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Abstract: This paper deals with the oscillatory behavior of solutions of a general class of
fourth-order non-linear delay differential equations. New oscillation criteria are established
using Riccati transformation and a Philos-type technique. The obtained results not only
improve and extend some published results in the literature, but also relax some tradi-
tional conditions on the function ψ(χ(ι)). Three examples are provided to illustrate the
main results.
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1. Introduction
In this work, we consider a fourth-order differential equation of the type

[𭟋(ι)ψ(χ(ι))χ′′′(ι)]′ + ℵ(ι)χ(δ(ι)) = 0, ι ≥ ι0, (1)

under the canonical and non-canonical cases∫ ∞

ι0

1

𭟋 1
α (s)

ds = ∞, (2)

and ∫ ∞

ι0

1

𭟋 1
α (s)

ds < ∞, (3)

respectively. Moreover, we assume that

(A1) ℵ, δ ∈ C([ι0, ∞),R) such that ℵ(ι) > 0, δ(ι) ≤ ι and lim
ι→∞

δ(ι) = ∞;

(A2) 𭟋(ι) ∈ C([ι0, ∞),R), 𭟋(ι) > 0 for all ι ≥ ι0;
(A3) 0 < ξ1(ι) ≤ ψ(χ(ι)) ≤ ξ2(ι) < ∞.

We say that a solution χ(ι) of (1) is oscillatory if it has an infinite set of zeros, otherwise
it is called non-oscillatory. In the last few decades, there has been considerable interest in
studying delay differential equations, since they are critical in modeling systems where
the future state depends not only on the current state but also on past states. In fact, delay
differential equations play essential role in various fields such as biology, engineering, eco-
nomics and physics, where processes often involve time delays, like population dynamics
where the birth rate at any given time depends on the population size at a previous time,
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or in control systems where the response to an input is delayed due to processing time. In
fact, they provide a more accurate and realistic description of these systems than ordinary
differential equations, capturing the intrinsic time-lagged interactions within the system.
Therefore, understanding and solving delay differential equations is crucial for predicting
and controlling the behavior of such time-dependent processes. Recently, the study of the
oscillatory behavior of delayed differential equations has received great interest from many
authors (see [1–24] and the references therein). There has been considerable interest in the
existence and nonexistence of solutions of fourth-order differential equations; (see [25])
and for a fourth-order boundary value problem (see [26]). Moreover, for those who are
concerned with fractional calculus, see [27–30]. For instance, we mention here some of the
related works which motivated our results.

In [14], the authors investigated the oscillatory behavior of all solutions of the fourth-
order functional differential equations

(𭟋(ι)(χ′(ι))α)′′′ + ℵ(ι)M(χ(g(ι))) = 0,

and
(𭟋(ι)(χ′(ι))α)′′′ = ℵ(ι)M(χ(g(ι))) + p(ι)h(χ(δ(ι))),

in the non-canonical case (3). Zhang et al. [24] discussed the oscillation of a certain class of
fourth-order delay differential equations of the type

(𭟋(ι)(χ′′′(ι))α)′ + ℵ(ι)χα(δ(ι)) = 0.

They established some new oscillation criteria (including Hille- and Nehari-type
criteria). Although their results improve some of those given by Zhang et al. [23], if one is
concerned with the case α = 1, our results include their equation, since they considered
only the special case ψ(χ(ι)) = 1. In [18], Moaaz et al. studied the oscillatory behavior of
solutions of the fourth-order non-linear differential equations

(𭟋(ι)(χ′′′(ι))α)′ + ℵ(ι)χγ(δ(ι)) = 0.

They obtained new oscillation criteria by employing a refinement of Riccati transforma-
tions to complement and improve some of the results reported in the literature. Comparing
with the work of [18], we note that although our results here are restricted to the case
α = γ = 1, however their results are applicable only for the special case ψ(χ(ι)) = 1.
Moreover, we considered here both canonical and non-canonical cases, while the authors
there were concerned with canonical case only.

Hou and Cheng [15] discussed the asymptotic behavior of the fourth-order differential
equation

χ(4)(ι) + p(ι)χ′(ι) + ℵ(ι)M(χ(δ(ι))) = 0.

They deduced that all solutions converged to zero or oscillated. They employed novel
Riccati-type techniques involving third-order linear differential equations. The importance
of their results appears in the particular case when one interprets the solution χ(ι) as a
deflection from the equilibrium position of a horizontal beam at the spatial coordinate,
through which the middle term p(ι)χ′(ι) acts as a control of the slope of the beam under
consideration at the time coordinate ι.

Džurina and Jadlovská [11] discussed the oscillation of a fourth-order linear delay
differential equation with a negative middle term in the form

χ(4)(ι)− p(ι)χ′(ι) + ℵ(ι)χ(δ(ι)) = 0,
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under the assumption that all solutions of an auxiliary third-order differential equation
are non-oscillatory. Their work can be considered as a continuation of the recent works
of [15], but in case where the middle term is negative, which from the point of view of [11]
there are no other results of this kind. Although there exists a very large body of literature
devoted to the corresponding two-term fourth-order equation of the type

χ(4)(ι) + ℵ(ι)χ(δ(ι)) = 0,

however, to the best of our knowledge, there do not appear to be any oscillation results
for equations of the type (1) through which the function ψ(χ(ι)) is bounded by functions
of time (ι) and not necessary by constants. The main objective of this paper is to present
such oscillation criteria for (1) which relax this restriction. The effectiveness of the newly
obtained criteria is illustrated by several examples.

In [2], Agarwal et al. established the oscillation criteria for all bounded solutions of
the fourth-order differential equation of the form 1

𭟋3(ι)

( 1
𭟋2(ι)

((
1

𭟋1(ι)
(χ′(ι))α1

)′
)α2

)′α3
′

+ ℵ(ι)M(χ(δ(ι))) = 0.

Also, they gave some comparison results with first- and second-order equations.
In [23], Zhang et al. studied the oscillation of a higher-order half-linear differential equation
of the form

(𭟋(ι)(χ(n−1)(ι))α)′ + ℵ(ι)χγ(δ(ι)) = 0.

Although they gave new oscillation criteria, the obtained results cannot be applied
for δ(ι) = ι. Our aim in the present article is to establish new oscillation criteria for the
fourth-order differential Equation (1), which to the best of our knowledge has not been
discussed before with our condition on the function ψ(χ(ι)).

2. Preliminaries
Throughout this section, we outline some notations and results which are needed for

our main results. Below, we define the Philos-type integral conditions.
Let D = {(ι, s) : −∞ < s ≤ ι < ∞}. We say that a function ε(ι, s) belongs to the class

W if

(i) ε ∈ C(D, [0, ∞)); ε(ι, s) ≥ 0 for −∞ < s < ι < ∞; and ε(ι, ι) = 0;
(ii) ε has continuous partial derivative ∂ε

∂s satis f ying

∂ε

∂s
= −ϵ(ι, s)

√
ε(ι, s),

where ϵ ∈ Lloc(D,R)
(iii) 0 < inf

s≥ι0

[
lim inf

ι→∞
ε(ι,s)
ε(ι,ι0)

]
≤ ∞, see[31].

Lemma 1 (see [22]). Let α ≥ 1 be a ratio of two odd positive integer numbers, where X and Y are
constants. Then

Xν − Yν
α+1

α ≤ αα

(α + 1)α+1
Xα+1

Yα
, Y > 0.

Lemma 2 (see [32]). If the function χ satisfies χ(j) > 0, j = 0, 1, . . . , m, and χ(m+1) < 0, then

χ(ι)

ιm/m!
≥ χ′(ι)

ιm−1/(m − 1)!
.
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Lemma 3 (see [1]). Let χ ∈ Cj([ι0, ∞), (0, ∞)). Suppose that χ(j)(ι) has a fixed sign and on
[ι0, ∞), χ(j)(ι) ) not identically zero, and that there exists a ι1 ≥ ι0 such that χ(j−1)(ι)χ(j)(ι) ≤ 0
for all ι ≥ ι1. If limι→∞ χ(ι) ̸= 0, then for every β ∈ (0, 1) there exists ιβ ≥ ι0 such that

χ(ι) ≥ β

(j − 1)!
ιj−1

∣∣∣χ(j−1)(ι)
∣∣∣,

and
χ′(

ι

2
) ≥ β

(j − 2)!
ιj−2

∣∣∣χ(j−1)(ι)
∣∣∣.

Lemma 4. Let χ(ι) be an eventually positive solution of (1). Then, there exist two possible cases:

(C1) χ(j)(ι) > 0 for j = 0, 1, 2, 3,
(C2) χ(j)(ι) > 0 for j = 0, 1, 3, and χ′′(ι) < 0,

for all sufficiently large ι ≥ ι1 ≥ ι0.

3. Main Results
Theorem 1. Assume that (A1)–(A3) hold. If there exist positive functions ϱ1, ϱ2 ∈ C1([ι0, ∞);R)
such that

lim
ι→∞

∫ ι

ι0

[
δ3(s)

s3 ϱ1(s)ℵ(s)−
(ϱ′1(s))

2𭟋(s)ξ2(s)
2βs2ϱ1(s)

]
ds = ∞, (4)

for some β ∈ (0, 1) and

lim
ι→∞

∫ ι

ι0

[
ϱ2(ϑ)

∫ ∞

ϑ

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ − (ϱ′2(ϑ))
2

4ϱ2(ϑ)

]
dϑ = ∞, (5)

then all solutions of (1) are oscillatory.

Proof. Suppose that there exists a non-oscillatory solution χ(ι) of (1). For the sake of
contradiction, assume that there exists a ι1 ∈ [ι0, ∞), such that χ(ι) > 0, χ(δ(ι)) > 0 for all
ι ≥ ι1 ≥ ι0. Using Lemma 4, we have one of the two cases (C1) and (C2).
We first consider case (C1): Define the Riccati substitution by

w1(ι) = ϱ1(ι)
𭟋(ι)ψ(χ(ι))χ′′′(ι)

χ(ι)
. (6)

It is clear that w1 > 0 and

w′
1(ι) = ϱ′1(ι)

(
𭟋(ι)ψ(χ(ι))χ′′′(ι)

χ(ι)

)
+ ϱ1(ι)

[
(𭟋(ι)ψ(χ(ι))χ′′′(ι))′

χ(ι)
− 𭟋(ι)ψ(χ(ι))χ′′′(ι)χ′(ι)

χ2(ι)

]
,

=
ϱ′1(ι)

ϱ1(ι)
w1(ι)− ϱ1(ι)ℵ(ι)

χ(δ(ι))

χ(ι)
− ϱ1(ι)𭟋(ι)ψ(χ(ι))

χ′(ι)χ′′′(ι)

χ2(ι)
.

Since for the case (C1), χ′′(ι) > 0, then clearly χ′(ι) ≥ χ′( ι
2 ). Using Lemma 3, we

obtain
χ′(ι) ≥ β

2
ι2χ′′′(ι). (7)

Putting m = 3 in Lemma 2, we obtain

χ′(ι)

ι2/2!
≤ χ

ι3/3!
,

then

χ′(ι) ≤ χ(ι)

ι/3
.
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So,
χ′(ι)

χ(ι)
≤ 3

ι
.

Integrating from ι to δ(ι), we obtain

χ(δ(ι))

χ(ι)
≥ δ3(ι)

ι3
,

i.e.,

χ(δ(ι)) ≥ δ3(ι)

ι3
χ(ι). (8)

Thus with (6)–(8), we obtain

w′
1(ι) ≤

ϱ′1(ι)

ϱ1(ι)
w1(ι)−

δ3(ι)

ι3
ϱ1(ι)ℵ(ι)−

βι2

2
ϱ1(ι)𭟋(ι)ψ(χ(ι))

(
χ′′′(ι)

χ(ι)

)2

,

=
ϱ′1(ι)

ϱ1(ι)
w1(ι)−

δ3(ι)

ι3
ϱ1(ι)ℵ(ι)−

βι2

2
w2

1(ι)

ϱ1(ι)𭟋(ι)ψ(χ(ι))
. (9)

Using Lemma 1 with X =
ϱ′1(ι)
ϱ1(ι)

, Y = βι2

2
1

ϱ1(ι)𭟋(ι)ψ(χ(ι))
and ν = w1, we obtain

w′
1(ι) ≤ − δ3(ι)

ι3
ϱ1(ι)ℵ(ι) +

(ϱ′1(ι))
2𭟋(ι)ψ(χ(ι))

2βι2ϱ1(ι)
.

Therefore using (A3), we obtain

w′
1(ι) ≤ − δ3(ι)

ι3
ϱ1(ι)ℵ(ι) +

(ϱ′1(ι))
2𭟋(ι)ξ2(ι)

2βι2ϱ1(ι)
.

This implies that

∫ ι

ι1

[
δ3(s)

s3 ϱ1(s)ℵ(s)−
(ϱ′1(s))

2𭟋(s)ξ2(s)
2βs2ϱ1(s)

]
ds ≤ w1(ι1),

for any constant β ∈ (0, 1). This is a contradiction.
Consider the case (C2) and define

w2(ι) = ϱ2(ι)
χ′(ι)

χ(ι)
, ι ≥ ι1. (10)

Then w2(ι) > 0 for ι ≥ ι1 and

w′
2(ι) = ϱ′2(ι)

χ′(ι)

χ(ι)
+ ϱ2(ι)

(
χ′′(ι)χ(ι)− (χ′(ι))2

(χ(ι))2 ,
)

=
ϱ′2(ι)

ϱ2(ι)
w2(ι) + ϱ2(ι)

χ′′(ι)

χ(ι)
−

w2
2(ι)

ϱ2(ι)
. (11)

By integrating (1) from ι to u, we have

𭟋(u)ψ(χ(u))χ′′′(u)−𭟋(ι)ψ(χ(ι))χ′′′(ι) +
∫ u

ι
ℵ(s)χ(δ(s))ds = 0. (12)

From 2, we obtain
χ(δ(ι))

χ(ι)
≥ δ(ι)

ι
. (13)
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Using (13) then (12) leads to

𭟋(u)ψ(χ(u))χ′′′(u)−𭟋(ι)ψ(χ(ι))χ′′′(ι) +
∫ u

ι
ℵ(s)

(
δ(s)

s

)
χ(ι)ds ≤ 0.

Since χ′(ι) > 0, then

𭟋(u)ψ(χ(u))χ′′′(u)−𭟋(ι)ψ(χ(ι))χ′′′(ι) + χ(ι)
∫ u

ι

δ(s)
s

ℵ(s)ds ≤ 0.

Letting u → ∞, we obtain

−𭟋(ι)ψ(χ(ι))χ′′′(ι) + χ(ι)
∫ u

ι

δ(s)
s

ℵ(s)ds ≤ 0.

Thus

χ′′(ι) + χ(ι)
∫ ∞

ι

[
1

𭟋(υ)ψ(χ(υ))

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ ≤ 0,

i.e.,

χ′′(ι)

χ(ι)
≤ −

∫ ∞

ι

[
1

𭟋(υ)ψ(χ(υ))

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ,

≤ −
∫ ∞

ι

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ. (14)

Hence, by substituting from (14) into (11), we obtain

w′
2(ι) ≤ −ϱ2(ι)

∫ ∞

ι

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ +
ϱ′2(ι)

ϱ2(ι)
w2(ι)−

w2
2(ι)

ϱ2(ι)
.

From Lemma 1, with X =
ϱ′2(ι)
ϱ2(ι)

, Y = 1
ϱ2(ι)

and ν = w2, we have

w′
2(ι) ≤ −ϱ2(ι)

∫ ∞

ι

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ +
(ϱ′2(ι))

2

4ϱ2(ι)
.

Integrating from ι1 to ι, we find

∫ ι

ι1

[
ϱ2(ϑ)

∫ ∞

ϑ

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ − (ϱ′2(ϑ))
2

4ϱ2(ϑ)

]
dϑ ≤ w2(ι1),

which contradicts (5). The proof is complete.

Remark 1. Theorem 1 improves and extends Theorem 2.1 of [24].

Theorem 2. Let the assumptions (A1)–(A3) be satisfied. Moreover, suppose that there exist ε ∈ W
that satisfy the conditions (i)–(ii) and κ ∈ C([ι0, ∞);R) such that (iii) is satisfied. Furthermore,
assume that χ(j)(ι) > 0 for j = 0, 1, 2, 3 and for some µ > 1, all ι > ι0 and L ≥ ι0. If

lim sup
ι→∞

1
ε(ι, L)

∫ ι

L

[
ε(ι, s)Φ1(s)−

µϱ3(s)𭟋(s)ξ2(s)
βs2 ϵ2(ι, s)

]
ds ≥ κ(L), (15)

and

lim sup
ι→∞

∫ ι

ι0

s2κ2
+(s)

ϱ3(s)𭟋(s)ξ2(s)
= ∞, (16)

where
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Φ1(ι) =
δ3(ι)

ι3
ϱ3(ι)ℵ(ι) +

βι2ϱ3(ι)g2(ι)

2𭟋(ι)ξ2(ι)
− ϱ3(ι)g′(ι)−

[ϱ′3(ι)𭟋(ι)ξ2(ι) + βι2ϱ3(ι)g(ι)]2

βι2ϱ3(ι)𭟋(ι)ξ1(ι)
, (17)

for a continuously differentiable function g ∈ C1([ι0, ∞);R). Then, Equation (1) is oscillatory.

Proof. Let χ(ι) be a non-oscillatory solution of (1) where χ(j)(ι) > 0 for j = 0, 1, 2, 3 for
ι ≥ T0 ≥ t0. Define the generalized Riccati transformation

w3(ι) = ϱ3(ι)

[
𭟋(ι)ψ(χ(ι))χ′′′(ι)

χ(ι)
+ g(ι)

]
. (18)

Then, w3(ι) > 0 and

w′
3(ι) = ϱ′3(ι)

[
𭟋(ι)ψ(χ(ι))χ′′′(ι)

χ(ι)
+ g(ι)

]
+ ϱ3(ι)

[
(𭟋(ι)ψ(χ(ι))χ′′′(ι))′

χ(ι)
+ g′(ι)

−𭟋(ι)ψ(χ(ι))χ′′′(ι))χ′(ι)

χ2(ι)

]
,

=
ϱ′3(ι)

ϱ3(ι)
w3(ι)− ϱ3(ι)ℵ(ι)

χ(δ(ι))

χ(ι)
+ ϱ4(ι)g′(ι)− ϱ3(ι)𭟋(ι)ψ(χ(ι))

χ′(ι)χ′′′(ι)

χ2(ι)
.

Thus, with (7), (8) and (18) for all ι ≥ L0, we obtain

w′
3(ι) ≤

ϱ′3(ι)

ϱ3(ι)
w3(ι)−

δ3(ι)

ι3
ϱ3(ι)ℵ(ι) + ϱ3(ι)g′(ι)− βι2ϱ3(ι)

2𭟋(ι)ψ(χ(ι))

[
w3(ι)

ϱ3(ι)
− g(ι)

]2

. (19)

That is,

w′
3(ι) ≤

[
ϱ′3(ι)

ϱ3(ι)
+

βι2g(ι)
𭟋(ι)ψ(χ(ι))

]
w3(ι)−

βι2

2ϱ3(ι)𭟋(ι)ψ(χ(ι))
w2

3(ι)

− δ3(ι)

ι3
ϱ3(ι)ℵ(ι)−

βι2ϱ3(ι)g2(ι)

2𭟋(ι)ψ(χ(ι))
+ ϱ3(ι)g′(ι).

(20)

Using the following inequality, which is valid for all a > 0 and b, z ∈ R,

bz − az2 ≤ b2

2a
− a

2
z2, (21)

we deduce that

w′
3(ι) ≤

[ϱ′3(ι)𭟋(ι)ψ(χ(ι)) + βι2ϱ3(ι)g(ι)]2

βι2ϱ3(ι)𭟋(ι)ψ(χ(ι))
− βι2

4ϱ3(ι)𭟋(ι)ψ(χ(ι))
w2

3(ι)

− δ3(ι)

ι3
ϱ3(ι)ℵ(ι)−

βι2ϱ3(ι)g2(ι)

2𭟋(ι)ψ(χ(ι))
+ ϱ3(ι)g′(ι).

(22)

In view of (A3), for all ι ≥ L0, (22) gives

w′
3(t) ≤ −Φ1(ι)−

βι2

4ϱ3(ι)𭟋(ι)ξ2(ι)
w2

3(ι), (23)

where Φ1(ι) is defined as in (17). Multiplying (23) by ε(ι, s), integrating from L to ι, and
using (i)− (ii) for all ι ≥ L ≥ L0, we find
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∫ ι

L
ε(ι, s)Φ1(s)ds ≤ −

∫ ι

L
ε(ι, s)w′

3(s)ds −
∫ ι

ε
ε(ι, s)

βs2

4ϱ3(s)𭟋(s)ξ2(s)
w2

3(s)ds,

= −ε(ι, s)w3(s) |ιL −
∫ ι

L

[
−∂ε(ι, s)

∂s
w3(s) + ε(ι, s)

βs2

4ϱ3(s)𭟋(s)ξ2(s)
w2

3(s)
]

ds,

= ε(ι, L)w3(L)−
∫ ι

L

(
ϵ(ι, s)

√
ε(ι, s)w3(s) + ε(ι, s)

βs2

4ϱ3(s)𭟋(s)ξ2(s)
w2

3(s)
)

ds.

For any µ > 1, we obtain

∫ ι

L
ε(ι, s)Φ1(s)ds ≤ ε(ι, L)w3(L)−

∫ ι

L

(√
βs2ε(ι, s)

4µϱ3(s)𭟋(s)ξ2(s)
w3(s) +

√
µϱ3(s)𭟋(s)ξ2(s)

βs2 ϵ(ι, s)

)2

ds

+
µ

β

∫ ι

L

(
ϱ3(s)𭟋(s)ξ2(s)

s2

)
ϵ2(ι, s)ds −

∫ ι

L

βs2(µ − 1)ε(ι, s)
4µϱ3(s)𭟋(s)ξ2(s)

w2
3(s)ds.

(24)

Then, ∫ ι

L

[
ε(ι, s)Φ1(s)−

µϱ3(s)𭟋(s)ξ2(s)
βs2 ϵ2(ι, s)

]
ds ≤ ε(ι, L)w3(L)

−
∫ ι

L

(√
βs2ε(ι, s)

4µϱ3(s)𭟋(s)ξ2(s)
w3(s) +

√
µϱ3(s)𭟋(s)ξ2(s)

βs2 ϵ(ι, s)

)2

ds

−
∫ ι

L

βs2(µ − 1)ε(ι, s)
4µϱ3(s)𭟋(s)ξ2(s)

w2
3(s)ds.

(25)

Thus, for ι > L ≥ L0, we obtain

1
ε(ι, L)

∫ ι

L

[
ε(ι, s)Φ1(s)−

µϱ3(s)𭟋(s)ξ2(s)
βs2 ϵ2(ι, s)

]
ds ≤ w3(L)

− 1
ε(ι, L)

∫ ι

L

(√
βs2ε(ι, s)

4µϱ3(s)𭟋(s)ξ2(s)
w3(s) +

√
µϱ3(s)𭟋(s)ξ2(s)

βs2 ϵ(ι, s)

)2

ds

− 1
ε(ι, L)

∫ ι

L

βs2(µ − 1)ε(ι, s)
4µϱ3(s)𭟋(s)ξ2(s)

w2
3(s)ds,

and

lim sup
ι→∞

1
ε(ι, L)

∫ ι

L

[
ε(ι, s)Φ1(s)−

µϱ3(s)𭟋(s)ξ2(s)
βs2 ϵ2(ι, s)

]
ds

≤ w3(L)− lim inf
ι→∞

1
ε(ι, L)

∫ ι

L

βs2(µ − 1)ε(ι, s)
4µϱ3(s)𭟋(s)ξ2(s)

w2
3(s)ds.

(26)

This, with (16), leads to

w3(L) ≥ κ(L) + lim inf
ι→∞

1
ε(ι, L)

∫ ι

L

βs2(µ − 1)ε(ι, s)
4µϱ3(s)𭟋(s)ξ2(s)

w2
3(s)ds.

The proof can now be completed as in Theorem 3 in [33].

Remark 2.

(1) Although our technique in Theorem 2 depends on the work of Rogovchenko et al. [33], the
authors there were only concerned with the case of a second-order differential equation.

(2) When choosing ε(ι, s) = (ι − s)n, n > 1 or ε(ι, s) = (ln ι
s )

n for a positive integer n ≥ 2,
then one can obtain two other oscillation criteria for Equation (1).
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Theorem 3. Let the assumptions (A1)–(A3) be satisfied. Assume that there exist functions ε ∈ W,
η ∈ C1([ι0, ∞);R), for all ι > ι0 and L ≥ ι0. Furthermore, assume that χ(j)(ι) > 0 for j = 0, 1, 3,
and χ′′(ι) < 0. If

lim sup
ι→∞

1
ε(ι, L)

∫ ι

L

[
Φ2(s)ε(ι, s)− ϱ4(s)

4
ϵ2(ι, s)

]
ds = ∞, (27)

then (1) is oscillatory. Where

ϱ4(ι) = exp
(
−2

∫ ι 1
η(s)

ds
)

, (28)

Φ2(ι) = ϱ4(ι)

[
ℸ(ι) + η′(ι) + 1

η2(ι)

]
, (29)

and

ℸ(ι) =
∫ ∞

ι

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ
ℵ(s)

(
δ(s)

s

)
ds
]

dυ. (30)

Proof. For the sake of contradiction, suppose that χ(ι) be a non-zero solution of (1) where
χ(j)(ι) > 0 for j = 0, 1, 3, and χ′′(ι) < 0. Define

w4(ι) = ϱ4(ι)

[
χ′(ι)

χ(ι)
+

1
η(ι)

]
. (31)

Then, w4(ι) > 0 and

w′
4(ι) = ϱ′4(ι)

[
χ′(ι)

χ(ι)
+

1
η(ι)

]
+ ϱ4(ι)

[
χ′′(ι)

χ(ι)
−
(

χ′(ι)

χ(ι)

)2

− η′(ι)

η2(ι)

]
. (32)

From (14), we obtain
χ′′(ι)

χ(ι)
≤ −ℸ(ι), (33)

where ℸ(ι) is defined by (30).
Now, substituting from (33) into (32) and using (31), we obtain

w′
4(ι) ≤ −Φ2(ι)−

w2
4(ι)

ϱ4(ι)
, (34)

where Φ2(ι) is given by (29). Multiplying (34) by ε(ι, s) and integrating from L to ι, we
obtain∫ ι

L
Φ2(s)ε(ι, s)ds ≤ −

∫ ι

L
w′

4(s)ε(ι, s)ds −
∫ ι

L

ε(ι, s)
ϱ4(s)

w2
4(s)ds

= −w4(s)ε(ι, s)|ιL −
∫ ι

L

[
−∂ε(ι, s)

∂s
w4(s) +

ε(ι, s)
ϱ4(s)

w2
4(s)

]
ds

= w4(T)ε(ι, s)−
∫ ι

L

[
ϵ(ι, s)

√
ε(ι, s)w4(s) +

ε(ι, s)
ϱ4(s)

w2
4(s)

]
ds.

Thus,

∫ ι

L

[
Φ2(s)ε(ι, s)− ϱ4(s)

4
ϵ2(ι, s)

]
ds ≤ w4(L)ε(L, s)−

∫ ι

L

(√
ε(ι, s)
ϱ4(s)

w4(s) +

√
ϱ4(s)

4
ϵ(ι, s)

)2

ds

≤ w4(L)ε(L, s).
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and so
1

ε(L, s)

∫ ι

L

[
Φ2(s)ε(ι, s)− ϱ4(s)

4
ϵ2(ι, s)

]
ds ≤ w4(L) < ∞,

which contradicts (27). This completes the proof.

Remark 3. The criterion of Theorem 3 is more general than that was established in Theorem 1 of [7].

4. Examples
Example 1. Consider the differential equation ι

2ι2 + 1

2 + sin2(χ(ι))
ι2

1 + sin2(χ(ι))
ι2

χ′′′(ι)

′ + eιχ
( ι

2

)
= 0. (35)

Here, ψ(χ(ι)) = (
2+ sin2(χ(ι))

ι2

1+ sin2(χ(ι))
ι2

). Taking ξ1(ι) =
2ι2

1+ι2
and ξ2(ι) = 2+ 1

ι2
. If we set ϱ1(ι) = ϱ2(ι) = 1,

then

lim
ι→∞

∫ ι

ι0

[
δ3(s)

s3 ϱ1(s)ℵ(s)−
(ϱ′1(s))

2𭟋(s)ξ2(s)
2βs2ϱ1(s)

]
ds = lim

ι→∞

∫ ι

ι0

(
1
8

es
)

ds = ∞,

and

lim
ι→∞

∫ ι

ι0

[
ϱ2(ϑ)

∫ ∞

ϑ

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ

δ(s)
s

ℵ(s)ds
]

dυ − (ϱ′2(ϑ))
2

4ϱ2(ϑ)

]
dϑ = ∞.

Thus, from Theorem, 1 Equation (35) oscillates.

Example 2. For ι ≥ 1, consider the differential equation[
ι6

(
1 + sin2(χ(ι))

ι2 + sin2(χ(ι))

)
)χ′′′(ι)

]′
+ ℵ(ι)χ

(
ι

3
√

2

)
= 0. (36)

Here, ξ1(ι) =
1

ι2+1 ≤ ψ(χ(ι)) = 1+sin2(χ(ι))

ι2+sin2(χ(ι))
≤ 2

ι2
= ξ2(ι), g(ι) = ι2, ϱ3(ι) = 1 and β = 1

2 . Then

Φ1(ι) = e−ι + 2
ι2
+ 16, where ℵ(ι) = 1

2

[
3
4 ι2 + 4ι + 33 + 4

ι2
+ 2e−ι

]
.

Taking ε(ι, s) = (ι − s)2 and letting µ = 1, we get

lim sup
ι→∞

1
ε(ι, L)

∫ ι

L

[
ε(ι, s)Φ1(s)−

µϱ3(s)𭟋(s)ξ2(s)
βs2 ϵ2(ι, s)

]
ds

= lim sup
ι→∞

ι−2
∫ ι

L

[
(ι − s)2Φ1(s)−

4µ

β

ϱ3(s)𭟋(s)ξ2(s)
s2

]
ds

= lim sup
ι→∞

1
ι2

∫ ι

L

[(
e−s +

2
s2 + 16

)
(ι − s)2 − 16s2

]
ds

=
2
L
+ e−L − 16L = κ(L).

Then,
ι2κ+(ι)

ϱ3(ι)𭟋(ι)ξ2(ι)
= O(ι2) as ι → ∞.

Consequently, using Theorem 2, Equation (36) oscillates.
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Example 3. Consider the differential equation[
ι2

(
ln(2 + ( cos(χ(ι))

ι )2

1 + ( cos(χ(ι))
ι )2

)(
χ′′′(ι)

)α

]′
+

1
ι

χ
( ι

4

)
= 0, for ι ≥ 1. (37)

Using the inequality 2
2+u ≤ ln(1+u)

u ≤ 2+u
2+2u , where u = 1 + cos2 χ

ι2
. Then

2

3 + ( cos(χ(ι))
ι )2

≤
(

ln(2 + ( cos(χ(ι))
ι )2

1 + ( cos(χ(ι))
ι )2

)
≤

3 + ( cos(χ(ι))
ι )2

4 + (2 cos(χ(ι))
ι )2

.

So,
2

3 + 1
ι2

≤ ψ(χ(ι)) ≤
3 + 1

ι2

4 + 0
,

i.e.,

ξ1(ι) =
2ι2

1 + 3ι2
≤ ψ(χ(ι)) ≤ 3

4
+

1
4ι2

= ξ2(ι).

Let α = 2, then we have ∫ ∞

ι0

1

𭟋 1
α (s)

ds =
∫ ∞

ι

1
s

ds = ∞.

For ϱ4(ι) = 1, then

ℸ(ι) =
∫ ∞

ι

[
1

𭟋(υ)ξ2(υ)

∫ ∞

υ
ℵ(s)

(
δ(s)

s

)
ds
]

dυ = ∞.

So, condition (27) holds. Therefore, by Theorem 3, Equation (37) oscillates.

5. Conclusions
Throughout this paper, we established new oscillation criteria for a general class of

fourth-order non-linear delay differential equations of the form (1). The obtained sufficient
conditions improve and extend some known results in the literature and overcome some
traditional conditions that the function ψ(χ(ι)) is bounded by some constants.
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