
Academic Editor: Hsien-Chung Wu

Received: 9 January 2025

Revised: 28 January 2025

Accepted: 29 January 2025

Published: 2 February 2025

Citation: Xu, Y.; Lin, L.; Liu, Y.-J. A

Semismooth Newton-Based

Augmented Lagrangian Algorithm for

the Generalized Convex Nearly

Isotonic Regression Problem.

Mathematics 2025, 13, 501. https://

doi.org/10.3390/math13030501

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Semismooth Newton-Based Augmented Lagrangian Algorithm
for the Generalized Convex Nearly Isotonic Regression Problem
Yanmei Xu 1, Lanyu Lin 1,* and Yong-Jin Liu 2

1 School of Mathematics and Statistics, Fuzhou University, Fuzhou 350108, China; 220320053@fzu.edu.cn
2 Center for Applied Mathematics of Fujian Province, School of Mathematics and Statistics, Fuzhou University,

Fuzhou 350108, China; yjliu@fzu.edu.cn
* Correspondence: lylin@fzu.edu.cn

Abstract: The generalized convex nearly isotonic regression problem addresses a least
squares regression model that incorporates both sparsity and monotonicity constraints on
the regression coefficients. In this paper, we introduce an efficient semismooth Newton-
based augmented Lagrangian (SSNAL) algorithm to solve this problem. We demonstrate
that, under reasonable assumptions, the SSNAL algorithm achieves global convergence and
exhibits a linear convergence rate. Computationally, we derive the generalized Jacobian
matrix associated with the proximal mapping of the generalized convex nearly isotonic re-
gression regularizer and leverage the second-order sparsity when applying the semismooth
Newton method to the subproblems in the SSNAL algorithm. Numerical experiments
conducted on both synthetic and real datasets clearly demonstrate that our algorithm
significantly outperforms first-order methods in terms of efficiency and robustness.

Keywords: generalized convex nearly isotonic regression; augmented Lagrangian algorithm;
semismooth Newton method

MSC: 90C06; 90C25; 90C90

1. Introduction
Data generated in various fields often exhibit clear monotonicity, as seen in meteo-

rological climate data [1,2], economic demand/supply curves [3], and biological growth
curves [4]. Thus, this paper focuses on statistical models under order constraints. Specifi-
cally, suppose that we have m observations (ai, bi) for i = 1, . . . , m, where ai = (ai1, . . . , ain)

is a vector with n features and bi is a response value. We concentrate on addressing the
following optimization problem:

min
z∈Rn

{
1
2
∥Az− b∥2 + λ∥z∥1 + τ

n−1

∑
i=1

(zi − zi+1)+

}
, (1)

where A = (a1, . . . , am) is an m× n data matrix, b = (b1, . . . , bm)⊤ is the response vector,
λ, τ ≥ 0 are given regularization parameters, and (z)+ = max(z, 0). In high-dimensional
statistical regression, it is common for the number of features to exceed the number of
samples. Therefore, in our paper, we assume that m ≤ n. The penalty term is composed of
two components: the first enforces sparsity in the coefficient estimates by incorporating
prior knowledge, and the second penalizes violations of monotonicity among adjacent pairs.

Problem (1) is a generalization of a wide range of ordered convex problems, including
an isotonic regression model [5], nearly isotonic regression model [6], and ordered lasso

Mathematics 2025, 13, 501 https://doi.org/10.3390/math13030501

https://doi.org/10.3390/math13030501
https://doi.org/10.3390/math13030501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math13030501
https://www.mdpi.com/article/10.3390/math13030501?type=check_update&version=1

Mathematics 2025, 13, 501 2 of 18

problem [7]. The isotonic regression problem involves determining a vector z ∈ Rn that
approximates a given vector y ∈ Rn while ensuring that z exhibits a non-decreasing (or
non-increasing) sequence, i.e.,

min
z∈Rn

{
n

∑
i=1

(yi − zi)
2 | z1 ≤ z2 ≤ . . . ≤ zn

}
, (2)

where z = (z1, z2, . . . , zn)⊤ and y = (y1, y2, . . . , yn)⊤. Since the restricted monotonicity
constraint may lead to a model too rigid and make it difficult to adapt to complex data
structures, Tibshirani et al. [6] relaxed this monotonicity constraint and considered the
following nearly isotonic regression model:

min
z∈Rn

{
1
2

n

∑
i=1

(yi − zi)
2 + τ

n−1

∑
i=1

(zi − zi+1)+

}
, (3)

where τ ≥ 0 is a given parameter. It is evident that problem (1) is a generalization of
problem (3), as it addresses general regression issues and incorporates sparsity constraints
on the coefficients. We refer to problem (1) as the generalized convex nearly isotonic
regression (GCNIR) problem.

In addition, problem (1) can also be regarded as a generalization of the following
ordered lasso problem [7]:

min
z∈Rn

1
2
∥Az− b∥2 + λ∥z∥1

s.t. |z1| ≥ |z2| ≥ · · · ≥ |zn|.
(4)

Clearly, problem (4) extends the lasso problem by incorporating a monotonicity constraint
on the absolute values of the coefficients. Like problem (2), this approach can lead to
an overly rigid model (4). However, the GCNIR problem (1) mitigates the stringent
monotonicity requirement of the ordered lasso, transforming it into a convex problem that
is more flexible and tractable.

The GCNIR problem (1) can be reformulated into a convex quadratic programming
(QP) problem by introducing new variables:

min
s∈R4n

1
2

s⊤Hs + ⟨v, s⟩

s.t. Ws = 0,

s ≥ 0,

(5)

where

v =

λ1n − A⊤b
λ1n + A⊤b

τ1n

0n×1

, H =

A⊤A −A⊤A 0 0
−A⊤A A⊤A 0 0

0 0 0 0
0 0 0 0

4n×4n

,

W =
[
S,−S,−In, In

]
, S =

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
.

...
0 0 · · · 1 −1
0 0 · · · 0 0

n×n

,

Mathematics 2025, 13, 501 3 of 18

1n and In denote the all-ones column vector and n× n identity matrix, respectively. This
implies that one can utilize the QP function “quadprog” provided by MATLAB or well-
developed QP solvers, such as Gurobi and CPLEX [8], to compute reformulation (5) and
thus solve problem (1). However, since A⊤A has a size of n× n, the computational cost
of solving and storing A⊤A becomes prohibitive, making it challenging to apply the
aforementioned methods to large-scale problems.

Due to the challenges in solving the QP reformulation (5), it is logical to adapt the
methods used for the previously discussed problems to address problem (1). The pool adja-
cent violators algorithm (PAVA) [9] is a cornerstone method for tackling shape-constrained
statistical regression problems, as discussed in [10]. Initially developed for the isotonic re-
gression model (2), PAVA has been extended to accommodate the nearly isotonic regression
model (3), with adaptations such as the modified PAVA (MPAVA) [6] and the generalized
PAVA (GPAVA) [2]. Despite its broad application, there is no theoretical guarantee that
PAVA can be modified to tackle convex nonseparable minimization problems. Addition-
ally, other approaches, such as the Generalized Proximal Gradient algorithm [7] and the
alternating direction method of multipliers (ADMM) [11], have been proposed for solving
the ordered lasso problem (4). To our knowledge, most current techniques for dealing with
ordered models rely primarily on first-order information from the associated nonsmooth
optimization framework. Consequently, we aim to develop a customized algorithm that
utilizes second-order information to address the GCNIR problem more effectively.

This paper aims to develop a semismooth Newton-based augmented Lagrangian
(SSNAL) algorithm to address the GCNIR problem (1) from a dual viewpoint. The SS-
NAL algorithm’s primary benefits include its superior convergence characteristics and
reduced computational demands, which are achieved by exploiting second-order sparsity
and employing efficient strategies within the semismooth Newton (SSN) algorithm. Fur-
thermore, the SSNAL algorithm has demonstrated its effectiveness in handling large-scale
sparse convex models, as evidenced by its performance in applications such as Lasso [12],
group Lasso [13], fused Lasso [14], clustered Lasso [15,16], multi-task Lasso [17], ℓ1 trend
filtering [18], density matrix least squares problems [19], the Dantzig selector [20], and oth-
ers [21–24]. Building on these successes, we propose to apply the SSNAL algorithm to solve
problem (1).

The primary contributions of this paper are as follows. First, we calculate the proximal
mapping related to the GCNIR regularizer and its generalized Jacobian. Second, we utilize
the SSNAL algorithm to address the GCNIR problem from a dual perspective. Further-
more, by capitalizing on the low-rank properties and second-order sparsity inherent in
the GCNIR problem, we significantly reduce the computational cost associated with the
SSN algorithm when solving the subproblems. Lastly, we perform a numerical analysis
comparing our algorithm with first-order methods, including ADMM and the Acceler-
ated Proximal Gradient (APG) method, demonstrating the efficiency and robustness of
our approach.

The remaining sections of this paper are organized as follows. Section 2 delves
into the analysis of the proximal mapping associated with the GCNIR regularizer and
its generalized Jacobian. Section 3 outlines the framework of the SSNAL algorithm and
discusses its convergence properties when applied to the dual formulation of the GCNIR
problem (1). In Section 4, we evaluate the performance of the SSNAL algorithm through
numerical experiments. Finally, we conclude the paper in Section 5.

Notation. For any z ∈ Rn, “Diag(z)” represents a diagonal matrix with zi in its i-th
diagonal component. “|z|” refers to an absolute vector, where each entry i is |zi|. “sign(z)”
indicates the sign vector, i.e., sign(zi) = 1 when zi > 0, sign(zi) = −1 when zi < 0,
and sign(zi) = 0 when zi is equal to zero. Additionally, the notation “Supp(z)” refers to

Mathematics 2025, 13, 501 4 of 18

the support of the element z, specifically the collection of indices for which zi is not equal
to zero. For any positive integer n, e1 = (1, 0, 0, . . . , 0)⊤ and en = (0, 0, . . . , 0, 1)⊤ are the
n× 1 unit column vectors. In = (e1, e2, . . . , en) ∈ Rn×n, while 1n = (1, 1, . . . , 1) ∈ Rn. D†

denotes the Moore–Penrose pseudoinverse of the matrix D ∈ Rm×n. Typically, h∗ denotes
the Fenchel conjugate of a given function h.

2. The Proximal Mapping of the GCNIR Regularizer and Its
Generalized Jacobian

In this section, we shall present some results concerning the proximal mapping linked
to the GCNIR regularizer along with its generalized Jacobian, which are necessary for
later analysis.

Given any scalar κ > 0, for any proper closed convex function p : Rn → (−∞, ∞],
the proximal mapping and Moreau envelope [25] of p is defined by

Proxp(w) := argmin
z

{
1
2
∥z− w∥2 + p(z)

}
, ∀w ∈ Rn,

Mκ
p(w) := min

z

{
1

2κ
∥z− w∥2 + p(z)

}
, ∀w ∈ Rn.

The Moreau identity [26] holds, i.e.,

Proxκp(w) + κProxp∗/κ(w/κ) = w, ∀w ∈ Rn.

According to [27], Mκ
p(·) is convex and continuously differentiable, and

∇Mκ
p(w) = (w− Proxκp(w))/κ, ∀w ∈ Rn.

Let φ be the GCNIR regularizer in (1), i.e.,

φ(z) = λ∥z∥1 + g(z), ∀z ∈ Rn,

where g(z) = τ ∑n−1
i=1 (zi − zi+1)+, ∀z ∈ Rn.

Before diving into the proximal mapping associated with the GCNIR regularizer φ,
we briefly introduce ∑n−1

i=1 |zi − zi+1| and relevant results, which are discussed in [14].
Define q(z) = ∑n−1

i=1 |zi − zi+1| = ∥Bz∥1, where B is defined by

B =

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
.

...
0 0 · · · 1 −1

(n−1)×n

.

The proximal mapping Zτ(·) with respect to τq is given as

Zτ(w) := argmin
z

{
1
2
∥z− w∥2 + τq(z)

}
, ∀w ∈ Rn.

Lemma 1. (See [14], Lemma 1). For any given τ ≥ 0, we have that Zτ(w) = w− B⊤Sτ(Bw),
where

Sτ(w) := argmin
s

{
1
2
∥B⊤s∥2 − ⟨s, w⟩ | ∥s∥∞ ≤ τ

}
, ∀w ∈ Rn−1. (6)

On the basis of the above lemma, we can now explicitly calculate Proxp(·). For later
convenience, we define wτ = w− τ(e1 − en)/2.

Mathematics 2025, 13, 501 5 of 18

Proposition 1. For any given λ, τ ≥ 0, it follows that for any w ∈ Rn,

Proxφ(w) = Proxλ∥·∥1
(Zτ/2(wτ)) = sign(Zτ/2(wτ)) ◦max(|Zτ/2(wτ)| − λ, 0).

Proof. According to the definition of the proximal mapping, it holds that for any w ∈ Rn,

Proxφ(w) = argmin
z

{
1
2
∥z− w∥2 + φ(z)

}
= argmin

z

{
1
2
∥z− w∥2 + λ∥z∥1 + τ

n−1

∑
i=1

(zi − zi+1)+

}

= argmin
z

{
1
2
∥z− w∥2 + λ∥z∥1 +

τ

2

n−1

∑
i=1
|zi − zi+1|+

τ

2
⟨z, e1 − en⟩

}

= argmin
z

{
1
2

∥∥∥z−
(

w− τ

2
(e1 − en)

)∥∥∥2
+ λ∥z∥1 +

τ

2

n−1

∑
i=1
|zi − zi+1|

}
= Proxλ∥·∥1+

τ
2 q

(
w− τ

2
(e1 − en)

)
.

It follows from ([28], Corollary 4) that for any w ∈ Rn,

Proxλ∥·∥1+
τ
2 q

(
w− τ

2
(e1 − en)

)
= Proxλ∥·∥1

(Zτ/2(wτ))

= sign(Zτ/2(wτ)) ◦max(|Zτ/2(wτ)| − λ, 0).

This completes the proof.

Next, we analyze the generalized Jacobian of Proxφ(·), which is crucial for leverag-
ing computational efficiency. We begin with presenting some findings concerning the
generalized HS-Jacobian for Sτ(·), according to [14,29].

As noted in [14], the generalized HS-Jacobian for Sτ/2 at Bwτ is given by

Q(wτ) =
{

Q ∈ R(n−1)×(n−1) | Q = (ΣγBB⊤Σγ)
†, γ ∈ Γ(wτ)

}
,

where Σγ = Diag(σγ) ∈ R(n−1)×(n−1) with

(σγ)i =

0 if i ∈ Γ,

1 otherwise, i = 1, 2, . . . , n− 1,

and Γ(wτ) = {γ ⊆ {1, 2, . . . , n− 1} | Supp(ξ) ⊆ γ ⊆ I(wτ)}, where ξ = B(Zτ/2(wτ)) is
an optimal Lagrangian multiplier for the constraint ∥s∥∞ ≤ τ/2 and

I(wτ) =
{

i ⊆ {1, 2, . . . , n− 1}
∣∣∣ |Sτ/2(B(wτ))|i = τ/2

}
(7)

is an active index set.
The multifunctionH : Rn ⇒ Rn×n is given by

H(wτ) =
{

H ∈ Rn×n | H = In − B⊤QB, Q ∈ Q(wτ)
}

.

The subsequent proposition demonstrates that Q(wτ) andH(wτ) may be regarded as
the generalized HS-Jacobian for Sτ/2 at Bwτ , Zτ/2 at wτ , respectively.

Mathematics 2025, 13, 501 6 of 18

Proposition 2. For all w ∈ Rn, there exists a neighborhood X of w such that for any x ∈ X ,
Γ(xτ) ⊆ Γ(wτ), Q(xτ) ⊆ Q(wτ), H(xτ) ⊆ H(wτ),
Sτ/2(Bxτ) = Sτ/2(Bwτ) + QB(x− w), ∀Q ∈ Q(xτ),
Zτ/2(xτ) = Zτ/2(wτ) + H(x− w), ∀H ∈ H(xτ),

where xτ = x− τ(e1 − en)/2.

Proof. The results are derived from [14] (Proposition 2) and [29] (Lemma 2.1) with minor
revisions.

The multifunction V : Rn ⇒ Rn×n is defined as

V(w) :=

{
V ∈ Rn×n

∣∣∣∣∣ V = ΘH,
Θ ∈ ∂BProxλ∥·∥1

(Zτ/2(wτ)),
H ∈ H(wτ)

}
, (8)

where

∂BProxλ∥·∥1
(η) =

Diag(ω)

∣∣∣∣∣
ωi = 0 |ηi| < λ,
ωi ∈ {0, 1} |ηi| = λ,
ωi = 1 |ηi| > λ,

.

The mapping V(w) essentially acts as the generalized Jacobian for Proxφ at w, which can be
derived using the change-of-variables technique from previous work in [14] (Theorem 2).

Theorem 1. Let λ and τ be non-negative real numbers, and let w be an element of Rn. The set-
valued function V has the following properties: it is compact-valued, nonempty, and upper semi-
continuous. For each V ∈ V(w), it can be concluded that the matrix V is symmetric and positive
semidefinite. Furthermore, there exists a neighborhood X of w that for any x ∈ X ,

Proxφ(x)− Proxφ(w)−V(x− w) = 0, ∀V ∈ V(x).

3. A Semismooth Newton-Based Augmented Lagrangian Algorithm
This section introduces the semismooth Newton-based augmented Lagrangian (SS-

NAL) algorithm, an efficient approach for solving the GCNIR problem in the high-
dimension low-sample setting, i.e., the case of m ≪ n. Directly applying the SSNAL

algorithm to the primal problem would require solving a linear system of n× n dimension,
leading to significant computational costs, particularly for large-scale problems. To over-
come this, we solve the GCNIR problem from the dual perspective.

We can reformulate the GCNIR problem (1) as

min
z∈Rn , v∈Rm

{
1
2
∥v∥2 + φ(z)

∣∣∣ Az− v = b
}

. (P)

The dual problem of (P) takes the following minimization form:

min
s∈Rm , ζ∈Rn

{
1
2
∥s∥2 + ⟨b, s⟩+ φ∗(ζ)

∣∣∣ A⊤s + ζ = 0
}

. (D)

The Lagrangian function of (D) is

l(s, ζ; z) =
1
2
∥s∥2 + ⟨b, s⟩+ φ∗(ζ)− ⟨z, A⊤s + ζ⟩.

Mathematics 2025, 13, 501 7 of 18

Additionally, given σ > 0, the augmented Lagrangian function of (D) takes the form:

Lσ(s, ζ; z) = l(s, ζ; z) +
σ

2
∥A⊤s + ζ∥2.

3.1. The Framework of the SSNA Algorithm

Below is the outline of the framework for an SSNAL algorithm designed to solve
problem (D) (Algorithm 1).

Algorithm 1 (SSNAL) A semismooth Newton-based augmented Lagrangian algorithm
for (D)
Initialization: σ0 > 0, s0 ∈ Rm, ζ0 ∈ Rn, z0 ∈ Rn, j = 0.

1: Compute
sj+1 ≈ argmin

s∈Rm
{Φj(s)}. (9)

2: Compute ζ j+1 =
(

zj − σj A⊤sj+1 − Proxσj φ

(
zj − σj A⊤sj+1))/σj.

3: Update zj+1 = zj − σj(A⊤sj+1 + ζ j+1).
4: Update σj+1 ↑ σ∞ ≤ ∞, set j← j + 1, and go to Step 1.

The stopping criteria, which have been studied in [30,31] for approximately solving
the solution to (9), can be stated as:

∥∇Φj(sj+1)∥ ≤ ϵj/
√

σj,
∞

∑
j=0

ϵj < ∞, ϵj > 0, (C1)

∥∇Φj(sj+1)∥ ≤ ρj
√

σj∥A⊤sj+1 + ζ j+1∥,
∞

∑
j=0

ρj < ∞, ρj > 0, (C2)

∥∇Φj(sj+1)∥ ≤ ρ′j∥A⊤sj+1 + ζ j+1∥, 0 ≤ ρ′j → 0. (C3)

Next, we present the convergence results of the SSNAL algorithm, addressing both
global and local convergence. Since problem (P) is feasible, ref. [30] (Theorem 4) establishes
that satisfying the stopping criterion (C1) guarantees the global convergence of the SSNAL

algorithm for problem (D).

Theorem 2. (Global convergence.) The infinite sequence (sj, ζ j; zj) generated by the Algorithm 1,
in accordance with the stopping criteria specified in (C1), ensures that the sequence zj converges
to an optimal solution of problem (P) and the sequence (sj, ζ j) converges to the unique optimal
solution of problem (D).

Let the objective function of problem (P) be denoted by f (z) := 1
2∥Az− b∥2 + φ(z).

It is clear that Tf (z) := ∂ f (z) and Tl(s, ζ; z) := {(s′, ζ ′; z′) | (s′, ζ ′;−z′) ∈ ∂l(s, ζ; z)} are
piecewise polyhedral multifunctions as described in [32]. This implies that both T f and
Tl satisfy error bound conditions at the original point with positive moduli c f and cl ,
respectively, as characterized in [33].

Following the analysis presented, we establish the local convergence of Algorithm 1,
supported by the results in [12,30,31,34]. The proofs are analogous to those in [12]
(Theorems 3.3). Therefore, we omit the detailed proofs here.

Theorem 3. (Local convergence.) Given the conditions specified in (C1) and (C2), the sequence
(sj, ζ j, zj) generated by the Algorithm 1 converges to (s∗, ζ∗, z∗), and for sufficiently large values of
j, the following holds:

∥zj+1 − z∗∥ ≤ δj ∥zj − z∗∥,

Mathematics 2025, 13, 501 8 of 18

where δj = (2ρj + c f /
√

c2
f + σ2

j)/(1− ρj) and limj→∞ δj = c f /
√

c2
f + σ2

∞ < 1. Furthermore,
if the condition (C3) is also applied, then for sufficiently large values of j,

∥(sj+1, ζ j+1)− (s∗, ζ∗)∥ ≤ δ′j∥zj+1 − zj∥,

where δ′j = cl(1 + ρ′j)/σj → cl/σ∞ when j→ ∞.

3.2. SSN Algorithm for Subproblem (9)

We shall present a highly effective semismooth Newton (SSN) algorithm designed to
tackle problem (9) in this subsection.

For any given σ > 0 and a fixed z̃ ∈ Rn, our goal is to solve the following problem:

min
s∈Rm

{
Φ(s) := inf

ζ
Lσ(s, ζ; z̃)

}
, (11)

where the objective function of problem (11) is given by

Φ(s) = M1/σ
φ∗

(
z̃
σ
− A⊤s

)
− 1

2σ
∥z̃∥2 + ⟨s, b⟩+ 1

2
∥s∥2.

It is well known that Φ(·) is continuously differentiable with

∇Φ(s) = −AProxσφ(z̃− σA⊤s) + b + s = −σAProxφ

(
z̃
σ
− A⊤s

)
+ b + s.

Since Φ(·) is strongly convex, we can obtain the unique solution of problem (11) via solving
the following nonsmooth equations:

∇Φ(s) = 0. (12)

For any s ∈ Rm, the multifunction is well defined and can be expressed as

N (s) :=
{

N ∈ Rm×m
∣∣∣ N = Im + σAVA⊤, V ∈ V

(
z̃
σ
− A⊤s

)}
,

where the operator V is defined in (8).

Remark 1. Based on Theorem 1, we can deduce that V is not only nonempty but also has the
properties of being compact-valued and upper semicontinuous. In addition, each component of the
function N (·) is symmetric and positive definite.

Before delving into the SSN algorithm, we introduce the following lemma, the proof
of which is analogous to the one presented in [15] (Remark 2.12).

Lemma 2. For any positive constant r, the proximal mapping Proxφ(·) is r-order semismooth at
w ∈ Rn with respect to the multifunction V . Similarly, the gradient ∇Φ is r-order semismooth at
s ∈ Rm with respect to the multifunction N .

Proof. Given that Sτ/2(·) and Proxλ∥·∥1
(·) are piecewise affine functions as shown in [14], it

follows that Zτ/2(·) is Lipschitz continuous. Consequently, the proximal mapping Proxφ(·)
is also a piecewise affine function that maintains Lipschitz continuity. As established in [35],
Proxφ(·) is directionally differentiable at every point. Combining this with Theorem 1 and
the definition of semismoothness [36–39], we can conclude that Proxφ(·) exhibits r-order

Mathematics 2025, 13, 501 9 of 18

semismoothness on Rn. Similarly, it can be inferred that ∇Φ also demonstrates r-order
semismoothness on Rm. This completes the proof.

Given that the gradient ∇Φ(·) is nonsmooth, it is appropriate to employ the
semismooth Newton (SSN) algorithm instead of the standard Newton method to solve
Equations (12). Building on the analysis provided, we are now ready to proceed with the
development of an SSN algorithm to solve (12) (Algorithm 2).

Algorithm 2 (SSN) A semismooth Newton algorithm for (12)

Initialization: s0 ∈ Rn, α ∈ (0, 1/2), β ∈ (0, 1). Set t = 0.
1: Select Nt ∈ N (st). Solve the following linear system

Ntd = −∇Φ(st). (13)

2: Set µt = βmt , where mt is the first nonnegative integer m such that

Φ(st + βmdt) ≤ Φ(st) + αβm⟨∇Φ(st), dt⟩.

3: Update st+1 = st + µtdt, t← t + 1, and go to step 1.

For problem (13), we can employ the conjugate gradient algorithm to obtain dt

such that
∥Ntdt +∇Φ(st)∥ ≤ min{ϱ, ∥∇Φ(st)∥1+ξ}, (14)

where ϱ ∈ (0, 1), ξ ∈ (0, 1]. Regarding the convergence of Algorithm 2, it is confirmed in
the work of Li [14] (Theorem 3), and we now present their result directly as follows.

Theorem 4. The infinite sequence st, generated by the Algorithm 2, converges to the unique optimal
solution s̄ to problem (11). Additionally, it follows that

∥st+1 − s̄∥ = O(∥st − s̄∥1+ξ),

where ξ is given in solving problem (14).

When applying Algorithm 2 to solve problem (12), the most computationally intensive
step involves determining the search direction, which is derived from solving the linear
system (13), i.e.,

(Im + σAVA⊤)d = −∇Φ(s). (15)

Therefore, we aim to investigate the second-order information of the matrix V to reduce
computation time. Firstly, let Θ = Diag(θ) with

θi =

0 if |Zτ/2(wτ)|i ≤ λ

1 otherwise
, i = 1, 2, . . . , n,

and denote Σ = Diag(σ) ∈ R(n−1)×(n−1) with

σi =

0 if i ∈ I(wτ)

1 otherwise
, i = 1, 2, . . . , n− 1,

where I(wτ) is given as in (7). It is derived from [14] (Propositions 2 and 3) that V0 ∈ V(w),
i.e.,

V0 = ΘH = Θ(In − B⊤(ΣBB⊤Σ)†B),

Mathematics 2025, 13, 501 10 of 18

where H ∈ H(wτ). Additionally, we can restructure H as a block diagonal matrix and
exploit the generalized Jacobian’s sparse low-rank structure to substantially reduce com-
putation time. Moreover, we have several options for solving the linear system (15), such
as the Cholesky factorization, Sherman–Morrison–Woodbury (SMW) formula, or pre-
conditioned conjugate gradient (PCG) method. These techniques further contribute to
improving computational efficiency. Specific details can be found in [14,40], which we do
not repeat here.

4. Numerical Experiments
In this section, we evaluate the efficiency of the SSNAL algorithm for solving the GC-

NIR problem by comparing it with the ADMM and APG algorithms using both synthetic
and real datasets. The computational results were achieved by using MATLAB R2022b on a
Dell desktop equipped with an Intel(R) Core(TM) i7-11700 CPU running at 2.50 GHz, along
with 8 GB of RAM.

4.1. Some First-Order Methods for the GCNIR Problem

We provide a brief overview of the framework of ADMM and APG.
ADMM is recognized as a representative algorithm for addressing convex optimization

problems [41], including the problem presented in (D). Here is a summary of the framework
for the ADMM algorithm (see Algorithm 3):

Algorithm 3 ADMM for the dual problem (D)

Initialization: Set σ > 0, c ∈ (0, (1 +
√

5)/2), ζ0 ∈ Rn, z0 ∈ Rn, and initialize j = 0.
1: Address

sj+1 ≈ argmin
s∈Rm

Lσ(s, ζ j; zj). (16)

by utilizing either direct solvers or iterative methods like preconditioned conjugate
gradient (PCG) method for solving this linear system to obtain sj+1:

(Im + σAA⊤)s = A(zj − σζ j)− b.

2: Calculate ζ j+1 = argmin
ζ∈Rn

Lσ(sj+1, ζ; zj) = Proxφ∗/σ

(
zj

σ − A⊤sj+1
)

.

3: Update zj+1 = zj − cσ(A⊤sj+1 + ζ j+1).
4: Set j← j + 1, and go to Step 1.

Let L = λmax(A⊤A), representing the Lipschitz constant for function ∥Az− b∥2/2 in
the primal problem (P). Here is a summary of the framework for the APG algorithm (see
Algorithm 4):

Algorithm 4 APG for the primal problem (P)

Initialization: Choose ϵ > 0, set x0 = z0 ∈ Rn, r0 = 1, and initialize j = 0.
1: Calculate

zj+1 = Proxφ/L

(
xj − A⊤(Axj − b))

L

)
.

2: Compute rj+1 = (1 +
√

1 + 4r2
j)/2.

3: Update

xj+1 = zj+1 +
rj − 1
rj+1

(zj+1 − zj).

4: Set j← j + 1, and go to Step 1.

Mathematics 2025, 13, 501 11 of 18

4.2. Stopping Criteria

Utilizing the KKT conditions of problem (P) and (D), we can obtain the following
relative KKT residual:

EP :=
∥Az− b− s∥

1 + ∥b∥ , ED :=
∥A⊤s + ζ∥

1 + ∥ζ∥ , EK :=
∥z− Proxφ(z− A⊤(Az− b))∥

1 + ∥z∥+ ∥A⊤(Az− b)∥
.

In addition, let objP and objD represent the objective values of (P) and (D), respectively,
i.e.,

objP :=
1
2
∥Az− b∥2 + λ∥z∥1 + τ

n−1

∑
i=1

(zi − zi+1)+, objD := −1
2
∥s∥2 − ⟨b, s⟩,

Then, the relative dual gap is defined by

EG :=
|objP − objD|

1 + |objP|+ |objD|
.

In later experiments, we start the SSNAL algorithm with the parameters (s0, ζ0, z0) =

(0, 0, 0) and terminate it when Res := max{EP, ED, EK, EG} ≤ tol with a given error
tolerance “to”. To enhance convergence speed, it is essential to dynamically modify
the penalty parameter σ in the SSNAL algorithm. Specifically, we initially set σ0 =

min(1, 1/
√

λmax(AA⊤)) and tune σj+1 every three steps, i.e.,

σj+1 =

max{0.001, 0.002σj}, Ej

D < 0.1Ej
P,

min{5000, 50σj}, Ej
D > 10Ej

P,
σj, otherwise,

where σj, Ej
P, and Ej

D represent the values of σ, EP, and ED during the j-th iteration,
respectively.

In the case of the ADMM algorithm, we set the initial point (s0, ζ0, z0) = (0, 0, 0) and
terminate the algorithm when Res = EK ≤ tol. For the APG algorithm, we start the initial
point (z0, x0) = (0, 0) and terminate the algorithm when Res = EK ≤ tol.

Additionally, we set a tolerance level of tol = 10−6. The tested algorithms will
terminate under two conditions: either upon reaching their maximum number of iterations
(100 for SSNAL; 30,000 for ADMM and APG) or if their running time exceeds 3 h.

In the following tables, “nnz” and “mon” represent the counts of non-zero elements in
z and Bz, as derived from SSNAL through these estimations:

nnz := min

{
j |

j

∑
k=1
|z|(k) ≥ 0.999∥z∥1

}
,

mon := min

{
j |

j

∑
k=1
|(Bz)+|(k) ≥ 0.999∥(Bz)+∥1

}
,

where |z|(k) represents the k-th largest component in |z|, ordered as |z|(1) ≥ |z|(2) ≥ · · · ≥
|z|(n). Time is shown in seconds.

4.3. Results on Synthetic Data

In this subsection, we evaluate the performance of three algorithms: SSNAL, ADMM,
and APG on synthetic data.

Mathematics 2025, 13, 501 12 of 18

In later experiments, we test five instances: (m; n) = (300k; 8000k), k = 1, . . . , 5.
To create synthetic data, we employ the model

b = Az + ξ̃ϵ, ϵ ∼ N(0, I),

where A ∈ Rm×n is drawn from a Gaussian distribution N(0, In) and z ∈ Rn is generated
by a distributed random number. Following the way provided in [15], we set ξ̃ to be
0.1∥Az∥/∥ϵ∥ for each case. The regularization parameters for the GCNIR problem (1) are
specified as follows:

λ = 0.5ϖ∥A⊤b∥∞, τ = λ, (P1)

where 0 < ϖ < 2. In total, we test 20 instances.
Table 1 presents a comparative analysis of the performance of three algorithms on

synthetic datasets ranging from small to large scales. It is evident that the SSNAL algorithm
exhibits both efficiency and robustness across a variety of parameter settings. Although all
algorithms are capable of solving the problem with the required level of accuracy, SSNAL

consistently outperforms the other two methods in terms of computational time. For in-
stance, in the case of instance 5 with ϖ = 0.6, SSNAL completes the task in a mere 3 s,
whereas ADMM and APG take over 60 and 80 s, respectively.

Table 1. The performances of SSNAL, ADMM, and APG when applied to synthetic data.

i λmax(AA⊤) ϖ nnz; mon
Time Res

SSNAL | ADMM | APG SSNAL | ADMM | APG

1 1.13× 104 0.6 93; 69 0.26 | 0.40 | 1.56 1.85× 10−7 | 9.42× 10−7 | 9.69× 10−7

0.7 57; 45 0.19 | 0.32 | 1.29 7.75× 10−8 | 9.21× 10−7 | 9.99× 10−7

0.8 25; 20 0.11 | 0.29 | 1.12 2.02× 10−8 | 8.89× 10−7 | 9.40× 10−7

0.9 9; 8 0.07 | 0.29 | 0.66 5.60× 10−7 | 8.38× 10−7 | 9.41× 10−7

2 2.28× 104 0.6 144; 100 0.53 | 4.25 | 13.38 3.13× 10−8 | 9.97× 10−7 | 9.90× 10−7

0.7 73; 53 0.48 | 4.20 | 9.85 7.98× 10−9 | 9.30× 10−7 | 9.69× 10−7

0.8 23; 16 0.29 | 3.85 | 7.11 3.87× 10−7 | 9.36× 10−7 | 9.57× 10−7

0.9 8; 5 0.16 | 3.72 | 3.64 1.07× 10−7 | 9.72× 10−7 | 9.77× 10−7

3 3.43× 104 0.6 251; 170 1.57 | 16.54 | 41.17 2.56× 10−8 | 9.91× 10−7 | 9.92× 10−7

0.7 134; 93 1.02 | 16.24 | 30.42 6.80× 10−7 | 9.82× 10−7 | 9.66× 10−7

0.8 54; 37 0.78 | 15.50 | 23.71 3.08× 10−7 | 9.29× 10−7 | 9.98× 10−7

0.9 14; 8 0.42 | 14.51 | 19.73 1.09× 10−7 | 9.21× 10−7 | 9.83× 10−7

4 4.55× 104 0.6 286; 205 2.01 | 35.65 | 63.67 9.47× 10−7 | 9.52× 10−7 | 9.94× 10−7

0.7 145; 102 1.77 | 33.64 | 49.07 3.31× 10−7 | 9.77× 10−7 | 9.94× 10−7

0.8 58; 40 1.12 | 31.12 | 39.93 1.46× 10−7 | 9.60× 10−7 | 9.50× 10−7

0.9 12; 9 0.64 | 28.96 | 34.60 7.32× 10−8 | 9.66× 10−7 | 9.47× 10−7

5 5.69× 104 0.6 189; 133 2.62 | 61.07 | 83.39 3.50× 10−7 | 9.68× 10−7 | 9.98× 10−7

0.7 69; 47 1.50 | 58.16 | 63.74 1.24× 10−7 | 9.44× 10−7 | 9.59× 10−7

0.8 10; 9 1.10 | 52.05 | 53.83 6.25× 10−8 | 9.16× 10−7 | 9.41× 10−7

0.9 4; 3 0.83 | 50.61 | 42.12 2.10× 10−8 | 8.82× 10−7 | 9.61× 10−7

4.4. Results on Real Datasets

We evaluate the performances of three methods on three datasets: 10-K Corpus,
StatLib, and UCI, which have been sourced from the LIBSVM datasets [42].

In our experiments with real datasets, we follow the methodology in [12] and utilize
polynomial basis functions [43] to expand the original features across twelve datasets.
For example, the number “10” in “mgscale10” indicates that we use a tenth-order polyno-
mial to generate the basis functions. Furthermore, Table 2 provides statistical details for the

Mathematics 2025, 13, 501 13 of 18

twelve datasets under consideration, where “m” refers to the sample size and “n” denotes
the number of features. For the GCNIR problem, the regularization parameters are set as
the following three different strategies [13,14]: (P1) given in the previous section and

λ = 0.5ϖ∥A⊤b∥∞, τ = 9λ; (P2)

λ = 0.5ϖ∥A⊤b∥∞, τ = λ/
√

n. (P3)

In our experiments, we use two values of ϖ for all datasets.

Table 2. Summary of tested data sets.

No. Proname m; n λmax(AA⊤)

N1 E2006.train 16,087;150,360 1.91× 105

N2 E2006.test 3308; 150,358 4.79× 104

N3 pyrim5 74; 201,376 1.22× 106

N4 triazines4 186; 635,376 2.07× 107

N5 abalone7 4177; 6435 5.21× 105

N6 bodyfat7 252; 116,280 5.29× 104

N7 housing7 506; 77,520 3.28× 105

N8 mpg7 392; 3432 1.28× 104

N9 space9 3107; 5005 4.01× 103

N10 mg10 1385; 8008 5.11× 103

N11 eunite2001 train6 336; 74,613 3.54× 104

N12 eunite2001 test6 31; 74,613 2.14× 103

Tables 3–5 display the comparative results of the three algorithms across parameter
sets (P1), (P2), and (P3), respectively. An analysis of these tables reveals that the SSNAL

algorithm was able to solve all 72 test cases within a 70 s timeframe, with the majority
of these cases being resolved in under 20 s. In comparison, ADMM encountered failures
in 23 cases, while APG failed in 50 instances. These results underscore the superior
performance of SSNAL, which not only consistently outperformed ADMM and APG in
terms of speed but also demonstrated a higher success rate.

Table 3. The performances of SSNAL, ADMM, and APG when applied to real datasets with the
regularization parameters defined as in (P1).

No. ϖ nnz; mon
Time Res

SSNAL | ADMM | APG SSNAL | ADMM | APG

N1 1× 10−5 3; 2 1.48 | 918.82 | 394.89 2.11× 10−7 | 9.97× 10−7 | 5.89× 10−7

1× 10−6 30; 27 2.95 | 10,425.34 | 3574.08 3.13× 10−7 |1.64 * × 10−7 |6.47 × 10−7

N2 1× 10−5 1; 1 0.87 | 5.35 | 2.69 1.78× 10−7 | 7.19× 10−7 | 1.44× 10−10

1× 10−6 53; 51 1.40 | 1415.89 | 1147.08 3.39× 10−7 |4.12 × 10−4 |2.79 × 10−4

N3 1× 10−3 188; 62 9.35 | 1218.89 | 1769.23 2.19× 10−9 | 9.99× 10−7 |1.14 × 10−3

1× 10−4 229; 72 12.64 | 1844.98 | 1759.28 1.99× 10−8 |1.19 × 10−4 |3.58 × 10−3

N4 1× 10−3 813; 144 44.33 | 10,800.13 | 10,800.24 7.25× 10−7 |8.61 × 10−4 |2.67 × 10−3

1× 10−4 932; 191 66.75 | 10,800.39 | 10,800.20 5.07× 10−8 |4.20 × 10−4 |1.51 × 10−2

N5 1× 10−3 31; 16 3.74 | 203.73 | 3056.66 2.16× 10−8 | 9.95× 10−7 |2.08 × 10−5

1× 10−4 76; 57 8.13 | 2050.13 | 3028.76 6.65× 10−8 | 1.00× 10−6 |8.40 × 10−4

N6 1× 10−3 2; 2 4.03 | 1718.95 | 613.07 1.01× 10−9 | 1.00× 10−6 | 6.60× 10−7

1× 10−4 4; 3 4.78 | 1087.70 | 2832.63 1.10× 10−9 | 1.00× 10−6 | 9.89× 10−7

Mathematics 2025, 13, 501 14 of 18

Table 3. Cont.

No. ϖ nnz; mon
Time Res

SSNAL | ADMM | APG SSNAL | ADMM | APG

N7 1× 10−3 192; 121 8.07 | 1391.03 | 3812.60 2.83× 10−8 | 1.00× 10−6 |5.54 × 10−5

1× 10−4 337; 232 10.96 | 4666.00 | 4022.00 9.20× 10−8 | 1.00× 10−6 |2.20 × 10−3

N8 1× 10−3 57; 33 0.35 | 0.96 | 15.52 4.17× 10−9 | 1.00× 10−6 |1.68 × 10−6

1× 10−4 169; 99 0.48 | 27.31 | 20.70 9.73× 10−7 |1.59 × 10−5 |5.51 × 10−5

N9 1× 10−3 23; 12 0.92 | 105.33 | 272.03 3.45× 10−7 | 9.97× 10−7 | 8.64× 10−7

1× 10−4 47; 31 1.38 | 1057.48 | 1602.03 1.26× 10−8 | 1.00× 10−6 |5.78 × 10−6

N10 1× 10−3 28; 21 0.66 | 37.79 | 268.66 1.26× 10−7 | 9.98× 10−7 | 9.92× 10−7

1× 10−4 87; 60 1.44 | 505.11 | 1062.37 2.73× 10−8 | 1.00× 10−6 |2.98 × 10−6

N11 1× 10−3 22; 7 3.17 | 204.05 | 2806.48 2.80× 10−8 | 9.96× 10−7 |1.94 × 10−5

1× 10−4 142; 26 3.27 | 321.88 | 2704.28 9.52× 10−8 | 9.99× 10−7 |4.34 × 10−5

N12 1× 10−3 19; 5 0.75 | 27.07 | 241.41 2.25× 10−8 | 9.98× 10−7 |5.09 × 10−6

1× 10−4 102; 27 0.88 | 252.12 | 248.56 3.96× 10−7 |9.87 × 10−6 |7.27 × 10−6

* The bolded data indicate that the corresponding value did not meet the precision requirements.

Table 4. The performances of SSNAL, ADMM, and APG when applied to real datasets with the
regularization parameters defined as in (P2).

No. ϖ nnz; mon
Time Res

SSNAL | ADMM | APG SSNAL | ADMM | APG

N1 1× 10−5 1; 1 1.03 | 289.40 | 2.51 9.13× 10−9 | 9.63× 10−7 | 5.50× 10−9

1× 10−6 3; 2 2.16 | 1142.71 | 2192.27 5.88× 10−8 | 9.99× 10−7 | 2.36× 10−7

N2 1× 10−5 1; 1 0.33 | 5.97 | 0.70 1.12× 10−7 | 7.18× 10−7 | 2.78× 10−9

1× 10−6 5; 4 0.64 | 274.56 | 1128.41 1.92× 10−7 | 9.99× 10−7 |2.16 * × 10−5

N3 1× 10−3 716; 46 5.70 | 574.10 | 1760.94 1.00× 10−8 | 9.99× 10−7 |5.91 × 10−4

1× 10−4 776; 61 7.90 | 1785.58 | 1728.24 8.79× 10−7 |9.31 × 10−5 |5.62 × 10−3

N4 1× 10−3 2475; 119 26.30 | 10,800.38 | 10,800.40 4.09× 10−8 |2.41 × 10−3 |9.35 × 10−4

1× 10−4 3525; 161 50.08 | 10,800.09 | 10,800.13 2.56× 10−7 |4.60 × 10−5 |8.83 × 10−3

N5 1× 10−3 96; 9 2.18 | 232.40 | 2917.46 6.92× 10−9 | 9.95× 10−7 |4.89 × 10−6

1× 10−4 82; 21 4.39 | 202.29 | 2925.83 6.72× 10−9 | 9.97× 10−7 |1.76 × 10−4

N6 1× 10−3 9; 3 1.98 | 1187.52 | 1422.26 6.39× 10−7 | 1.00× 10−6 | 9.71× 10−7

1× 10−4 8; 3 3.30 | 1064.66 | 2015.64 3.20× 10−7 | 1.00× 10−6 | 9.62× 10−7

N7 1× 10−3 347; 52 5.07 | 711.36 | 4618.18 5.92× 10−8 | 1.00× 10−6 |1.75 × 10−5

1× 10−4 711; 125 8.65 | 3054.37 | 4570.98 1.61× 10−7 | 1.00× 10−6 |2.74 × 10−4

N8 1× 10−3 53; 13 0.24 | 1.15 | 13.51 4.70× 10−7 | 1.00× 10−6 | 9.96× 10−7

1× 10−4 214; 51 0.52 | 11.98 | 19.47 7.79× 10−8 | 1.00× 10−6 |1.09 × 10−5

N9 1× 10−3 16; 8 0.74 | 6.79 | 44.64 1.10× 10−9 | 8.36× 10−7 | 9.60× 10−7

1× 10−4 70; 18 1.27 | 553.37 | 1597.02 3.19× 10−8 | 1.00× 10−6 | 9.91× 10−7

N10 1× 10−3 34; 12 0.73 | 5.65 | 100.67 3.00× 10−7 | 9.32× 10−7 | 9.97× 10−7

1× 10−4 151; 33 0.96 | 219.02 | 701.33 6.53× 10−8 | 9.99× 10−7 | 1.00× 10−6

N11 1× 10−3 110; 3 1.89 | 304.06 | 874.43 9.99× 10−9 | 9.99× 10−7 | 9.53× 10−7

1× 10−4 811; 19 3.24 | 180.17 | 2900.86 8.66× 10−8 | 9.99× 10−7 |4.28 × 10−5

N12 1× 10−3 218; 3 0.56 | 10.26 | 52.18 1.81× 10−7 | 1.00× 10−6 | 9.41× 10−7

1× 10−4 491; 15 0.84 | 266.41 | 254.19 3.78× 10−7 |2.06 × 10−6 |3.66 × 10−6

* The bolded data indicate that the corresponding value did not meet the precision requirements.

Mathematics 2025, 13, 501 15 of 18

From Table 3, SSNAL not only succeeds in achieving the required accuracy but also
takes less time than ADMM and APG. For instance, in the case of N7 with ϖ = 1× 10−4,
the SSNAL algorithm takes 10.96 s to reach the high accuracy of Res = 9.20× 10−8, while the
ADMM algorithm needs 4666 s to achieve the lower accuracy of Res = 1.00× 10−6, and the
APG algorithm even requires 4022 s to achieve a relatively large error of Res = 2.20× 10−3.
Therefore, the SSNAL algorithm outperforms the other two algorithms in addressing the
GCNIR problem.

Table 5. The performances of SSNAL, ADMM, and APG when applied to real datasets with the
regularization parameters defined as in (P3).

No. ϖ nnz; mon
Time Res

SSNAL | ADMM | APG SSNAL | ADMM | APG

N1 1× 10−5 2; 2 3.09 | 1863.19 | 2538.36 5.75× 10−7 | 9.99× 10−7 | 9.56× 10−7

1× 10−6 95; 93 4.55 | 9785.88 | 3499.10 3.32× 10−7 |4.03 * × 10−4 |1.02 × 10−3

N2 1× 10−5 3; 3 1.97 | 180.83 | 1142.03 3.34× 10−8 | 9.99× 10−7 |1.98 × 10−5

1× 10−6 170; 168 7.19 | 1411.02 | 1103.22 6.32× 10−7 |4.20 × 10−4 |5.08 × 10−4

N3 1× 10−3 84; 83 4.39 | 1615.80 | 1548.70 3.38× 10−7 |3.10 × 10−5 |9.85 × 10−4

1× 10−4 79; 78 4.62 | 1571.90 | 1546.56 9.00× 10−7 |9.94 × 10−4 |3.05 × 10−3

N4 1× 10−3 231; 168 33.43 | 10,800.08 | 10,800.05 7.56× 10−7 |3.58 × 10−4 |4.47 × 10−3

1× 10−4 230; 192 52.89 | 10,800.22 | 10,800.35 3.57× 10−7 |3.72 × 10−2 |1.33 × 10−2

N5 1× 10−3 29; 28 4.48 | 972.66 | 3166.79 1.33× 10−7 | 1.00× 10−6 |1.04 × 10−4

1× 10−4 92; 86 16.39 | 3582.72 | 3013.39 1.35× 10−7 |1.37 × 10−5 |2.21 × 10−3

N6 1× 10−3 2; 2 3.31 | 1644.35 | 694.08 1.87× 10−8 | 1.00× 10−6 | 3.33× 10−7

1× 10−4 8; 7 3.83 | 846.32 | 2765.49 5.32× 10−8 | 1.00× 10−6 |4.51 × 10−5

N7 1× 10−3 195; 187 7.29 | 3279.67 | 4712.21 5.63× 10−7 | 9.99× 10−7 |1.71 × 10−4

1× 10−4 337; 331 7.50 | 4727.07 | 5025.99 9.51× 10−7 |1.94 × 10−5 |4.61 × 10−3

N8 1× 10−3 56; 54 0.28 | 5.28 | 16.26 2.66× 10−8 | 1.00× 10−6 |6.37 × 10−6

1× 10−4 169; 140 0.41 | 22.06 | 16.95 1.06× 10−7 |1.65 × 10−4 |1.28 × 10−4

N9 1× 10−3 18; 15 0.99 | 133.89 | 531.25 1.13× 10−9 | 9.97× 10−7 | 5.77× 10−7

1× 10−4 50; 39 1.71 | 1936.72 | 1632.34 1.02× 10−7 |2.45 × 10−6 |6.39 × 10−6

N10 1× 10−3 32; 28 0.96 | 39.57 | 471.36 1.72× 10−7 | 9.93× 10−7 | 9.93× 10−7

1× 10−4 92; 86 1.41 | 1105.05 | 1022.00 2.44× 10−7 |2.31 × 10−5 |1.10 × 10−5

N11 1× 10−3 18; 13 2.49 | 290.45 | 2284.04 1.04× 10−8 | 9.97× 10−7 |7.13 × 10−6

1× 10−4 100; 95 3.19 | 1436.32 | 2290.59 6.20× 10−9 | 9.88× 10−7 |1.05 × 10−4

N12 1× 10−3 23; 21 0.63 | 110.50 | 235.08 1.74× 10−7 | 9.97× 10−7 |1.17 × 10−5

1× 10−4 47; 44 0.67 | 243.67 | 236.79 6.24× 10−7 |3.30 × 10−5 |1.41 × 10−5

* The bolded data indicate that the corresponding value did not meet the precision requirements.

Table 4 shows that the number of reversed order coefficients in z is almost the fewest
among all tables. This is because the regularization parameter τ, which enforces mono-
tonicity, is larger than the regularization parameter λ, which enforces sparsity in (P2).
From Table 4, it is also evident that SSNAL demands considerably less time than the other
two methods on twelve cases. Moreover, for more challenging tests, such as N3 with
ϖ = 1× 10−4, only SSNAL successfully solved this problem, while the other two algorithms
did not meet the accuracy requirements. The results strongly indicate that our SSNAL

algorithm can efficiently and reliably solve the GCNIR problem.
Table 5 further illustrates that SSNAL continues to outperform ADMM and APG by

a significant margin. This advantage is particularly pronounced for large-scale problems.

Mathematics 2025, 13, 501 16 of 18

In particular, for the case N4 with ϖ = 1× 10−4, SSNAL solves it to the desired accuracy
within 53 s, while ADMM and APG fail to solve it within 3 h.

Consequently, we can confidently state that our SSNAL algorithm can efficiently and
robustly solve the GCNIR problem (1) on real datasets with high accuracy.

5. Conclusions
In this paper, we proposed a highly efficient semismooth Newton-based augmented

Lagrangian method for solving the GCNIR problem from the dual perspective. The proxi-
mal mapping associated with the GCNIR regularizer and its generalized Jacobian have
been derived, and we have utilized the second-order sparsity structure to achieve superior
performance in solving the subproblem of the SSNAL algorithm. Numerical results have
demonstrated the efficiency and robustness of our proposed algorithm compared to the
widely used ADMM and APG methods on both the synthetic and real datasets. Looking
ahead, we anticipate our algorithm to play a significant role in solving convex problems
with the GCNIR regularizer, thereby facilitating data analysis in statistical learning.

Author Contributions: Conceptualization, Y.-J.L.; methodology, Y.X.; software, Y.X.; validation,
L.L. and Y.-J.L.; formal analysis, Y.X., L.L. and Y.-J.L.; investigation, Y.X.; resources, Y.-J.L.; data
curation, Y.X.; writing—original draft preparation, Y.X.; writing—review and editing, L.L. and
Y.-J.L.; visualization, Y.X.; supervision, L.L. and Y.-J.L.; project administration, L.L. and Y.-J.L.;
funding acquisition, L.L. and Y.-J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
12271097), the Key Program of National Science Foundation of Fujian Province of China (Grant No.
2023J02007), the Central Guidance on Local Science and Technology Development Fund of Fujian
Province (Grant No. 2023L3003), and the Fujian Alliance of Mathematics (Grant No. 2023SXLMMS01,
2025SXLMQN01).

Data Availability Statement: All data generated or analyzed during this study are included in
this article.

Acknowledgments: The authors would very much like to thank the reviewers for their helpful
suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Matyasovszky, I. Estimating red noise spectra of climatological time series. Időjárás Q. J. Hung. Meteorol. Serv. 2013, 117, 187–200.
2. Yu, Y.L.; Xing, E. Exact algorithms for isotonic regression and related. J. Phys. 2016, 699, 012016. [CrossRef]
3. Matsuda, T.; Miyatake, Y. Generalized nearly isotonic regression. arXiv 2021, arXiv:2108.13010.
4. Obozinski, G.; Lanckriet, G.; Grant, C.; Jordan, M.I.; Noble, W.S. Consistent probabilistic outputs for protein function prediction.

Genome Biol. 2008, 9, 247–254. [CrossRef] [PubMed]
5. Barlow, R.E.; Brunk, H.D. The isotonic regression problem and its dual. J. Am. Stat. Assoc. 1972, 67, 140–147. [CrossRef]
6. Tibshirani, R.J.; Hoefling, H.; Tibshirani, R. Nearly-isotonic regression. Technometrics 2011, 53, 54–61. [CrossRef]
7. Tibshirani, R.; Suo, X. An Ordered Lasso and Sparse Time-Lagged Regression. Technometrics 2016, 58, 415–423. [CrossRef]

[PubMed]
8. Lin, L.; Liu, Y.J. An Efficient Hessian Based Algorithm for Singly Linearly and Box Constrained Least Squares Regression. J. Sci.

Comput. 2021, 88, 26. [CrossRef]
9. Ayer, M.; Brunk, H.D.; Ewing, G.M.; Reid, W.T.; Silverman, E. An empirical distribution function for sampling with incomplete

information. Ann. Math. Statist. 1955, 26, 641–647. [CrossRef]
10. Yu, Z.S.; Chen, X.Y.; Li, X.D. A dynamic programming approach for generalized nearly isotonic optimization. Math. Prog. Comp.

2023, 15, 195–225. [CrossRef]
11. Brian R. Gaines, J.K.; Zhou, H. Algorithms for fitting the constrained Lasso. J. Comput. Graph. Stat. 2018, 27, 861–871.

http://doi.org/10.1088/1742-6596/699/1/012016
http://dx.doi.org/10.1186/gb-2008-9-s1-s6
http://www.ncbi.nlm.nih.gov/pubmed/18613950
http://dx.doi.org/10.1080/01621459.1972.10481216
http://dx.doi.org/10.1198/TECH.2010.10111
http://dx.doi.org/10.1080/00401706.2015.1079245
http://www.ncbi.nlm.nih.gov/pubmed/36909149
http://dx.doi.org/10.1007/s10915-021-01541-9
http://dx.doi.org/10.1214/aoms/1177728423
http://dx.doi.org/10.1007/s12532-022-00229-x

Mathematics 2025, 13, 501 17 of 18

12. Li, X.D.; Sun, D.F.; Toh, K.C. A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems.
SIAM J. Optim. 2018, 28, 433–458. [CrossRef]

13. Zhang, Y.; Zhang, N.; Sun, D.; Toh, K.C. An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems.
Math. Program. 2018, 179, 223–263. [CrossRef]

14. Li, X.; Sun, D.; Toh, K.C. On efficiently solving the subproblems of a level-set method for fused Lasso problems. SIAM J. Optim.
2018, 28, 1842–1866. [CrossRef]

15. Lin, M.X.; Liu, Y.J.; Sun, D.F.; Toh, K.C. Efficient sparse semismooth Newton methods for the clustered Lasso problem. SIAM J.
Optim. 2019, 29, 2026–2052. [CrossRef]

16. Sun, D.; Toh, K.C.; Yuan, Y. Convex clustering: Model, theoretical guarantee and efficient algorithm. J. Mach. Learn. Res. 2021,
22, 1–32.

17. Lin, L.; Liu, Y.J. An inexact semismooth Newton-based augmented Lagrangian algorithm for multi-task Lasso problems. Asia
Pac. J. Oper. Res. 2024, 41, 2350027. [CrossRef]

18. Liu, Y.J.; Zhang, T. Sparse Hessian based semismooth Newton augmented Lagrangian algorithm for general ℓ1 trend filtering.
Pac. J. Optim. 2023, 19, 187–204.

19. Liu, Y.J.; Yu, J. A semismooth Newton-based augmented Lagrangian algorithm for density matrix least squares problems. J.
Optim. Theory Appl. 2022, 195, 749–779. [CrossRef]

20. Fang, S.; Liu, Y.J.; Xiong, X. Efficient Sparse Hessian-Based Semismooth Newton Algorithms for Dantzig Selector. SIAM J. Sci.
Comput. 2021, 43, 4147–4171. [CrossRef]

21. Liu, Y.J.; Yu, J. A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem. Comput. Optim.
Appl. 2023, 85, 547–582. [CrossRef]

22. Liu, Y.J.; Zhu, Q. A semismooth Newton based augmented Lagrangian algorithm for Weber problem. Pac. J. Optim. 2022,
18, 299–315.

23. Liu, Y.J.; Xu, J.J.; Lin, L.Y. An easily implementable algorithm for efficient projection onto the ordered weighted ℓ1 norm ball. J.
Oper. Res. Soc. China 2023, 11, 925–940. [CrossRef]

24. Liu, Y.J.; Wan, Y.; Lin, L. An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem. Appl.
Math. Comput. 2024, 475, 128708. [CrossRef]

25. Moreau, J. Proximité et dualité dans un espace hilbertien. Bull. Société Mathématique Fr. 1965, 93, 273–299. [CrossRef]
26. Rockafellar, R. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970; pp. 338–339.
27. Lemaréchal, C.; Sagastizábal, C. Practical aspects of the Moreau–Yosida regularization: Theoretical preliminaries. SIAM J. Optim.

1997, 7, 367–385. [CrossRef]
28. Yu, Y. On decomposing the proximal map. In Proceedings of the 27th International Conference on Neural Information Processing

Systems, New York, NY, USA, 5–10 December 2013; pp. 91–99.
29. Han, J.; Sun, D. Newton and quasi-Newton methods for normal maps with polyhedral sets. J. Optim. Theory Appl. 1997,

94, 659–676. [CrossRef]
30. Rockafellar, R.T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper.

Res. 1976, 1, 97–116. [CrossRef]
31. Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [CrossRef]
32. Rockafellar, R.T.; Wets, R.J.B. Variational Analysis; Springer: Berlin, Germany, 1998; p. 550.
33. Robinson, S.M. Some continuity properties of polyhedral multifunctions. In Mathematical Programming at Oberwolfach; König, H.,

Korte, B., Ritter, K., Eds.; Springer: Berlin, Germany, 1981; pp. 206–214.
34. Luque, F.J. Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 1984, 22, 277–293. [CrossRef]
35. Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer: New York, NY, USA,

2003; p. 345.
36. Mifflin, R. Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 1977, 15, 959–972.

[CrossRef]
37. Kummer, B., Newton’s method for non-differentiable functions. In Advances in Mathematical Optimization; Guddat, J., Ed.; De

Gruyter: Berlin, Germany, 1988; pp. 114–125.
38. Qi, L.; Sun, J. A nonsmooth version of Newton’s method. Math. Program. 1993, 58, 353–367. [CrossRef]
39. Sun, D.; Sun, J. Semismooth matrix-valued functions. Math. Oper. Res. 2002, 27, 150–169. [CrossRef]
40. Luo, Z.; Sun, D.; Toh, K.C.; Xiu, N. Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented

Lagrangian method. J. Mach. Learn. Res. 2019, 20, 1–25.
41. Gabay, D.; Mercier, B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Appl.

Math. Comput. 1976, 2, 17–40. [CrossRef]

http://dx.doi.org/10.1137/16M1097572
http://dx.doi.org/10.1007/s10107-018-1329-6
http://dx.doi.org/10.1137/17M1136390
http://dx.doi.org/10.1137/18M1207752
http://dx.doi.org/10.1142/S0217595923500276
http://dx.doi.org/10.1007/s10957-022-02120-0
http://dx.doi.org/10.1137/20M1364643
http://dx.doi.org/10.1007/s10589-023-00467-2
http://dx.doi.org/10.1007/s40305-022-00414-8
http://dx.doi.org/10.1016/j.amc.2024.128708
http://dx.doi.org/10.24033/bsmf.1625
http://dx.doi.org/10.1137/S1052623494267127
http://dx.doi.org/10.1023/A:1022653001160
http://dx.doi.org/10.1287/moor.1.2.97
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1137/0322019
http://dx.doi.org/10.1137/0315061
http://dx.doi.org/10.1007/BF01581275
http://dx.doi.org/10.1287/moor.27.1.150.342
http://dx.doi.org/10.1016/0898-1221(76)90003-1

Mathematics 2025, 13, 501 18 of 18

42. LIBSVM—A Library for Support Vector Machines. Available online: https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (accessed on
15 January 2024).

43. Huang, L.; Jia, J.; Yu, B.; Chun, B.G.; Maniatis, P.; Naik, M. Predicting execution time of computer programs using sparse
polynomial regression. In Proceedings of the 24th International Conference on Neural Information Processing Systems, New
York, NY, USA, 6–9 December 2010; pp. 883–891.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Introduction
	The Proximal Mapping of the GCNIR Regularizer and Its Generalized Jacobian
	A Semismooth Newton-Based Augmented Lagrangian Algorithm
	The Framework of the SSNA Algorithm
	SSN Algorithm for Subproblem (9)

	Numerical Experiments
	Some First-Order Methods for the GCNIR Problem
	Stopping Criteria
	Results on Synthetic Data
	Results on Real Datasets

	Conclusions
	References

