Then,
there are bursts that indicate a limit cycle. Moreover, in Figure 4a, bursts with increasing
amplitude indicate that the orbit of the limit cycle increases. This is confirmed by the phase
trajectories in the insets of Figure 4a,b.

Figure 5 shows bifurcation diagrams constructed for other parameter values with
insets of phase trajectories for different sections of the diagrams. Here, we can note,
for example, that in Figure 5a, the bursts occur with decreasing amplitude, which indicates
a decrease in the orbit of the limit cycle. There is no singularity here.

In Figure 5b, the bursts first occur with increasing amplitude, then with decreasing
amplitude, etc. However, if such alternation is inconsistent or has a chaotic character, then
we will arrive at chaotic or pre-chaotic regimes.

Note that in Figure 5b, we also see an aperiodic regime—a regime in which there are
no oscillations, which corresponds to a curve without bursts on the bifurcation diagram.
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Figure 4. Calculated curves: (a) x(α1), α2 = 1; (b) y(α2), α1 = 1.

Figure 5. Calculated curves: (a) x(α1), α2 = 0.8; (b) y(α2), α1 = 0.8.

Let us now consider another example of a fractional dynamical Selkov system, where
α1(t) and α2(t) are functions of t.

Example 2. We will choose the following values of the parameters: N = 10000, t ∈ [0, 1000];
the remaining parameters will be taken from Example 1. The orders of the fractional derivatives
change in time t according to the following laws:

α1(t) = 0.8 − 1
100

cos(0.1πt), α2(t) = 0.8 − 9
1000

sin(0.1πt). (4)
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Let us construct bifurcation diagrams in the form of surfaces for solutions x(α1, α2)

and y(α1, α2) (Figure 6).

Figure 6. Three-dimensional surfaces: (a) x(α1, α2); (b) y(α1, α2).

We see that in Figure 6, the surfaces represent a completely regular cylindrical figure.
Figure 7 shows the calculated curves α1(t) and α2(t) obtained by Formula (4)

(Figure 7a,b). Sections of the surface by planes x(α1) and y(α2) are shown in Figure 7c,d,
as well as the phase trajectory in Figure 7e.

Figure 7. Calculated curves: (a) α1(t); (b) α2(t); (c) x(α1); (d) y(α2); (e) y = y(x).
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Here, we also see on the bifurcation diagrams (Figure 8) that there are “calm” sec-
tions, and there are sections with bursts. All this indicates the presence of different dy-
namic regimes.

Figure 8. Bifurcation diagrams of the dependence of the solutions x and y on various values of the
model parameters.

7. Conclusions
A fractional dynamic Selkov system with non-constant coefficients is proposed, which is

studied using the Adams–Bashforth–Multon numerical algorithm. The numerical algorithm is
implemented in the ABMSelkovFracSim software package. The software package is written in
the Python programming language in the PyCharm 2014.1 environment. Using the software
package, calculations can be performed in two modes, when the orders of fractional derivatives
and coefficients are constant and when they are functions of time. The simulation results can
be displayed using graphs, which can also be saved for subsequent analysis. The calculation
results themselves can be saved to a text file. Phase trajectories and oscillograms were obtained
using the ABMSelkovFracSim software package.

Various bifurcation diagrams for the fractional dynamic Selkov system are studied
in the case where θ = 1. It is shown that the calculated curves of the dependences of the
solution of the fractional dynamic Selkov system on the values of the orders of fractional
derivatives characterize the change in dynamic modes, i.e., they are bifurcation diagrams.
The presence of regular and chaotic modes, as well as the presence of singularity, is shown.

Further study of bifurcation diagrams is related to the construction of dynamic mode
maps [23,24], as well as the case where θ ̸= 1. For these purposes, it is necessary to involve
more powerful computing resources, for example, computing servers with the ability to
use CPU or GPU processors.

One of the further continuations of this research is the expansion of the functionality
of the ABMSelkovFracSim software package. In particular, it is possible to provide the
addition of modules for the qualitative analysis of the fractional dynamic Selkov system:
construction of bifurcation diagrams, Test 0-1 [25,26], maximum Lyapunov exponents, etc.

Funding: The work was carried out within the framework of the state assignment of IKIR FEB RAS
(reg. No. 124012300245-2), and the development of the ABMSelkovFracSim software package was
financed by the Russian Science Foundation, No. 22-11-00064 (https://rscf.ru/en/project/22-11-00
064/ accessed on 12 May 2022).
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