Effective Summation and Interpolation of Series by Self-Similar Root Approximants
Abstract
:1. Introduction
2. Self-Similar Root Approximants
3. Illustration by Simple Examples
3.1. Hard-Core Scattering Problem
3.2. Debye Function
3.3. Fermi-Dirac Integral
3.4. Fekete-Szegö Problem
4. Some Useful Tricks
4.1. Inversion of Expansions
4.2. Example of Inversion
4.3. Dealing with Logarithms
5. Ground-State Energy of Electron Gas
5.1. One-Dimensional Electron Gas
5.2. Two-Dimensional Electron Gas
6. Systems with Spherical Symmetry
6.1. Energy of Harmonium Atoms
6.2. Energy of Two-Electron Spherium
7. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baker, G.A.; Graves-Moris, P. Padé Approximants; Cambridge University: Cambridge, UK, 1996. [Google Scholar]
- Gluzman, S.; Yukalov, V.I. Extrapolation of perturbation theory expansions by self-similar approximants. Eur. J. Appl. Math. 2014, 25, 595–628. [Google Scholar]
- Baker, G.A.; Gammel, J.L. The Padé approximant. J. Math. Anal. Appl. 1961, 2, 21–30. [Google Scholar]
- Yukalov, V.I. Statistical mechanics of strongly nonideal systems. Phys. Rev. A 1990, 42, 3324–3334. [Google Scholar]
- Yukalov, V.I. Self-similar approximations for strongly interacting systems. Phys. A 1990, 167, 833–860. [Google Scholar]
- Yukalov, V.I. Method of self-similar approximations. J. Math. Phys. 1991, 32, 1235–1239. [Google Scholar]
- Yukalov, V.I. Stability conditions for method of self-similar approximations. J. Math. Phys. 1992, 33, 3994–4001. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P. Temporal dynamics in perturbation theory. Phys. A 1996, 225, 336–362. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P.; Gluzman, S. Self-similar interpolation in quantum mechanics. Phys. Rev. A 1998, 58, 96–115. [Google Scholar]
- Gluzman, S.; Yukalov, V.I. Unified approach to crossover phenomena. Phys. Rev. E 1998, 58, 4197–4209. [Google Scholar]
- Yukalov, V.I.; Gluzman, S. Self-similar crossover in statistical physics. Phys. A 1999, 273, 401–415. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P. Self-similar structures and fractal transforms in approximation theory. Chaos Solit. Fract. 2002, 14, 839–861. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1965. [Google Scholar]
- Dingle, R.B. Asymptotic Expansions: Their Derivation and Interpretation; Academic: London, UK, 1973. [Google Scholar]
- Fekete, M.; Szegö, G. A remark about odd simple functions. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar]
- Dziok, J. A general solution of the Fekete-Szegö problem. Bound. Value Probl. 2013, 2013, 98. [Google Scholar]
- Yukalov, V.I. Self-similar renormalization near unstable fixed points. Int. J. Mod. Phys. B 1993, 7, 1711–1730. [Google Scholar]
- Kunihiro, T.; Hatsuda, T. A self-consistent mean-field approach to the dynamical symmetry breaking. Prog. Theor. Phys. 1984, 71, 1332–1345. [Google Scholar]
- Loos, P.F.; Gill, P.M.W. Correlation energy of the spin-polarized uniform electron gas at high density. Phys. Rev. B 2011, 84. [Google Scholar] [CrossRef]
- Cioslowski, J. Note on the asymptotic isomer count of large fullerenes. J. Math. Chem. 2014, 52, 1–5. [Google Scholar]
- Cioslowski, J.; Albin, J. Electrostatic self-energies of discrete charge distributions on Jordan curves. J. Math. Chem. 2014, 52, 2520–2531. [Google Scholar]
- Loos, P.F. High-density correlation energy expansion of the one-dimensional uniform electron gas. J. Chem. Phys. 2013, 138, 064108. [Google Scholar]
- Cioslowski, J. Robust interpolation between weak- and strong-correlation regimes of quantum systems. J. Chem. Phys. 2012, 136. [Google Scholar] [CrossRef]
- Sim, H.K.; Tao, R.; Wu, F.Y. Ground-state energy of charged fluids in two dimensions. Phys. Rev. B 1986, 34, 7123–7128. [Google Scholar]
- Tanatar, B.; Ceperley, D.M. Ground state of the two-dimensional electron gas. Phys. Rev. B 1989, 39, 5005–5016. [Google Scholar]
- Kwon, Y.; Ceperley, D.M.; Martin, R.M. Effects of three-body and backflow correlations in the two-dimensional electron gas. Phys. Rev. B 1993, 48, 12037–12046. [Google Scholar]
- Attaccalite, C.; Moroni, S.; Gori-Giorgi, P.; Bachelet, G.B. Correlation energy and spin polarization in the 2D electron gas. Phys. Rev. Lett. 2002, 88. [Google Scholar] [CrossRef]
- Gori-Giorgi, P.; Attaccalite, C.; Moroni, S.; Bachelet, G.B. Two-dimensional electron gas: Correlation energy versus density and spin polarization. Int. J. Quant. Chem. 2003, 91, 126–130. [Google Scholar]
- Constantin, L.A.; Perdew, J.P.; Pitarke, J.M. Collapse of the electron gas to two dimensions in density functional theory. 2008, arXiv, p. 0806.1900. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/0806.1900 accessed on 15 May 2015.
- Drummond, N.D.; Needs, R.J. Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid. Phys. Rev. B 2009, 79. [Google Scholar] [CrossRef] [Green Version]
- Loos, P.F.; Gill, P.M.W. Exact energy of the spin-polarized two-dimensional electron gas at high density. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
- Birman, J.L.; Nazmitdinov, R.G.; Yukalov, V.I. Effects of symmetry breaking in finite quantum systems. Phys. Rep. 2013, 526, 1–91. [Google Scholar]
- Cioslowski, J.; Strasburger, K.; Matito, E. The three-electron harmonium atom: The lowest-energy doublet and quadruplet states. J. Chem. Phys. 2012, 136. [Google Scholar] [CrossRef]
- Cioslowski, J.; Albin, J. Oscillatory and fluctuating terms in energies of assemblies of equicharged particles subject to spherically symmetric power-law potentials. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef]
- Cioslowski, J.; Albin, J. Asymptotic equivalence of the shell-model and local-density descriptions of Coulombic systems confined by radially symmetric potentials in two and three dimensions. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef]
- Cioslowski, J. The weak-correlation limit of few-electron harmonium atoms. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef]
- Cioslowski, J.; Strasburger, K.; Matito, E. Benchmark calculations on the lowest-energy singlet, triplet, and quintet states of the four-electron harmonium atom. J. Chem. Phys. 2014, 141. [Google Scholar] [CrossRef]
- Matito, E.; Cioslowski, J.; Vyboishchikov, S.F. Properties of harmonium atoms from FCI calculations: Calibration and benchmarks for the ground state of the two-electron species. Phys. Chem. Chem. Phys. 2010, 12, 6712–6716. [Google Scholar]
- Loos, P.F.; Gill, P.M. Ground state of two electrons on a sphere. Phys. Rev. A 2009, 79. [Google Scholar] [CrossRef]
- Feynman, R.P. Statistical Mechanics; Benjamin: Reading, UK, 1972. [Google Scholar]
- Feranchuk, I.D.; Fisher, S.I.; Komarov, L.I. Analytical investigation of the polaron problem. J. Phys. Solid State 1985, 18, 5083–5094. [Google Scholar]
- Alexandrou, C.; Rosenfelder, R. Stochastic solution to highly nonlocal actions: The polaron problem. Phys. Rep. 1992, 215, 1–48. [Google Scholar]
- Kleinert, H. Variational interpolation algorithm between weak- and strong-coupling expansions—Application to the polaron. Phys. Lett. A 1995, 207, 133–139. [Google Scholar]
- Kornilovitch, P.E.; Pike, E.R. Polaron effective mass from Monte Carlo simulations. Phys. Rev. B 2004, 69. [Google Scholar] [CrossRef]
- Gluzman, S.; Yukalov, V.I.; Sornette, D. Self-similar factor approximants. Phys. Rev. E 2003, 67. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluzman, S.; Yukalov, V.I. Effective Summation and Interpolation of Series by Self-Similar Root Approximants. Mathematics 2015, 3, 510-526. https://doi.org/10.3390/math3020510
Gluzman S, Yukalov VI. Effective Summation and Interpolation of Series by Self-Similar Root Approximants. Mathematics. 2015; 3(2):510-526. https://doi.org/10.3390/math3020510
Chicago/Turabian StyleGluzman, Simon, and Vyacheslav I. Yukalov. 2015. "Effective Summation and Interpolation of Series by Self-Similar Root Approximants" Mathematics 3, no. 2: 510-526. https://doi.org/10.3390/math3020510
APA StyleGluzman, S., & Yukalov, V. I. (2015). Effective Summation and Interpolation of Series by Self-Similar Root Approximants. Mathematics, 3(2), 510-526. https://doi.org/10.3390/math3020510