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Abstract: This paper addresses the event-triggered Nash equilibrium-seeking problem
for non-cooperative games played by heterogeneous multi-agent systems. Unlike homo-
geneous multi-agent systems, heterogeneous multi-agent systems consist of agents with
different dynamic structures, making it difficult to design control schemes and construct
event-triggering conditions for such systems. In this paper, a novel centralized event-
triggered Nash equilibrium-seeking strategy and a novel decentralized event-triggered
Nash equilibrium-seeking strategy are proposed. The corresponding centralized and de-
centralized event-triggering conditions are derived. The convergence properties of the
proposed centralized and decentralized strategies are proved. Further theoretical analyses
illustrate that Zeno behavior does not exist under the proposed strategies. Finally, the
effectiveness and efficiency of both centralized and decentralized strategies are presented
through numerical experiments. The experimental results illustrate that under both strate-
gies, heterogeneous multi-agent systems achieve the Nash equilibrium successfully, and
the communication consumption among agents is significantly reduced.

Keywords: Nash equilibrium seeking; event triggering; heterogeneous multi-agent
systems; Zeno behavior

MSC: 91A10

1. Introduction
In recent years, game theory has been adopted in various application fields, such as

control of unmanned systems [1], multi-agent exploration policies [2], collective decision
making [3], communication networks [4], and cooperative advertising strategy [5]. As
an important part of game theory, the Nash equilibrium (NE)-seeking problem within
multi-agent systems (MASs) has attracted increasing interest among scholars in multi-agent
communities [6–12]. For example, in [6], Ye et al. tackled the distributed NE-seeking
problem with constraints on control inputs by introducing a series of consensus-based
strategies. In [10], Hua et al. focused on the generalized NE-seeking problem, which
concerns the action constraints of the agents. An NE-seeking problem within MASs with
strongly connected switching networks was considered by He et al. in [11]. Additionally,
Tan et al. addressed an NE-seeking problem with the payoff functions and actions of agents
unknown to each other in [12].

In the studies mentioned above, the NE is achieved through continuous-time com-
munication. However, in practice, due to physical limitations, it is often necessary for

Mathematics 2025, 13, 419 https://doi.org/10.3390/math13030419

https://doi.org/10.3390/math13030419
https://doi.org/10.3390/math13030419
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2228-0395
https://doi.org/10.3390/math13030419
https://www.mdpi.com/article/10.3390/math13030419?type=check_update&version=2


Mathematics 2025, 13, 419 2 of 23

mobile robots and other autonomous agents to implement controllers that do not depend
on continuous-time communications [13–15]. It is a widely accepted fact that by introduc-
ing an event-triggered mechanism or a periodic sampling scheme, the communication
consumption is effectively reduced. Thus, event-triggered mechanisms have attracted
tremendous attention [16–18]. Many scholars have made efforts to replace continuous
communication by introducing event-triggered mechanisms into NE-seeking strategies
in recent years [19–22]. For example, Shi et al. developed an event-triggered strategy
to compute the NE in aggregative games in [20]. Another event-triggered strategy was
proposed by Shi et al. to solve the generalized NE-seeking problem of networked non-
cooperative games in [21]. Those strategies are semi-decentralized. They require agents
to have access to certain global information, such as the aggregate value of aggregative
games or complete decision information. In [22], for non-cooperative games, Wang et al.
proposed a decentralized event-triggered NE-seeking strategy that relies on partial decision
information of each agent, such as local action and the estimation of neighbors of an agent.

In most of the above-mentioned studies, the authors studied homogeneous MASs, in
which the dynamics of the agents are the same. Specifically, those strategies are designed
exclusively for homogeneous MASs that contain only single-integrator or only double-
integrator agents. However, this situation is a special case. Heterogeneous MASs, with
different dynamic structures or identical dynamic structures but different parameters, are
encountered in various applications [23–28]. According to [26], there are typically two types
of heterogeneous MASs. The first type consists of agents with identical system structures
but different parameters. For example, in [27], Li et al. developed an adaptive fuzzy
containment control method for nonlinear MASs with time-delayed input. The followers
in the MASs have identical system structures but different parameters. The second type of
heterogeneous MASs consists of agents with non-identical system structures. For example,
in [28], He and Huang considered the NE-seeking problem for high-order-integrator agents.
If a multi-agent system consists of single- and double-integrator agents simultaneously,
then the multi-agent system is deemed as a second-type heterogeneous multi-agent system.
Unlike in the field of game theory, the implementation of an event-triggered mechanism
for heterogeneous MASs has long been explored in other scientific fields, such as group
consensus [29–33]. For example, in [32], combinational measurements were introduced
to handle the pinning exponential synchronization of complex networks. In [33], Li et al.
designed a fully distributed event-triggered pinning control scheme to address the group
consensus problem for heterogeneous MASs with cooperative–competitive interaction.

Driven by the above discussion, this paper aims to design event-triggered NE-seeking
strategies for non-cooperative games played by heterogeneous MASs with both single- and
double-integrator agents. In comparison to existing works, the main contributions of this
paper are presented as follows.

• Event-triggered NE seeking for non-cooperative games played by heterogeneous
MASs comprising both single- and double-integrator agents is studied in this paper.
Compared with conventional NE seeking for homogeneous MASs, the NE-seeking
problem addressed in this paper is conducted by heterogeneous MASs, which consist
of agents with varying dynamic structures, and it introduces an event-triggered
mechanism to reduce communication consumption.

• A novel centralized event-triggered NE-seeking (CETNES) strategy and a novel de-
centralized event-triggered NE-seeking (DETNES) strategy are proposed to address
the event-triggered NE-seeking problem for heterogeneous MASs. The corresponding
centralized and decentralized event-triggering conditions are derived. The proposed
CETNES and DETNES strategies successfully solve the NE-seeking problem for het-
erogeneous MASs and significantly reduce communication consumption.
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• The convergence properties of both the CETNES and DETNES strategies are proved
through Lyapunov stability theory. The nonexistence of Zeno behavior for both the
CETNES and DETNES strategies is also proved.

The remaining part of this paper is organized as follows. In Section 2, some prelimi-
naries concerning graph theory and mathematical notations are provided. Additionally,
the formulation for the NE-seeking problem for non-cooperative games played by het-
erogeneous MASs is also presented in Section 2. In Section 3, the CETNES and DETNES
strategies are proposed. Specifically speaking, in Section 3.1, a novel CETNES strategy
is proposed, and detailed theoretical analyses of the CETNES strategy are presented. In
Section 3.2, a novel DETNES strategy is designed to address the NE-seeking problem in
a fully distributed manner, and detailed theoretical analyses of the DETNES strategy are
presented. Moreover, in Section 4, the efficiency and efficacy of the proposed strategies are
illustrated through numerical experiments. Finally, the conclusion is provided in Section 5.

2. Preliminaries and Problem Formulation
In this section, to lay the foundation for further investigation, some preliminaries

concerning mathematical notation and graph theory are provided. Additionally, the for-
mulation of the NE-seeking problem in non-cooperative games played by heterogeneous
MASs is presented.

2.1. Mathematical Notation

In this paper, the notation M = diag{lij} ∈ Rn2×n2
for i, j ∈ {1, 2, . . . , n} denotes a

diagonal matrix with diagonal elements l11, l12, . . . , l1n, l21, l22, . . . , l2n, . . . , ln1, ln2, . . . , lnn,
respectively. Furthermore, λmin(O) denotes the minimum eigenvalue of a symmetric and
real matrix O ∈ Rn×n, and [hi]vec = [h1, h2, . . . , hn]T. Moreover, ‖ . . . ‖ denotes the 2-norm
of a matrix or vector and the Kronecker product is denoted by ⊗ [34].

2.2. Graph Theory

Consider G = (V , ε,A) as the communication topology in non-cooperative games that
contain n agents. The set of nodes is denoted by V = {V1, V2, . . . , Vn}, the set of unordered
pairs is defined as ε = {εij = (i, j) ⊆ V × V }, the adjacency matrix is A = (aij)n×n, where
aij ≥ 0, the in-degree of the ith node is denoted by di, and the in-degree matrix is denoted
as D = diag{d1, . . . , dn} ∈ Rn×n, where di = ∑n

j=1 aij. Moreover, the Laplacian matrix is
L = D −A ∈ Rn×n [35].

2.3. Problem Formulation

Consider non-cooperative games played by heterogeneous MASs with m single-
integrator agents and n−m double-integrator agents. The dynamics of the heterogeneous
agents are denoted as 

ẋi(t) = ui(t), i ∈ Sm,ẋi(t) = vi(t),

v̇i(t) = ui(t),
i ∈ Sn−m,

(1)

where Sm = {1, 2, . . . , m}; Sn−m = {m + 1, m + 2, . . . , n}; Sn = Sm ∪ Sn−m; and
Sn ∩ Sn−m = ∅. In addition, xi(t) ∈ R, vi(t) ∈ R, and ui(t) ∈ R denote the position,
velocity, and control input for agent i, respectively.

Remark 1. Before proceeding, in order to simplify complicated computations, it is necessary to
point out that the position, velocity, and control input considered in this paper are scalars. In other
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words, xi(t) ∈ R, vi(t) ∈ R, and ui(t) ∈ R belong to 1-dimensional space. Nevertheless, it is easy
to extend the main results in this paper to n-dimensional space by adopting the Kronecker product.

The cost function of agent i is fi(x(t)) for both single-integrator and double-integrator
agents, where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn denotes the position set of all the
n agents. The NE x∗ = (x∗i , x∗−i) is given by

fi(x∗i , x∗−i) ≤ fi(xi(t), x∗−i) (2)

for xi(t) ∈ R, i ∈ {1, 2, . . . , n}, and x−i(t) = [x1(t), x2(t), . . . , xi−1(t), xi+1(t), . . . , xn(t)]T

∈ Rn−1.
In order to investigate the convergence properties, the following assumptions are

introduced [6].

Assumption 1. There exists a graph G that denotes the communication topology of the n agents,
and G is undirected and connected.

Assumption 2. For all x(t), z(t) ∈ Rn, there is a positive constant m such that(
x(t)− z(t)

)T(
ϕ(x(t))−ϕ(z(t)

))
≥ m‖x(t)− z(t)‖2, (3)

where vector ϕ(x) = [ϕi(x(t))]vec ∈ Rn, with ϕi
(
x(t)

)
= ∂ fi

(
x(t)

)
/∂xi(t).

Assumption 3. The partial derivative of cost function fi(x(t)) for each agent is globally Lipschitz,
which means that there exists a positive constant l̄ such that∣∣ϕi

(
x(t)

)
− ϕi

(
z(t)

)∣∣ ≤ l̄‖x(t)− z(t)‖.

Remark 2. It is obtained from Assumption 2 that for each fixed x−i, fi(xi(t), x−i) is strongly
convex [6]. In addition, it is derived from Assumptions 2 and 3 that the NE x∗ of the non-cooperative
game is unique and the positions of agents are at the NE if and only if ϕ(x∗) = 0n [36].

3. Main Results
In this section, the CETNES and DETNES strategies for non-cooperative games played

by heterogeneous MASs are proposed for the first time. The convergence properties of the
proposed strategies are obtained by utilizing Lyapunov stability theory. Furthermore, for
both the CETNES and DETNES strategies, the nonexistence of Zeno behavior is proved.

3.1. CETNES Strategy

Suppose that, when adopting the CETNES strategy, all the agents update control
input ui(t) and exchange information with their neighbors at the same centralized event-
triggering time instant. Consider tk as the kth centralized event-triggering time instant
for all agents. For heterogeneous MASs, when t ∈ [tk, tk+1), the CETNES strategy is
proposed as{

ui(t) = −ϕi(yi(t)), i ∈ Sm,
ui(t) = −r

(
vi(t) + ϕi(yi(t))

)
, i ∈ Sn−m,

ẏij(t) = −θ

(
n

∑
q=1

aik
(
yij(tk)− yqj(tk)

)
+ aij

(
yij(tk)− xj(tk)

))
, i ∈ Sn,

(4)

where yi(t) = [yi1(t), yi2(t), . . . , yin(t)]T denotes the local estimation of x(t) of agent i.
Moreover, for the double-integrator agents, r is a positive parameter to be determined. For
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all agents, θ is a positive parameter to be determined. In addition, aij is the element of the
adjacency matrix A on the ith row and the jth column.

In this subsection, for agent i, to measure the difference between its own estimation
and the actual value of agents position state vector x(t) at time t, a vector-valued function
qi(t) ∈ Rn is introduced as

qi(t) = yi(t)− x(t).

The event-triggered mechanism for the CETNES strategy is determined by a vector-valued
function g(t) ∈ Rn2

, and g(t) is defined as

g(t) = q(tk)− q(t), ∀t ∈ [tk, tk+1),

where q(t) = y(t) − 1n ⊗ x(t) ∈ Rn2
, with 1n denoting an n-dimensional column vec-

tor whose elements are 1, and y(t) = [yT
1 (t), yT

2 (t), . . . , yT
n(t)]T ∈ Rn2

. In addition,
g(t) = [gT

1 (tk), gT
2 (tk), . . . , gT

n(tk)]
T ∈ Rn2

, and gi(t) = qi(tk)− qi(t) ∈ Rn.
The event-triggering condition is based on the value relation between ‖q(t)‖ and

‖g(t)‖. When the event-triggering condition is satisfied, the event is triggered. Then,
the next event-triggering time instant tk+1 is reached. The centralized event-triggering
condition is given as

tk+1 = inf{t : t > tk, ‖g(t)‖ > ρ‖q(t)‖}, (5)

where ρ is a positive parameter to be determined.

Remark 3. Compared with the NE-seeking strategy in [6], the proposed CETNES strategy does not
require continuous-time information exchange among neighboring players. Therefore, the proposed
CETNES strategy reduces the communication consumption.

The convergence properties of the proposed CETNES strategy are given by the
following theorem.

Theorem 1. Consider non-cooperative games played by heterogeneous MASs following the
CETNES strategy (4) and centralized event-triggering condition (5). Suppose that Assump-
tions 1–3 are satisfied. Then, there exists a positive constant ρ∗. For each ρ ∈ (0, ρ∗), the NE is
asymptotically achieved.

Proof of Theorem 1. Firstly, based on the CETNES strategy (4), when t ∈ [tk, tk+1), the
dynamics of the heterogeneous MASs are formulated as

ẋi(t) = −ϕi
(
yi(t)

)
, i ∈ Sm,ẋi(t) = vi(t),

v̇i(t) = −r
(
vi(t) + ϕi(yi(t))

)
,

i ∈ Sn−m,

ẏij(t) = −θ

(
N

∑
q=1

aiq
(
yij(tk)− yqj(tk)

)
+ aij

(
yij(tk)− xj(tk)

))
, i ∈ Sn.

(6)

Before proceeding, some notation is introduced for convenience. Let
ys(t) = [yT

1 (t), yT
2 (t), . . . , yT

m(t)]T ∈ Rnm and yd(t) = [yT
m+1(t), yT

m+2(t), . . . , yT
n(t)]T ∈

Rn2−nm denote the estimations of single-integrator and double-integrator agents, respectively.
Let xs(t) = [x1(t), x2(t), . . . , xm(t)]T ∈ Rm and xd(t) = [xm+1(t), xm+2(t), . . . , xn(t)]T ∈
Rn−m denote the position vectors of single-integrator and double-integrator agents, respec-
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tively. Moreover, let y(t) = [yT
s (t), yT

d(t)]
T ∈ Rn2

and x(t) = [xT
s (t), xT

d(t)]
T ∈ Rn. Therefore,

the corresponding vector form of (6) is given as

ẋ(t) =

[
−ϕs

(
ys(t)

)
vd(t)

]
,

v̇d(t) = −
(
vd(t) +ϕd

(
yd(t)

))
,

ẏ(t) = −θ(L⊗ In×n + A)
(
g(t) + q(t)

)
,

(7)

where v̇d(t) = [vm+1(t), vm+2(t), . . . , vn(t)]T, and matrix A is defined as A = diag{aij} ∈
Rn2×n2

for i, j ∈ Sn. In addition, ϕs(ys(t)) and ϕd
(
yd(t)

)
are defined as

ϕs(ys(t)) =
[
ϕ1
(
y1(t)

)
, ϕ2
(
y2(t)

)
, . . . , ϕm(ym(t))

]T ∈ Rnm 7→ Rm,

ϕd
(
yd(t)

)
=
[
ϕm+1

(
ym+1(t)

)
, ϕm+2

(
ym+2(t)

)
, . . . , ϕn

(
yn(t)

)]T ∈ Rn2−nm 7→ Rn−m.

To prove Theorem 1, the Lyapunov candidate function is given as

V(t) = V1(t) + V2(t), (8)

where

V1(t) =
1
2
(xs(t)− x∗s )

T(xs(t)− x∗s ) +
1
2

(
xd(t)− x∗d +

1
r

vd(t)
)T(

xd(t)− x∗d +
1
r

vd(t)
)

+
1

2r2 vT
d(t)vd(t), (9)

V2(t) =qT(t)Pq(t). (10)

with matrix P ∈ Rn2×n2
defined as P = (1/2)(L ⊗ In×n + A). From Assumption

1, one knows that G is connected and undirected. Hence, L is symmetric and semi-
positive definite. In addition, A is a semi-positive definite diagonal matrix. Hence,
L⊗In×n + A is symmetric and semi-positive definite. Additionally, in [37], it is proved that
L ⊗ In×n + A is a non-singular matrix for a connected and undirected graph. There-
fore, matrix L ⊗ In×n + A is symmetric and positive definite. Define matrix Q as
Q = P(L ⊗ In×n + A) + (L ⊗ In×n + A)P . By Assumption 1, Q is also a symmet-
ric positive definite matrix [6]. It is evident that V1(t) ≥ 0 and V2(t) ≥ 0. Hence,
V(t) = V1(t) + V2(t) ≥ 0. Therefore, if V̇1(t) + V̇2(t) ≤ 0, then Theorem 1 is proved.

The time derivative of V1(t) is given as

V̇1(t) = (xs(t)− x∗s )
Tẋs(t) +

(
xd(t)− x∗d +

1
r

vd(t)
)T(

ẋd(t) +
1
r

v̇d(t)
)

+
1
r2 vT

d(t)v̇d(t)

= −(xs(t)− x∗s )
Tϕs

(
ys(t)

)
− (xd(t)− x∗d)

Tϕd
(
yd(t)

)
− 1

r
vT

d(t)vd(t)

− 2
r

vT
d(t)ϕd

(
yd(t)

)
= −(x(t)− x∗)Tϕy

(
y(t)

)
− 1

r
(vd(t) +ϕd(yd(t)))

T(vd(t) +ϕd(yd(t)))

+
1
r

ϕT
d(yd(t))ϕd(yd(t)),
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where ϕy
(
y(t)

)
= [ϕT

s (ys(t)),ϕT
d
(
yd(t)

)
]T ∈ Rn2 7→ Rn. Since ϕ(x∗) = 0n, one further has

V̇1(t) = −(x(t)− x∗)T(ϕy(y(t))−ϕ(x(t)) +ϕ(x(t))−ϕ(x∗)
)

− 1
r
(vd(t) +ϕd(yd(t)))

T(vd(t) +ϕd(yd(t))) +
1
r

ϕT
d(yd(t))ϕd(yd(t))

= −(x(t)− x∗)T(ϕy(y(t))−ϕ(x(t))
)
− (x(t)− x∗)T(ϕ(x(t))−ϕ(x∗))

− 1
r
(vd(t) +ϕd(yd(t)))

T(vd(t) +ϕd(yd(t))) +
1
r

ϕT
d(yd(t))ϕd(yd(t)).

Under Assumption 2, one has −(x(t)− x∗)T(ϕ(x(t))−ϕ(x∗)) ≤ −m‖x(t)− x∗‖2. More-
over, under Assumption 3, one obtains |ϕi(yi(t)) − ϕi(x(t))| ≤ l̄i‖yi(t) − x(t)‖, where
l̄i is the Lipschitz constant of ϕi(x(t)). Therefore,

∥∥ϕy
(
y(t)

)
−ϕ(x(t))

∥∥ ≤ l‖y(t)− 1n ⊗
x(t)‖ = l‖q(t)‖, where l = max{l̄i} for i ∈ Sn. Hence,

V̇1(t) = −(x(t)− x∗)T(ϕy(y(t))−ϕ(x(t))
)
− (x(t)− x∗)T(ϕ(x(t))−ϕ(x∗))

− 1
r
(vd(t) +ϕd(yd(t)))

T(vd(t) +ϕd(yd(t))) +
1
r

ϕT
d(yd(t))ϕd(yd(t))

≤ l‖q(t)‖‖x(t)− x∗‖ −m‖x(t)− x∗‖2 − 1
r
∥∥vd(t) +ϕd

(
yd(t)

)∥∥2
+

1
r
∥∥ϕd

(
yd(t)

)∥∥2.

(11)

As for V2(t), the time derivative V̇2(t) is given as

V̇2(t) = (ẏ(t)− 1n ⊗ ẋ(t))TPq(t) + qT(t)P(ẏ(t)− 1n ⊗ ẋ(t))

= 2qT(t)P ẏ(t)− 2qT(t)P(1n ⊗ ẋ(t)).

From Equation (7), one obtains

ẋ(t) =

[
−ϕs

(
ys(t)

)
vd(t)

]
= −ϕy(y(t)) +

[
0m

vd(t) +ϕd(yd(t))

]
,

where 0m = [0, 0, . . . , 0]m×1. Therefore,

V̇2(t) = 2qT(t)P
(

1n ⊗
(

ϕy(y(t))−
[

0m

vd(t) +ϕd(yd(t))

]))
+ 2qT(t)P ẏ(t)

= 2qT(t)P
(
1n ⊗ϕy(y(t))

)
− 2qT(t)P

(
1n ⊗

[
0m

vd(t) +ϕd(yd(t))

])
− θqT(t)Q(q(t) + g(t))

= 2qT(t)P
(
1n ⊗ϕy(y(t))− 1n ⊗ϕ(x(t))

)
+ 2qT(t)P(1n ⊗ϕ(x(t)))

− 2qT(t)P
(

1n ⊗
[

0m

vd(t) +ϕd(yd(t))

])
− θqT(t)Q(q(t) + g(t))

≤ 2‖q(t)‖‖P‖
∥∥1n ⊗ϕy(y(t))− 1n ⊗ϕ(x(t))

∥∥+ 2‖q(t)‖‖P‖‖1n ⊗ϕ(x(t))‖
+ 2‖q(t)‖‖P‖‖1n ⊗ (vd(t) +ϕd(yd(t)))‖ − θλmin(Q)‖q(t)‖2 + θ‖Q‖‖q(t)‖‖g(t)‖.

(12)

By Assumption 3, one has
∥∥ϕy

(
y(t)

)
−ϕ(x(t))

∥∥ ≤ l‖y(t) − 1n ⊗ x(t)‖ = l‖q(t)‖.
Therefore, ‖1n ⊗ ϕy(y(t)) − 1n ⊗ ϕ(x(t))‖ ≤

√
n‖ϕy

(
y(t)

)
− ϕ(x(t))‖ ≤ l

√
n‖

y(t) − 1n ⊗ x(t)‖ = l
√

n‖q(t)‖. Moreover, since ϕ(x∗) = 0n, one has ‖1n ⊗
ϕ(x(t))‖ ≤

√
n‖ϕ(x(t)) − ϕ(x∗)‖ ≤ l

√
n‖x(t) − x∗‖. In addition, ‖1n ⊗

(vd(t) +ϕd(yd(t)))‖ ≤
√

n‖vd(t) +ϕd(yd(t))‖. Hence, one obtains



Mathematics 2025, 13, 419 8 of 23

V̇2(t) ≤ 2l
√

n‖P‖‖q(t)‖2 + 2l
√

n‖P‖‖q(t)‖‖x(t)− x∗‖ − θλmin(Q)‖q(t)‖2

+ 2
√

n‖P‖‖q(t)‖
∥∥vd(t) +ϕd

(
yd(t)

)∥∥+ θ‖Q‖‖q(t)‖‖g(t)‖.
(13)

Adding inequalities (11) and (13), one has

V̇(t) = V̇1(t) + V̇2(t)

≤ −m‖x(t)− x∗‖2 − 1
r
∥∥vd(t) +ϕd

(
yd(t)

)∥∥2 − θλmin(Q)‖q(t)‖2

+ l‖q(t)‖‖x(t)− x∗‖+ 2l
√

n‖P‖‖q(t)‖‖x(t)− x∗‖+ 2l
√

n‖P‖‖q(t)‖2

+ 2
√

n‖P‖‖q(t)‖
∥∥vd(t) +ϕd

(
yd(t)

)∥∥+ θ‖Q‖‖q(t)‖‖g(t)‖+ 1
r
∥∥ϕd

(
yd(t)

)∥∥2.

(14)

Based on Lyapunov stability theory, one knows that if inequality V̇(t) ≤ 0 is proved, then
Theorem 1 is proved. By observing inequality (14), one sees that there are negative terms
and positive terms in inequality (14). In addition, inequality (14) is too complicated to
analyze V̇(t). Therefore, it needs to be simplified. For further investigation, the Young’s
inequality [38] is introduced as

|xy| ≤ γ

2
x2 +

1
2γ

y2, x, y ∈ R, γ ∈ R+.

By reformulating the positive terms l‖q(t)‖‖x(t)− x∗‖, 2l
√

n‖P‖‖q(t)‖‖x(t)− x∗‖, and
2
√

n‖P‖‖q(t)‖
∥∥vd(t) +ϕd

(
yd(t)

)∥∥, inequality (14) is reformulated as

V̇(t) ≤ −
(

m− l
2γ1
− lh

2γ2

)
‖x(t)− x∗‖2 −

(
θλmin(Q)− lh− lγ1

2
− lhγ2

2

− hγ3

2

)
‖q(t)‖2 −

(
1
r
− h

γ3

)
‖vd(t) +ϕd

(
yd(t)

)
‖2 + θ‖Q‖‖q(t)‖‖g(t)‖

+
1
r
∥∥ϕd

(
yd(t)

)∥∥2,

(15)

where γ1, γ2, and γ3 are positive constants to be determined, and constant h is defined as
h = 2

√
n‖P‖ for convenience in algebraic computation. In addition,∥∥ϕd

(
yd(t)

)∥∥2
=
∥∥ϕd

(
yd(t)

)
−ϕd(1n−m ⊗ x(t)) +ϕd(1n−m ⊗ x(t))−ϕd(1n−m ⊗ x∗)

∥∥2

≤ 2
∥∥ϕd

(
yd(t)

)
−ϕd(1n−m ⊗ x(t))

∥∥2

+ 2‖ϕd(1n−m ⊗ x(t))−ϕd(1n−m ⊗ x∗)‖2.

By Assumption 3, it is derived that∥∥ϕd
(
yd(t)

)∥∥2 ≤ 2ld‖yd(t)− 1n−m ⊗ x(t)‖2 + 2ld
√

n−m‖x(t)− x∗‖2

≤ 2ld‖q(t)‖2 + 2ld
√

n−m‖x(t)− x∗‖2,

where ld = max{l̄i} for i ∈ Sn−m. Moreover, under the event-triggering condition (5), one
has ‖g(t)‖ ≤ ρ‖q(t)‖. Therefore, inequality (15) is reformulated as

V̇(t) ≤ −
(

m− l
2γ1
− lh

2γ2
− 2ld

r
√

n−m
)
‖x(t)− x∗‖2 −

(
θλmin(Q)− lh− lγ1

2
− lhγ2

2

− hγ3

2
− 2ld

r

)
‖q(t)‖2 −

(
1
r
− h

γ3

)
‖vd(t) +ϕd

(
yd(t)

)
‖2 + θ‖Q‖‖q(t)‖‖g(t)‖,
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For convenience in algebraic computation, define parameters α1, α2, and α3 as

α1 = m− l
2γ1
− lh

2γ2
− 2ld

r
√

n−m,

α2 = θλmin(Q)−
2ld
r
− lh− lγ1

2
− lhγ2

2
− hγ3

2
,

α3 =
1
r
− h

γ3
.

Then, one obtains

V̇(t) ≤ −α1‖x(t)− x∗‖2 − α2‖q(t)‖2 − α3
∥∥vd(t) +ϕd

(
yd(t)

)∥∥2
+ ρθ‖Q‖‖q(t)‖2. (16)

From inequality (16), one sees that if one can prove that there exists control parameters
θ, r, and ρ that guarantee α1, α2, α3 > 0 and α2 − ρθ‖Q‖ > 0, then one obtains V̇(t) < 0
and Theorem 1 is proved.

First, we prove that there exists a positive control parameter r that guarantees α1 > 0.
Since m, l, and h are positive constant, one obtains that there exist positive γ1 and γ2 that
guarantee m− l/2γ1 − lh/2γ2 > 0. For fixed γ1 and γ2, define a positive constant r∗ that
makes α1 = 0. It is derived that

r∗ =
4ldγ1γ2

√
n−m

2mγ1γ2 − lγ2 − lhγ1
.

Hence, for any r > r∗, inequality α1 > 0 holds.
Then, for a fixed r, since h is a positive constant and α3 = 1/r− h/γ3, one obtains that

there exists a positive γ3 that guarantees α3 > 0. It is derived that γ3 > rh.
Moreover, we prove that for fixed γ1, γ2, γ3, and r, there exists a positive control

parameter r that guarantees α2 > 0. For fixed γ1, γ2, γ3, and r, define a positive constant θ∗

that makes α2 = 0. It is derived that

θ∗ =
2rlh + 4ld + rlγ1 + rlhγ2 + rhγ3

2rλmin(Q)
.

Hence, for any θ > θ∗, inequality α2 > 0 holds.
Finally, we prove that for fixed γ1, γ2, γ3, r, and θ, there exists a positive control

parameter r that guarantees α2 − ρθ‖Q‖ > 0. For fixed γ1, γ2, γ3, r, and θ, define a positive
constant ρ∗ that makes α2 − ρθ‖Q‖ = 0. It is derived that

ρ∗ =
α2

θ‖Q‖ =
2rθλmin(Q)− 2rlh− 4ld − rlγ1 − rlhγ2 − rhγ3

2rθ‖Q‖ > 0.

Hence, for any ρ > ρ∗, inequality α2 > 0 holds. Thus, for ρ ∈ (0, ρ∗), α2 − ρθ‖Q‖ > 0.
Hence, with α1, α2, α3 > 0, it is derived that V̇(t) < 0.

Therefore, for properly chosen γ1, γ2, γ3, r, and θ, under the event-triggering condition
(5), if ρ ∈ (0, ρ∗), then V̇(t) < 0. In addition, following the Proof of Theorem 1, it is evident
that V(t) is positive definite. Through Lyapunov stability theory [39], one obtains that
the NE is achieved asymptotically, and ‖x(t)− x∗‖ → 0, ‖vd(t)‖ → 0, and ‖q(t)‖ → 0 as
t→ ∞. Thus, the proof is complete.

Theorem 2. Consider non-cooperative games played by heterogeneous MASs following the
CETNES strategy (4) and the centralized event-triggering condition (5). Suppose that Assumptions
1–3 are satisfied. Then, there exists no Zeno behavior.
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Proof of Theorem 2. If the lower bound of the inter-event time interval tk+1 − tk can be
determined and inequality tk+1 − tk > 0 is always satisfied, then Theorem 2 is proved.
Since the centralized event-triggering condition is based on the value relation between
‖g(t)‖ and ‖q(t)‖, we investigate the time derivative of ‖g(t)‖. For t ∈ [tk, tk+1), one has
ġ(t) = −q̇(t). Hence,

d‖g(t)‖
dt

≤ ‖ġ(t)‖

≤ ‖ẏ(t)− 1n ⊗ ẋ(t)‖
≤ ‖ẏ(t)‖+

√
n‖ẋ(t)‖

≤ c‖q(tk)‖+
√

n

∥∥∥∥∥
[

ϕs(ys(t))
−vd(t)

]∥∥∥∥∥,

where c is a positive constant defined as c = θ‖L⊗In×n + A‖. Moreover, by Assumptions 2
and 3, it is derived that∥∥∥∥∥

[
ϕs
(
ys(t)

)
−vd(t)

]∥∥∥∥∥
2

=
∥∥ϕs

(
ys(t)

)∥∥2
+ ‖vd(t)‖2

≤ 2ls‖ys(t)− 1m ⊗ x(t)‖2 + 2ls
√

m‖x(t)− x∗‖2 + ‖vd(t)‖2

≤ 2ls‖q(t)‖2 + 2ls
√

m‖x(t)− x∗‖2 + ‖vd(t)‖2,

(17)

where ls = max{l̄i} for i ∈ Sm. From Equation (9), it is derived that

V1(t) =
1
2
‖xs(t)− x∗s‖2 +

1
2

∥∥∥∥xd(t)− x∗d +
1
r

vd(t)
∥∥∥∥2

+
1

2r2 ‖vd(t)‖2.

Since ‖xd(t)− x∗d + vd(t)/r‖2 ≥ 1/2(‖xd(t)− x∗d‖2 + ‖vd(t)/r‖2), one further has

V1(t) ≥
1
2
‖xs(t)− x∗s‖2 +

1
4
‖xd(t)− x∗d‖

2 +
1

4r2 ‖vd(t)‖2 +
1

2r2 ‖vd(t)‖2

≥ 1
4
‖xs(t)− x∗s‖2 +

1
4
‖x(t)− x∗‖2 +

3
4r2 ‖vd(t)‖2.

From Equation (10), it is derived that V2(t) ≥ λmin(P)‖q(t)‖2. Hence, one obtains

V(t) = V1(t) + V2(t)

≥ 1
4
‖xs(t)− x∗s‖2 +

1
4
‖x(t)− x∗‖2 +

3
4r2 ‖vd(t)‖2 + λmin(P)‖q(t)‖2.

(18)

By observing inequalities (17) and (18), one sees that inequalities (17) and (18) consist of
similar terms ‖q(t)‖2, ‖x(t) − x∗‖2, and ‖vd(t)‖2 with different coefficients. Therefore,
a value relation between V(t) and

∥∥ϕs
(
ys(t)

)∥∥2
+ ‖vd(t)‖2 is established. Define η1 as

η1 = max{2ls, 2ls
√

m, 1} and η2 as η2 = min{λmin(P), 3/4r2, 1/4}. Thus, one obtains∥∥∥∥∥
[

ϕs
(
ys(t)

)
−vd(t)

]∥∥∥∥∥
2

η1
≤ ‖q(t)‖2 + ‖xd(t)− x∗d‖2 + ‖vd(t)‖2 ≤ V(t)

η2
.

Hence, ∥∥∥∥∥
[

ϕs
(
ys(t)

)
−vd(t)

]∥∥∥∥∥ ≤
√

η1V(t)
η2

=
√

ηV(t),
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where η = η1/η2. Moreover, as proved in Theorem 1, V̇(t) < 0. Hence, for t ∈ [tk, tk+1),
V(t) ≤ V(tk). Thus, one obtains

‖ġ(t)‖ ≤
√

ηnV(t) + c‖q(tk)‖

≤
√

ηnV(tk) + c‖q(tk)‖,

where V(tk) is a positive constant for t ∈ [tk, tk+1). Hence,

‖g(tk+1)‖ ≤
∫ tk+1

tk

‖ġ(s)‖ds

≤
(√

ηnV(tk) + c‖q(tk)‖
)
(tk+1 − tk).

Furthermore, under the event-triggering condition (5), for t ∈ [tk, tk+1),
‖q(tk)‖ − ‖q(t)‖ ≤ ‖g(t)‖ ≤ ρ‖q(t)‖. Therefore, ‖q(t)‖ ≥ ‖q(tk)‖/(1 + ρ). Consider the
next event-triggering time instant tk+1, one has ‖g(tk+1)‖ > ρ‖q(t)‖ ≥ ρ‖q(tk)‖/(1 + ρ).
Then, it is derived that(√

ηnV(tk) + c‖q(tk)‖
)
(tk+1 − tk) >

ρ‖q(tk)‖
1 + ρ

.

Thus, the lower bound of the inter-event time interval is summarized as

tk+1 − tk >
ρ‖q(tk)‖

(1 + ρ)
(√

ηnV(tk) + c‖q(tk)‖
) > 0,

which proves the nonexistence of Zeno behavior.

3.2. DETNES Strategy

As presented above, the CETNES strategy (4) demands global information to deter-
mine whether the condition (5) is satisfied. However, in physical implementations, agents
in MASs may not have access to global information. In this subsection, a DETNES strategy
is proposed to solve the NE-seeking problem in a fully distributed manner. By adopting
the DETNES strategy, each agent determines its own event-triggering time instants only
based on local information and information from its neighbors. Let ti

k denote the kth event-
triggering time instant of agent i. For agent i, when t ∈ [ti

k, ti
k+1), the DETNES strategy is

proposed as{
ui(t) = −ϕi(yi(t)), i ∈ Sm,
ui(t) = −r(vi(t) + ϕi(yi(t))), i ∈ Sn−m,

ẏij(t) = −θ

(
n

∑
q=1

aiq

(
yij(ti

k)− yqj(t
q
k′)
)
+ aij

(
yij(ti

k)− xj(t
j
k′)
))

, i ∈ Sn,

(19)

where tj
k′ ∈ [ti

k, ti
k+1) denotes the latest event-triggering time instant of agent j when

t ∈ [ti
k, ti

k+1).
Before proceeding, some distributed measurements are introduced to construct the

event-triggering condition for the DETNES strategy (19). The definitions of several decen-
tralized measurements are given as
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ey
ij(t) = yij(ti

k)− yij(t), i, j ∈ Sn, t ∈ [ti
k, ti

k+1),

ex
i (t) = xi(ti

k)− xi(t), i ∈ Sn, t ∈ [ti
k, ti

k+1),

ex
ij(t) = xj(ti

k′)− xj(t), i, j ∈ Sn, t ∈ [ti
k, ti

k+1),

and

exy
ij (t) = yij(ti

k)− yij(t)− xj(ti
k′) + xj(t) = ey

ij(t)− ex
ij(t), i ∈ Sn, j ∈ Ni, t ∈ [ti

k, ti
k+1),

where Ni denotes the set of neighbors for agent i.
Define z(t) = (L ⊗ In×n + A)q(t) ∈ Rn2

and zi(ti
k) = [zi1(ti

k), zi2(ti
k), . . . , zin(ti

k)]
T

∈ Rn. For agent i, the elements of measurement zi(t) and zi(ti
k) are given as

zij(t) =
n

∑
q=1

aiq
(
yij(t)− yqj(t)

)
+ aij

(
yij(t)− xj(t)

)
,

and

zij(ti
k) =

n

∑
q=1

aiq

(
yij(ti

k)− yqj(t
q
k′)
)
+ aij

(
yij(ti

k)− xj(t
j
k′)
)

.

For agent i, define a decentralized measurement εi(t) ∈ Rn as

εi(t) = zi(ti
k)− zi(t),

with the corresponding elements being

εij(t) =
n

∑
q=1

aiq

(
ey

ij(t)− ey
qj(t)

)
+ aij

(
ey

ij(t)− ex
ij(t)

)
.

Thus, the decentralized event-triggering condition for agent i is given as

ti
k+1 = inf{t : t > ti

k, ‖εi(t)‖ > ρ‖zi(t)‖}. (20)

The transmission of information and the updating of the controller for agent i, along with
the decentralized measurements zi(t) and εi(t) under the event-triggered mechanism, are
presented in Figure 1.

Remark 4. Unlike measurements such as g(t) and q(t), εi(t) and zi(t) are computable for agent i
without utilizing global information. Therefore, the DETNES strategy (19) solves the NE-seeking
problem for non-cooperative games played by heterogeneous MASs in a fully distributed manner.

The convergence property of the DETNES strategy (19) is given by the following theorem.

Theorem 3. Consider non-cooperative games played by heterogeneous MASs following the
DETNES strategy (19) and the decentralized event-triggering condition (20). Suppose that As-
sumptions 1–3 are satisfied. Then, there exists a positive constant ρ∗. For each ρ ∈ (0, ρ∗), the NE
is asymptotically achieved.

Proof. The detailed proof is presented in Appendix A.

Theorem 4. Consider non-cooperative games played by heterogeneous MASs following the
DETNES strategy (19) and the decentralized event-triggering condition (20). Suppose that As-
sumptions 1–3 are satisfied. Then, there exists no Zeno behavior.
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Proof. The detailed proof is presented in Appendix B.

Agent i
xi(t), yi(t)

xj(t), yj(t) from agent j for j ∈ Ni

‖εi(t)‖ > ρ‖zi(t)‖

Update zi(t), εi(t)

Update xi(ti
k), yi(ti

k), zi(ti
k)Controller

ui(t)
Yes

No

xi(ti
k), yi(ti

k) to agent j for j ∈ Ni

Figure 1. Event-triggered mechanism for agent i under DETNES strategy.

4. Numerical Experiments and Results
In this section, some numerical experiments are conducted to illustrate the efficiency

and efficacy of the proposed CETNES strategy (4) and DETNES strategy (19).
Consider a heterogeneous multi-agent system consisting of six agents, in which agents

1, 3, and 5 are single-integrator agents and agents 2, 4, and 6 are double-integrator agents.
As shown in Figure 2, the corresponding Laplacian matrix L of G is given as

L =



1 −1 0 0 0 0
−1 4 −1 0 −1 −1
0 −1 3 −1 −1 0
0 0 −1 2 −1 0
0 −1 −1 −1 4 −1
0 −1 0 0 −1 2


∈ R6×6.

The cost functions of the agents are defined as

fi(x(t)) = (xi(t)− bi)
2 − p0xi(t) ∑

j∈Ni

xj(t) + c0, i ∈ Sn, (21)

where bi, p0, and c0 are constants. Set the corresponding constants as p0 = 0.2,
c0 = 3, and [b1, b2, . . . , b6] = [−5, 5,−7, 7,−9, 9]. Let ϕ(x∗) = 0n; the NE x∗ is obtained as
x∗ = [−4.6072, 3.9280,−6.8422, 5.5279,−7.8781, 8.6043]T. Moreover, for both CETNES and
DETNES strategies, the initial states of the agents are set as x(0) = [10, 8, 6, 4, 2, 0]T and
yi(0) = [0, 0, 0, 0, 0, 0]T. In addition, control parameters θ and r are set as θ = 25 and r = 2,
respectively. One can verify that the cost functions (21) satisfy Assumptions 2 and 3, and
that the parameters θ and r satisfy θ > θ∗ and r > r∗.

Figure 2. Communication topology G of heterogeneous multi-agent system consisting of 6 agents, in
which agents 1, 3, and 5 are single-integrator agents and agents 2, 4, and 6 are double-integrator agents.
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4.1. Experiment Results of CETNES Strategy

In this subsection, numerical experiments on the NE-seeking problem of non-
cooperative games (21) with the CETNES strategy (4) are conducted. The corresponding
experiment results are presented in Figures 3 and 4, and Table 1.
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x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

x∗1
x∗2
x∗3
x∗4
x∗5
x∗6

Figure 3. Position trajectories of all agents when using the CETNES strategy (4) with ρ = 0.6, where
x∗i denotes the NE for agent i.

The position trajectories of all agents when using the CETNES strategy (4) with ρ = 0.6
are illustrated in Figure 3. The corresponding centralized triggering time sequences of all
agents are illustrated in Figure 4.

From Figure 3, one sees that, driven by the CETNES strategy (4), the heterogeneous
multi-agent system successfully converges to the theoretical NE x∗, as denoted by the
dashed lines. Moreover, as illustrated in Figure 4, Zeno behavior does not occur when
using the CETNES strategy (4).

Additionally, several numerical experiments of the CETNES strategy (4) with different
values of ρ are also conducted, and the corresponding results are presented in Table 1. From
Table 1, one sees that, with a larger value of ρ, there are more trigger events. In addition,
it is evident that, as ρ increases, the minimum and maximum inter-event time intervals
also increase.

Table 1. Comparison of CETNES strategy (4) with different values of ρ.

ρ
Number of Trigger

Events
Minimum Inter-Event

Time Interval
Maximum Inter-Event

Time Interval

0.1 621 0.02 s 0.11 s
0.2 257 0.05 s 0.24 s
0.6 144 0.07 s 0.41 s
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Figure 4. Triggering time sequences of all agents when using the CETNES strategy (4) with ρ = 0.6.

4.2. Experiment Results of DETNES Strategy

In this subsection, numerical experiments on a non-cooperative game (21) with the
DETNES strategy (19) are conducted. The corresponding experiment results are presented
in Figures 5 and 6. The initial states and corresponding parameters are set to be the same
as those in Section 4.1.

The position trajectories of all agents when using the DETNES strategy (19) with
ρ = 0.6 are illustrated in Figure 5. The corresponding decentralized triggering time
sequences of all agents are illustrated in Figure 6.
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Figure 5. Position trajectories of all agents when using the DETNES strategy (19) with ρ = 0.6, where
x∗i denote the NE for agent i.
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Figure 6. Triggering time sequences of all agents when using the DETNES strategy (19) with ρ = 0.6.

4.3. Comparative Experiments

In this subsection, comparative experiments are conducted between the CETNES
strategy (4), the DETNES strategy (19), and the periodic sampling control (PSC) strategy.
The PSC strategy is based on the method presented in [28]. In [28], He and Huang intro-
duced an NE-seeking strategy for homogeneous MASs consisting of agents with high-order
integrator dynamics. Suppose that, under the PSC strategy, all agents periodically transmit
their information to their neighbors at ti

p = pτ, where τ > 0 is a constant. Then, for agent i,
when t ∈ [ti

p, ti
p+1), a PSC strategy is formulated as follows:{

ui(t) = −ϕi(yi(t)), i ∈ Sm,
ui(t) = −r

(
vi(t) + ϕi(yi(t))

)
, i ∈ Sn−m,

ẏij(t) = −θ

(
n

∑
q=1

aik

(
yij(ti

p)− yqj(ti
p)
)
+ aij

(
yij(ti

p)− ηj(ti
p)
))

, i ∈ Sn,

(22)

where ηi(t) is a fictitious output, which is defined as{
ηi(t) = xi(t), i ∈ Sm,
ηi(t) = xi(t) + vi(t), i ∈ Sn−m.

By introducing the fictitious output ηi(t), the PSG strategy (22) ensures that double-
integrator agents achieve consensus not only at the position level but also at the
velocity level.

In the comparative experiment, the CETNES, DETNES, and PSG strategies are applied
to solve the same NE-seeking problem in Sections 4.1 and 4.2. For the three strategies, the pa-
rameters r and θ, as well as the initial states, are set identical to those in Sections 4.1 and 4.2.
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Moreover, NE is achieved when ϕ(x(t)) = 0n. Hence, ‖ϕ(x(t))‖ is chosen as the error that
measures the convergence performance of the NE-seeking strategies.

Firstly, several experiments using the PSC strategy (22) with different values of τ are
conducted to find the feasible sampling gap. The corresponding results are presented in
Figure 7 and Table 2.
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Figure 7. Trajectories of ‖ϕ(x(t))‖ of PSC, CETNES, and DETNES strategies with ρ = 0.1 and
different τ.

Table 2. Convergence performance of PSG with different τ.

τ Periodic Sampling Times Whether Convergence

0.01 s 2000 Converge
0.016 s 1250 Do not converge
0.02 s 1000 Do not converge

From Figure 7a,b, it is evident that when the CETNES and DETNES strategies achieve
NE successfully, the PSC strategy (22) does not converge and fails to achieve the NE when
τ = 0.016 s and τ = 0.02 s. Moreover, from Table 2, it can be seen that for the PSC strategy
(22) to work, the sampling gap τ needs to be small enough. Therefore, the sampling gap τ

is set to 0.01 s.
Additionally, comparative experiments between the CETNES, DETNES, and PSC

strategies are conducted with ρ = 0.1 and τ = 0.01 s. The corresponding results are
presented in Figure 8 and Table 4.

In addition, to investigate the influence of parameter ρ, another comparative exper-
iment is conducted with ρ = 0.6 and the corresponding results are presented in Table 3.
From Table 3, the differences in communication costs for the three strategies are apparent.
For the CETNES strategy, the number of trigger events amounts to 144. In contrast, for
the DETNES strategy, the number of trigger events for agents varies from 178 to 550 due
to the distributed nature. As for the PSG strategy, the periodic sampling time remains
2000. Compared with the experiment results when ρ = 0.1, it is evident that the number of
trigger events increases as ρ decreases. Moreover, due to the centralized event-triggered
mechanism, for the same ρ, the communication consumption of the CETNES strategy is
lower than the DETNES strategy. However, the DETNES strategy has a broader application
scenario, as it does not rely on centralized communication or control.
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Figure 8. Trajectories of ‖ϕ(x(t))‖ synthesized by the PSC, CETNES, and DETNES strategies with
ρ = 0.1 and τ = 0.01 s.

Table 3. Comparison between PSG, CETNES, and DETNES strategies with ρ = 0.6 and τ = 0.01 s.

Agent Number of Trigger
Events for CETNES

Number of Trigger
Events for DETNES

Periodic Sampling
Times

Agent 1 144 220 2000
Agent 2 144 550 2000
Agent 3 144 323 2000
Agent 4 144 204 2000
Agent 5 144 464 2000
Agent 6 144 178 2000

Table 4. Comparison between PSG, CETNES, and DETNES strategies with ρ = 0.1 and τ = 0.01 s.

Agent Number of Trigger
Events for CETNES

Number of Trigger
Events for DETNES

Periodic Sampling
Times

Agent 1 621 1167 2000
Agent 2 621 1483 2000
Agent 3 621 752 2000
Agent 4 621 917 2000
Agent 5 621 1300 2000
Agent 6 621 706 2000

5. Conclusions
In this paper, the event-triggered NE-seeking problem for non-cooperative games in

heterogeneous MASs has been tackled. To solve the NE-seeking problem, novel CETNES
and DETNES strategies have been proposed. Theoretical analyses have illustrated the
convergence properties of both the CETNES and DETNES strategies, ensuring that both
strategies lead to the desired NE without exhibiting Zeno behavior. Through numerical
experiments, the effectiveness and efficiency of the proposed strategies have been validated.
The experimental results illustrate that both the CETNES and DETNES strategies not only
successfully achieve the Nash equilibrium but also significantly reduce the communication
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consumption among agents. In this paper, the constraints on the agents’ actions are not
considered. In practical engineering, heterogeneous MASs may encounter a variety of
limitations, and due to their heterogeneous nature, these constraints are more difficult to
handle. Generalized (i.e., constrained) Nash equilibrium seeking for heterogeneous MASs
may be investigated in our future work.
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Appendix A
Proof of Theorem 3. Based on the DETNES strategy (19), the vector form of the dynamics
of heterogeneous agents are formulated as

ẋ(t) =

[
−ϕs

(
ys(t)

)
vd(t)

]
,

v̇d(t) = −r
(
vd(t) +ϕd

(
yd(t)

))
,

ẏ(t) = −θ
(
z(t) + ε(t)

)
,

(A1)

where ε(t) = [εT
1 (t), εT

2 (t), . . . , εT
n(t)]T. Choose the Lyapunov candidate function

V(t) = V1(t) + V2(t) to be the same as (8) to analyze the convergence properties of the
DETNES strategy (19). Following the Proof of Theorem 1, one has

V̇2(t) = 2qT(t)P
(

1n ⊗
(

ϕy(y(t))−
[

0m

vd(t) +ϕd(yd(t))

]))
+ ẏT(t)Pq(t)

+ qT(t)P ẏ(t).

(A2)

Since in Equation (A1), ẏ(t) = −θ(z(t) + ε(t)), the main difference between Equations (12)
and (A2) is the last two terms ẏT(t)Pq(t) + qT(t)P ẏ(t). Since z(t) = (L⊗ In×n + A)q(t),
the last two terms of Equation (A2) are formulated as
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ẏT(t)Pq(t) + qT(t)P ẏ(t) = −θqT(t)(L⊗ In×n + A)
(
z(t) + ε(t)

)
= −θzT(t)

(
z(t) + ε(t)

)
= −θ

n

∑
i=1

zT
i (t)zi(t)− θ

n

∑
i=1

zT
i (t)εi(t)

≤ −θ
n

∑
i=1
‖zi(t)‖2 + θ

n

∑
i=1
‖zi(t)‖‖εi(t)‖.

Through Young’s inequality [38], it is derived that

ẏT(t)Pq(t) + qT(t)P ẏ(t) ≤ −θ
(

1− γ4

2

) n

∑
i=1
‖zi(t)‖2 +

θ

2γ4

n

∑
i=1
‖εi(t)‖2.

Under the event-triggering condition (20), the following inequality is obtained:

ẏT(t)Pq(t) + qT(t)P ẏ(t) ≤ −θ
(

1− γ4

2

) n

∑
i=1
‖zi(t)‖2 +

θρ2

2γ4

n

∑
i=1
‖zi(t)‖2.

Following the Proof of Theorem 1, similar to inequality (15), it is derived that

V̇(t) ≤ −
(

m− l
2γ1
− lh

2γ2
− 2ld

r
√

n−m
)
‖x(t)− x∗‖2 −

(
θλmin(Q)− lh− lγ1

2
− lhγ2

2

− hγ3

2
− 2ld

r

)
‖q(t)‖2 −

(
1
r
− h

γ3

)
‖vd(t) +ϕd

(
yd(t)

)
‖2 − θ

(
1− γ4

2

) n

∑
i=1
‖zi(t)‖2

+
θρ2

2γ4
‖zi(t)‖2

≤− β1‖x(t)− x∗‖2 − β2‖q(t)‖2 − β3
∥∥vd(t) +ϕd

(
yd(t)

)∥∥2 − β4

n

∑
i=1
‖zi(t)‖2

+ β5

n

∑
i=1
‖zi(t)‖2,

where, for convenience in algebraic computation, parameters β1, β2, β3, β4, and β5 are
defined as

β1 = m− l
2γ1
− lh

2γ2
− 2ld

r
√

n−m,

β2 = −2ld
r
− lh− lγ1

2
− lhγ2

2
− hγ3

2
,

β3 =
1
r
− h

γ3
,

β4 = θ
(

1− γ4

2

)
,

β5 =
θρ2

2γ4
,

with m, l, h, and ld are defined the same as those during the Proof of Theorem 1.
Choose γ1 and γ2 such that m− l/2γ1 − lh/2γ2 > 0. Define a positive constant r∗

that makes β2 = 0. It is derived that

r∗ =
4ldγ1γ2

√
n−m

2mγ1γ2 − lγ2 − lhγ1
.

Thus, for r > r∗, β1 > 0. Choose γ3 and γ4 such that 1/r− h/γ3 > 0 and 1− γ4/2 > 0,
then inequalities β3 > 0 and β4 > 0 hold. Since γ1, γ2, γ3, r > 0, it is evident that β2 < 0.
Therefore, if −β4 ∑n

i=1 ‖zi(t)‖2 − β2‖q(t)‖2 + β5 ∑n
i=1 ‖zi(t)‖2 < 0, then V̇(t) < 0.
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Since z(t) = (L⊗ In×n + A)q(t) and matrix L⊗ In×n + A is symmetric and positive
definite, one has ‖q(t)‖ = ‖(L ⊗ In×n + A)−1z(t)‖ and ‖q(t)‖2 ≤ λ2

max ∑n
i=1 ‖zi(t)‖2,

where λmax denotes the maximum eigenvalue of matrix (L ⊗ In×n + A)−1. Define a
positive constant θ∗ that makes λ2

maxβ2 + β4 = 0; it is derived that

θ∗ =
λ2

max(2rlh + 4ld + rlγ1 + rlhγ2 + rhγ3)

2r− rγ4
.

Hence, for θ > θ∗, −β4 ∑n
i=1 ‖zi(t)‖2 − β2‖q(t)‖2 < 0. Finally, define a positive constant

ρ∗ that makes λ2
maxβ2 + β4 − β5 = 0; it is derived that

ρ∗ =

√
2β2λ2

max + 2β4γ4

θ
> 0.

Then, for ρ ∈ (0, ρ∗), one has −β4 ∑n
i=1 ‖zi(t)‖2 − β2‖q(t)‖2 + β5 ∑n

i=1 ‖zi(t)‖2 < 0. With
β1, β3 < 0, it is derived that V̇(t) < 0.

Therefore, for properly chosen γ1, γ2, γ3, γ4, r, and θ, under the event-triggering
condition (20), if ρ ∈ (0, ρ∗), then V̇(t) < 0. In addition, following the proof of Theorem 1,
it is evident that V(t) is positive definite. Through Lyapunov stability theory [39], one
obtains that the NE is achieved asymptotically, and ‖x(t)− x∗‖ → 0, ‖vd(t)‖ → 0, and
‖q(t)‖ → 0 as t→ ∞. Thus, the proof is complete.

Appendix B
Proof of Theorem 4. In what follows, the nonexistence of Zeno behavior for the DETNES
strategy (19) is proved, which means ti

k+1 − ti
k > 0 holds for i ∈ Sn. For agent i when

t ∈ [ti
k, ti

k+1), one has
d‖εi(t)‖

dt
≤ ‖ε̇i(t)‖ = ‖żi(t)‖,

with
‖żi(t)‖ =

∥∥(ai ⊗ In×n)ẏ(t) + Ai
(
ẏi(t)− ẋ(t)

)∥∥,

where ai = [ai1, ai2, . . . , ain] is an n-dimensional row vector. Matrix Ai is defined as
Ai = diag{aij} ∈ Rn×n for j = {1, 2, . . . , n}. Hence,

‖ε̇i(t)‖ ≤ ci

√
n

∑
i=1
‖zi(ti

k)‖2 + ‖Ai‖‖zi(ti
k)‖+ ‖Ai‖‖ẋ(t)‖,

where ci = ‖ai ⊗ In×n‖. Following the proof process of Theorem 2, one has

‖ẋ(t)‖ =
∥∥∥∥∥
[

ϕs
(
ys(t)

)
−vd(t)

]∥∥∥∥∥ ≤ √ηV(t) ≤
√

ηV(ti
k),

where η is defined the same as in the proof process of Theorem 2. On the basis of event-
triggering condition (20), it is derived that ‖εi(ti

k+1)‖ > ρ‖zi(ti
k)‖/(1 + ρ). Thus, for

t ∈ [ti
k, ti

k+1), it is derived that

‖εi(ti
k+1)‖ ≤

∫ ti
k+1

ti
k

‖ε̇i(s)‖ds

<

(
ci

√
n

∑
i=1
‖zi(ti

k)‖2 + ‖Ai‖‖zi(ti
k)‖+ ‖Ai‖

√
ηV(ti

k)

)
(ti

k+1 − ti
k).
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Then, one obtains the following inequality:

ti
k+1 − ti

k >
ρ‖zi(ti

k)‖

(1 + ρ)
(

ci

√
∑n

i=1 ‖zi(ti
k)‖2 + ‖Ai‖‖zi(ti

k)‖+ ‖Ai‖
√

ηV(ti
k)
) > 0.

The proof is thus completed.
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