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Abstract:

 Many quantum systems admit an explicit analytic Fourier space expansion, besides the usual analytic Schrödinger configuration space representation. We argue that the use of weighted orthonormal polynomial expansions for the physical states (generated through the power moments) can define an [image: there is no content] convergent, non-orthonormal, basis expansion with sufficient pointwise convergent behaviors, enabling the direct coupling of the global (power moments) and local (Taylor series) expansions in configuration space. Our formulation is elaborated within the orthogonal polynomial projection quantization (OPPQ) configuration space representation previously developed The quantization approach pursued here defines an alternative strategy emphasizing the relevance of OPPQ to the reconstruction of the local structure of the physical states.
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1. Introduction


1.1. Preliminaries

Many quantum systems are defined by analytic solutions, which in turn compel us to generate them through (approximate) analytic methods. Although one is generally more interested in the hierarchical large-scale structure leading to quantization (i.e., determining the discrete state energies and [image: there is no content] convergent approximations to the wave function configurations), recovering the local structure is also important and the principal focus of this work. Our methods have the important advantage that they are essentially algebraic in nature, allowing for high precision calculations through multiple precision algorithms and symbolic calculations facilitated by computer algebraic systems, such as Mathematica. Recent works also adopt a similar computational philosophy as developed in the context of supersymmetric quantum mechanics [1,2], group theory [3] and Hermite distributed approximating functionals [4]. These emphasize an algebra-based analysis for addressing the global (discrete state) structure of appropriate physical systems.

The emphasis on developing high precision, algebraic methods for addressing analytical problems is particularly important. What is desired are algebraic methods that originate from the analysis of purely algebraic quantum systems for which all discrete states are known in closed form. These are referred to as exactly-solvable (ES) systems. One can then attempt to extend the methods developed for ES systems to more general Hamiltonians, in a manner that preserves the basic algebraic structure of such methods in the numerical computation of physical properties. In this regard, supersymmetric and group theory formulations have played a prominent role [1,2,3]. Two other approaches, of direct relevance to this work, are highlighted in the ensuing discussion: the Hill determinant (HD) method and the orthogonal polynomial projection quantization (OPPQ) method. The latter has important advantages over the former (i.e., [image: there is no content] and pointwise convergence, greater numerical stability, etc.) in facilitating our “global-local” quantization interests, as identified in Subsection 1.2. Before discussing these, we define particular structures of importance to this work. Although our methods are applicable to multidimensional systems, for simplicity all of our analysis is developed for one-dimensional problems.

We are interested in the large and important class of problems for which the Schrödinger equation can be Fourier transformed into the momentum space representation, Ψ^(k)=12π∫dxe−ikxΨ(x), and a power series analysis implemented therein, [image: there is no content], generating a recursive, linear, finite difference equation for the power moments [image: there is no content]=∫dx[image: there is no content]Ψ(x). This recursive relation will be referred to as a moment equation, of order [image: there is no content] (problem dependent). The recursion coefficients involve the energy variable. In reality, the generation of such moment equations is independent of the ability to perform a Fourier transform. Many Schrödinger systems, after a coordinate transformation if necessary, can be directly transformed into such moment equation representations.

We also assume that within the original configuration space representation, the physical discrete state solutions are analytic, [image: there is no content], and the power series coefficients can be generated through a linear, second order recursion relation involving energy-dependent coefficients. Directly coupling such local expansions to the asymptotic properties of the physical solutions is not straightforward. Numerically, the “shooting method” attempts to do this [5]. This is also the objective of JWKBmethods, particularly in their analysis around turning points [6]. Neither approach is algebraic or capable of high accuracy.

The Hill determinant (HD) method [7], of relevance to this work, does define a quantization ansatz connecting the behavior of the [image: there is no content]-coefficients for discrete states to the boundedness criteria for such states: [image: there is no content]. It does so by representing the wavefunction as [image: there is no content], involving an appropriate (arbitrary) positive, analytic, exponentially-bounded reference function, [image: there is no content]. It investigates the power series expansion coefficients generated through [image: there is no content]; achieving quantization through the imposition of truncation relations corresponding to [image: there is no content] (for second order differential systems) and taking [image: there is no content]. Since these expressions involve energy-dependent coefficients, this leads to a [image: there is no content] determinantal expression for the energy. The energy roots of this expression converge to the physical energies, when HD works.

Despite its simplicity, and widespread popularity, it is well known that the HD method can lead to anomalous results yielding incorrect energies or becoming otherwise unstable. This was dramatized by Tater and Turbiner [8] in their study of the double well sextic anharmonic oscillator. Since their work does not clearly reveal these difficulties, we have repeated the calculations as demonstrated in Figure 1. These anomalous behaviors were anticipated by Hautot [9], who proposed non-trivial strategies for circumventing these difficulties. If one can avoid these anomalous cases, HD can produce high precision results, since it is readily implementable, to unlimited precision, through Mathematica. However, the anomalous cases appear to correspond [8,9] to using reference functions that imitate the physical asymptotic form of the physical solution. Intuitively, one expects the best convergence when the reference function is allowed to assume this form. Indeed, this is one of the strengths of the alternative approach, OPPQ, to be discussed shortly. OPPQ allows one a wide choice of reference functions. When compared to HD, OPPQ manifests convergence at much higher rates, when the appropriate reference function is used. Furthermore, OPPQ has a stronger theoretical foundation than HD, for reasons given shortly. Despite all of these issues, HD was rediscovered by Tymczak et al. [10,11], who also applied it in a new way within momentum space. It continues to be the subject of much interest, as amply demonstrated in the recent works by Killingbeck and Grosjean [12].

Figure 1. Convergence of the Hill determinant calculation of the first two energy eigenvalues for anomalous cases of the sextic anharmonic oscillator [image: there is no content]. Parameter values are: (a) (m = −18, b = 0); (b) (m= −8, b = 0); and (c) (m = −4, b = 0). The dashed lines show the exact energy values. Case (a) show convergences to the correct values, although extremely slowly. Case (b) shows convergence for both energies, but only the ground state converges to the correct value, while the excited state converges to the wrong value. Case (c) shows complete lack of convergence for both energies.
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The HD method does not define for us a rigorous, high precision, algebraic quantization method that is robust (numerically stable), efficient (producing rapidly converging results) and effective. The principal reason is that the underlying formalism does not readily impose on the [image: there is no content]’s constraints due to the [image: there is no content] boundedness criteria ∫dx|Ψ(x)|2<∞. That is, there is no way to impose, or ensure, the latter condition on the behavior of the [image: there is no content]’s. We believe that this is the primary reason for HD’s anomalous behaviors, particularly when the reference function assumes the asymptotic form of the physical states, as suggested by Tater and Turbiner’s investigations. As previously indicated, the results in Figure 1 reveal the potential instability and slow convergence properties of HD, particularly when the reference function assumes the physical asymptotic form. In summary, we are interested in algebraic, arbitrary precision, quantization methods tied to representations that imitate, as much as possible, the true asymptotic form of the physical solutions. Despite all of its successful implementations, HD does not fall into this class of quantization schemes.



Despite the fact that the power moments are global, and therefore natural objects to study for determining the discrete states, until two years ago, with the discovery of the OPPQ method [13,14], of relevance to this work, there were very few, easily implementable moment methods for quantizing all of the discrete states of multidimensional physical systems. The only exception to this might be the momentum space application of HD, referred to as the multiscale reference function (MRF) method, as discussed in [10,11]. It does appear that MRF is (significantly) faster at converging than configuration space-HD, as demonstrated in [13] (Figure 1). However, it is not clear if the HD theoretical problems specified above also apply to the MRF case. The irony is that OPPQ, despite its basis formulation in configuration space, depends on the power moments for its generation. All of this is discussed below. Thus, OPPQ combines the best features of a configuration space analysis (i.e., in easily identifying the physical asymptotic form for the required weight or reference function) with the effectiveness of moment representation quantization.

The earliest attempts in using moments for solving linear systems were by Blankenbeckler et al. [15] and Killinbgeck et al. [16]. Another work attempted the same for strongly-coupled, singular perturbation, nonlinear systems (“kink” solutions) [17].

In 1984, Handy achieved a significant theoretical and computational advance by demonstrating that the classic moment problem theorems [18] (i.e., the moment-dependent positivity constraints required for nonnegative measures) could be used to constrain the moment equation solutions corresponding to positive wavefunction configurations; the most important of these being the multidimensional bosonic ground state, [image: there is no content]. This led to a new spectral bounding method that could generate tight (converging) lower and upper bounds to the discrete state energies associated with positive configurations. This is referred to as the eigenvalue moment method (EMM). Handy’s original discovery was by way of the nesting property for Padé approximants generated from positive Stieltjes measures [19]. This philosophy was further refined, making it more amenable to multidimensional systems, through the use of the well-known positivity Hankel Hadamard (nonlinear) determinantal inequality constraints [20].

This seminal work by Handy and Bessis [20] is one of the first to use semidefinite programming (SDP) analysis [21,22] to solve quantum operators. Since SDP algorithms were not available, Handy developed a cutting algorithm, within the context of a linear convex optimization analysis [23], that allowed the extension of these methods to multidimensional systems. The most famous of these was the notoriously difficult, strong coupling, singular perturbation problem corresponding to determining the ground state binding energy of the quadratic Zeeman effect for super-strong magnetic fields (of the type encountered in neutron stars). Handy et al. [24,25] were able to extend the EMM analysis to such problems confirming, through tight bounds, the results of Le Guillou and Zinn-Justin [26] derived through more sophisticated, analytical methods.

The EMM analysis can also be used for bounding the excited discrete state energies of one-dimensional problems, since the probability density, [image: there is no content], for Sturm–Liouville problems with a real potential function, must satisfy a third order linear differential equation for which a moment equation can also be generated, for the types of systems considered here [27,28]. The same applies to Sturm–Liouville problems with complex potentials (i.e., pseudo-Hermitian systems), since the Herglotz extension into the complex plane for the probability density [image: there is no content] leads to a fourth order linear differential equation, for which a moment equation also ensues [29,30]. The application of EMM to the case [image: there is no content] led to the generation of tight bounds for the real and imaginary parts of the discrete state complex eigenenergies. This led to the first computational prediction for the onset of spontaneous PT-symmetry breaking (predicting the a-parameter regions where the discrete spectrum changed from being real to complex) for this important system [30,31], the subject of much current research.



1.2. Defining Global-Local Quantization

Despite its limitations, the HD formalism exploits the local analytic structure of the wavefunction, in configuration space, in order to solve for the physical solutions. Similarly, through methods, such as OPPQ, further elaborated upon below, we can quantize by exploiting the momentum space power series structure, as embodied in the power moments, as constrained through the moment equation. It would seem that any method that can combine both into one effective quantization procedure should be the ideal procedure. This work makes one attempt at identifying such a procedure.



1.3. OPPQ and HD: General Quantization Strategies Motivated by Exactly Solvable and Quasi-Exactly Solvable Quantum Systems

Exactly solvable (ES) systems are those for which the discrete states can be determined in closed form: energies and wavefunctions. In one dimension, they can be characterized as corresponding to wavefunctions of the form [image: there is no content], where [image: there is no content] is an orthogonal polynomial of degree “j”, with respects to a particular positive weight [image: there is no content] [32]. The function factor [image: there is no content] corresponds to a positive, exponentially-bounded configuration that embodies the controlling form of the asymptotic behavior of the physical solution.

It follows that if [image: there is no content] denotes the orthonormal polynomials of [image: there is no content] (i.e., where “n” is the degree), then we must have [image: there is no content]≡∫dx[image: there is no content](x)Ψj(x)=0, for [image: there is no content]. This ensues from the orthogonality properties of the [image: there is no content] polynomials and the fact that the polynomial [image: there is no content] can be represented in terms of the first “[image: there is no content]”, [image: there is no content] polynomials (where [image: there is no content]). These integral expressions depend on the power moments of the physical solution, [image: there is no content]. We can thus characterize ES systems as those for which the [image: there is no content]’s truncate exactly.

The same applies to the case of quasi-exactly solvable (QES) systems [33,34,35,36,37]. In this case, only a subset of the discrete states can be calculated in closed form. The corresponding wavefunctions take on the form [image: there is no content], where [image: there is no content] is a polynomial of fixed degree, [image: there is no content] (but with j-dependent coefficients). In this case, we also have [image: there is no content]=0, for n≥[image: there is no content]+1. That is, there is also exact truncation in the behavior of the [image: there is no content]’s.

The OPPQ generalization of the above to arbitrary Hamiltonians (provided they admit a moment equation representation) assumes that the wavefunction can be represented as:



Ψ(x)=∑n[image: there is no content][image: there is no content](x)[image: there is no content](x),








for an arbitrary, positive, exponentially-bounded (not necessarily analytic) weight [image: there is no content] and its family of orthonormal polynomials, ∫dxPn1(x)Pn2(x)[image: there is no content](x)=δn1,n2.
The expansion coefficients project out exactly, [image: there is no content]=∫dx[image: there is no content](x)Ψ(x), and involve all of the first [image: there is no content] power moments, which are assumed to be generated through their corresponding moment equation.

If we choose the weight to satisfy ∫dx[image: there is no content][image: there is no content]<∞, then because ∫dx[image: there is no content][image: there is no content]=∑n|[image: there is no content]|2, it follows that the projection coefficients must satisfy the asymptotic condition: limn→∞[image: there is no content]=0. We can use this to define a truncation approximation quantization analysis involving [image: there is no content], for [image: there is no content], and [image: there is no content]. Here, we assume that [image: there is no content] denotes the order of the associated linear moment equation. To order N, these relations define a purely energy-dependent function (an [image: there is no content] determinant) whose zeroes converge (exponentially) to the physical energies.

One expects, as confirmed empirically, that the best convergence is when the weight [image: there is no content] mimics the asymptotic form of the physical states. The admissible weight can be arbitrary, provided ∫dx[image: there is no content][image: there is no content]<∞, which allows for the weight to imitate the physical asymptotic form (assuming Ψ is also [image: there is no content]).

In the Appendix (Table A1), we reproduce the results communicated in [13], for the quartic and sextic anharmonic oscillators. The reader will note that when the weight (reference function) imitates the physical, asymptotic form, improved convergence is obtained. We also show that slower convergence can be obtained even when the above condition is not satisfied (i.e., the last entry for the quartic anharmonic oscillator). What is not shown is the impressive fact that the non-analytic reference function, [image: there is no content], also yields good converging results for the quartic case. Unlike the HD case, the OPPQ reference function does not have to be analytic, if one only wants to compute the energies.


Table A1. Convergence for the four lowest energy levels using the OPPQ method for sextic and quartic anharmonic potentials and two choices of reference functions from [13].



	
N

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
sextic anharmonic potential [image: there is no content], [image: there is no content]




	
20

	
−0.537657110

	
0.921572505

	
5.339158198

	
9.811119432




	
40

	
−0.523594783

	
1.004743974

	
5.370894371

	
10.564676143




	
60

	
−0.523274535

	
1.005763660

	
5.374907198

	
10.572468833




	
80

	
−0.523268715

	
1.005768392

	
5.374969108

	
10.572583491




	
100

	
−0.523268624

	
1.005768348

	
5.374969994

	
10.572585099




	
120

	
−0.523268622

	
1.005768341

	
5.374970009

	
10.572585052




	
sextic anharmonic potential [image: there is no content], [image: there is no content]




	
10

	
−0.515914799

	
1.045574144

	
5.804384109

	
17.182737481




	
20

	
−0.523268924

	
1.005781188

	
5.374994734

	
10.569841387




	
30

	
−0.523268622

	
1.005768339

	
5.374969977

	
10.572585105




	
40

	
−0.523268622

	
1.005768340

	
5.374970009

	
10.572585045




	
quartic anharmonic potential [image: there is no content], [image: there is no content]




	
20

	
−3.408037638

	
−3.245130319

	
0.639251525

	
2.658824906




	
40

	
−3.410143687

	
−3.250676404

	
0.638914360

	
2.581226627




	
60

	
−3.410142761

	
−3.250675363

	
0.638919564

	
2.581216254




	
80

	
−3.410142761

	
−3.250675362

	
0.638919564

	
2.581216271




	
100

	
−3.410142761

	
−3.250675362

	
0.638919564

	
2.581216271




	
quartic anharmonic potential [image: there is no content], [image: there is no content]




	
20

	
−4.744467615

	
−1.478468321

	
0.650460871

	
7.285067700




	
40

	
−3.455553264

	
−3.216259804

	
0.563362433

	
4.499199879




	
60

	
−3.408827067

	
−3.250616350

	
0.644873375

	
2.554622225




	
80

	
−3.410171198

	
−3.250696184

	
0.638737424

	
2.581302222




	
100

	
−3.410142290

	
−3.250674625

	
0.638923526

	
2.581226358




	
120

	
−3.410142766

	
−3.250675380

	
0.638919503

	
2.581215858




	
140

	
−3.410142761

	
−3.250675362

	
0.638919564

	
2.581216281









The OPPQ wavefunction representation is usually referred to as a weighted polynomial expansions. It is well known that such expansions, particularly for Freudian weights, [image: there is no content], [image: there is no content], can exhibit pointwise convergence, in addition to [image: there is no content] convergence [38]. We stress that the expressions {[image: there is no content](x)[image: there is no content](x)} represent a non-orthogonal basis, which is an essential component to the flexibility of the above representation as used here. Despite the extensive mathematical literature on the importance of weighted polynomial expansions, or orthogonal polynomial expansions (as referenced throughout this work), its relevance for quantizing physical systems (by incorporating the moment equation structure) had not been appreciated until its exploitation by Handy and Vrinceanu [13,14].

One example of the flexibility of the OPPQ representation is that one can take the weight to be as complicated as one wants, provided the corresponding orthonormal polynomials can be generated. Thus, instead of the non-analytic reference function [image: there is no content], for the quartic anharmonic potential, one can consider working with the analytic counterpart [image: there is no content]. Regardless of what weight is chosen, the moment equations stay unchanged.

Another aspect of OPPQ’s flexibility is that one does not need the explicit functional form for the weight, in order to generate the discrete state energies. If one knows the moments for the weight, then its orthonormal polynomials can still be generated, leading to the generation of the discrete state energies. This is possible through the well-known three-term recursion relation for the monic orthogonal polynomials [19]. An alternative approach (for multidimensional systems) is to use LUdecomposition methods on the (multidimensional) Hankel moment matrix (for the weight), in order to generate the same orthogonal polynomials [39]. One interesting application of this is to use EMM [20,24,25] to determine the power moments of the physical (positive) bosonic ground state (through tight bounds), for a given system. These can then be incorporated within OPPQ to generate the discrete state energies for all of the desired discrete states. The advantage of using EMM is that the generated moments will have automatically satisfied the necessary Hankel–Hadamard positivity constraints essential for ensuring that one is generating the orthonormal polynomials of a positive configuration (up to the order of the EMM analysis).

Returning to the previous ES/QES discussion, one can see that such states can also be characterized as corresponding to [image: there is no content], where the analytic (polynomial) factor Aj(x)=∑n[image: there is no content]xn, truncates exactly: [image: there is no content]=0, if [image: there is no content]. One might consider this as a motivational factor for the development of the Hill determinant (HD) method, as previously discussed.

We have already noted that HD can manifest anomalous behavior (i.e., convergence to the wrong energies, non-convergent or slow convergence behavior, etc.), particularly when the reference function, [image: there is no content], assumes the physical asymptotic form (refer to Figure 1); whereas OPPQ converges fastest precisely in such cases. To underscore the importance of this, we can consider the problem of varying the potential function parameters in order to determine the existence of ES/QES states. Within an HD framework, one cannot do this, reliably, since this type of variational analysis requires explicitly working with a weight, or reference function, that specifically incorporates the physical asymptotic form. Instead, by working with the OPPQ representation, where [image: there is no content] incorporates the physical asymptotic form, one can reliably determine the parameter regimes corresponding to ES/QES states.

Consider the sextic anharmonic problem [image: there is no content]. The ground state is of QES form for [image: there is no content], with lowest energy state [image: there is no content] [20,36]. The HD analysis will recover the QES states; however, if we slightly perturb things, [image: there is no content], the resulting HD energies do not suggest the existence of QES states. This is summarized in the Appendix (Table A2, extracted from a forthcoming article on ES and QES states). Whereas the OPPQ results appear to vary continuously for [image: there is no content], where [image: there is no content], the same is not true for the HD results. Besides the fact that HD yields erroneous, or slowly converging, results for all of the states (i.e., with the exception of Egr≡[image: there is no content] for [image: there is no content]) both in the QES regime ([image: there is no content]) and non-QES regimes ([image: there is no content]), HD does not appear to demonstrate continuity in its generated energies, for this case. Thus, [image: there is no content]=0 for [image: there is no content] and then shoots to [image: there is no content]=0.354478 for [image: there is no content]. The same is true for the ground state energy. However, the true energies (obtained by OPPQ and confirmed through EMM) show a smooth variation in all of the energies for [image: there is no content].


Table A2. Convergence for the four lowest energy levels using OPPQ and Hill determinant (HD) methods for [image: there is no content], using physical reference function [image: there is no content](x)=e−x4/4. Results are part of a recently-completed study to be submitted for publication elsewhere.



	
N

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content] with OPPQ




	
10

	
0

	
2.054436575

	
9.958184097

	
19.819537375




	
18

	
0

	
1.935440477

	
6.293869877

	
11.675087668




	
26

	
0

	
1.935482012

	
6.298503667

	
11.680999150




	
30

	
0

	
1.935482098

	
6.298495775

	
11.680971308




	
[image: there is no content] with HD




	
10

	
0

	
0

	
0

	
0




	
20

	
0

	
0

	
0

	
0




	
30

	
0

	
0

	
[image: there is no content]

	
[image: there is no content]




	
40

	
0

	
0

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content] with OPPQ




	
10

	
0.047242645

	
2.153684719

	
10.159896054

	
20.084855463




	
18

	
0.047391597

	
2.024490454

	
6.386902706

	
11.785825578




	
26

	
0.047388401

	
2.024539898

	
6.391623098

	
11.791298393




	
30

	
0.047388406

	
2.024539984

	
6.391614829

	
11.791270104




	
[image: there is no content] with HD




	
10

	
0

	
0

	
0

	
0




	
20

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
30

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
40

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
50

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content] with OPPQ




	
10

	
−0.047793552

	
1.954915616

	
9.757023047

	
19.554492101




	
18

	
−0.048220094

	
1.845699719

	
6.200934698

	
11.564288882




	
26

	
−0.048216730

	
1.845733983

	
6.205472766

	
11.570595945




	
30

	
−0.048216736

	
1.845734070

	
6.205465245

	
11.570568579




	
[image: there is no content] with HD




	
20

	
−0.367955

	
0.367955

	
[image: there is no content]

	
[image: there is no content]




	
40

	
−0.359878

	
0.359878

	
[image: there is no content]

	
[image: there is no content]




	
60

	
−0.356466

	
0.356466

	
[image: there is no content]

	
[image: there is no content]




	
80

	
−0.354478

	
0.354478

	
0

	
0









Of greater importance to us is that the OPPQ representation is numerically stable and converges rapidly for the appropriate weight. Furthermore, the OPPQ representation is both [image: there is no content] and pointwise convergent, globally. The latter property allows us to implement the global-local quantization analysis identified at the outset. These properties cannot be easily claimed by HD.



1.4. Connecting the Power Moments to the Local Behavior of the Physical Solutions: Scaling Transform Reconstruction

There is another related result derived from the scaling transform formalism underlying continuous wavelet analysis [40,41]. It also couples the power moments to the local structure of the wave function.

Consider the scaling transform of the physical wave function, for some appropriate, exponentially-bounded, analytic scaling function, [image: there is no content], satisfying the normalization [image: there is no content]:



SΨ̲(a,b)=Na∫dxS(x−ba)Ψ(x).



(1)




Depending on the asymptotic decay of the scaling function relative to the physical solution, the scaling transform will be analytic (even entire) in the inverse scale variable, [image: there is no content], as generated from the power moments:



[image: there is no content]



(2)




where [image: there is no content], involving a linear combination of the power moments for [image: there is no content].
Thus, the power moments control the large-scale structure of the scaling transform. Recovery of the local properties for the wavefunction then requires implementing an effective analytic continuation/re-summation strategy for Equation (2), combined with the small-scale asymptotic limits:



[image: there is no content]








where [image: there is no content]. That is, the analytic continuation, or re-summation, of Equation (2), combined with asymptotic matching at some intermediary scale, can be used to generate the [image: there is no content] derivates at an arbitrary point b.
For one-dimensional systems admitting a moment equation representation, we can generate an exact, closed set, of autonomous, coupled, first order differential equations (in the inverse scale variable) for scaling transform related expression. These can be integrated in order to generate an effective analytic continuation of Equation (1) into a sufficiently small-scale regime within which asymptotic matching with Equation (3) is used to recover the local properties of the physical solution at an arbitrary point b. This approach works very well for the various examples considered in [42,43].

For two-dimensional systems, there are no such closed coupled differential equations; however, we believe that through OPPQ, one can generate a hierarchy of such autonomous differential equations, with increasing accuracy as the order of the hierarchy is increased. Alternatively, for appropriate scaling functions, for which Equation (2) defines a convergent series in [image: there is no content], we can achieve the same, through appropriate re-summation methods, and then use asymptotic matching to recover the physical, configuration space, solution.

All of the above assumes that the (infinite scale) moments, [image: there is no content], for each discrete state, are known. That is, knowledge of the physical power moments (derived through OPPQ, momentum space HD, EMM, etc.) coupled with the appropriate analytic continuation strategy, proves very effective in recovering the local solution. However, it proves to be difficult to use the above scaling transform relations to couple the power moments to the local structure (i.e., the local power series expansion of [image: there is no content]), in order to determine the physical energies. It is this type of global-local analysis that we are trying to implement through the pointwise convergent properties of the OPPQ expansion.

As shown in this work, the OPPQ representation does allow for this type of “global-local” analysis.

The following sections provide the technical details for our global-local quantization analysis based on the OPPQ expansion. The energies will be determined by constraining the OPPQ expansion to generate the exact local structure of the wavefunction at a particular point b, based on the actual local configuration space power series expansion.

Section 2 gives the technical details for OPPQ. This includes generating the moment equation. We also motivate its [image: there is no content] properties, as well as its global pointwise convergence to the configuration space function, along the real axis. Some of the earlier discussion is presented in greater detail.

Section 3 specifies the relations essential for our “global-local” quantization formalism. Two problems are considered: the general sextic anharmonic potential for parameter values where the HD method fails, or becomes ineffective, as depicted in Figure 1; and a rational fraction potential problem with a ground state solution that is meromorphic. For the latter, we demonstrate the nonuniform, global, pointwise convergence (along an infinite strip in the complex-x plane) for the OPPQ expansion of the solution, as determined by our “global-local” quantization analysis. We also provide numerical data on the error in the pointwise convergence.




2. Implementing OPPQ and Motivating Its [image: there is no content] and Pointwise Convergence Properties

In order to make more precise the above claims, consider the one-dimensional Fourier transform, assumed to be analytic (usually entire), with a corresponding k-space power series:



[image: there is no content]=12π∫dxe−ikxΨ(x)



(4)






=12π∑p=0∞[image: there is no content]p!(−ik)p,



(5)




involving the power moments [image: there is no content]=∫[image: there is no content]Ψ(x)dx.
We limit our analysis to quantum systems for which the moments can be generated through a linear recursive relation of order [image: there is no content], referred to as the moment equation. This equation is obtained by multiplying the Schrödinger’s equation by [image: there is no content] and integrating over its whole range (implicitly assuming that Ψ is an exponentially-bounded discrete state):



∫−d2Ψdx2+(V(x)−E)Ψ(x)[image: there is no content]dx=0.








After integrating by parts, one obtains a linear dependence among a number of consecutive moments. For example, the harmonic oscillator [image: there is no content] provides a moment equation:



[image: there is no content]








that has [image: there is no content] because the whole moment sequence ([image: there is no content]) can be generated recursively from [image: there is no content] and [image: there is no content] or [image: there is no content] linear initialization, or missing moment, variables.
In many cases, a coordinate transformation may be necessary to obtain a moment equation. Its structure will take on the general form:



[image: there is no content]



(6)




where [image: there is no content] is problem dependent. The [image: there is no content]’s are known functions of the energy. The unconstrained moments {[image: there is no content],…,μ[image: there is no content]} are referred to as the missing moments. Extensions of moment equations to multidimensional systems is possible.
The configuration space wavefunction is assumed to be analytic and can be represented as:



Ψ(x)=∑n=0∞[image: there is no content]xnR(x),



(7)




for some positive, analytic weight function, [image: there is no content]. Under these assumptions, the [image: there is no content] coefficients satisfy a three-term recursion relation to give:


[image: there is no content]=Tn,0(E)a0+Tn,1(E)a1,



(8)




due to the second order nature of the Schödinger equation.
Given that the global power moments, [image: there is no content], and the local [image: there is no content] coefficients, satisfy known energy-dependent constraints, how can we quantize by constraining both sets of variables? This is what we refer to as “global-local” quantization.


2.1. OPPQ

In this section, we summarize the main points that lead to the formulation of the OPPQ method. For a more detailed discussion, the reader is encouraged to refer to the original paper in [13], although the emphasis on orthonormal polynomials is not as explicit as it should have been. This is partly because the well-known three-term recursion relation for orthogonal polynomials [19] assumes that they are of monic form (and therefore, not normalized). Explicitly insisting on the use of orthonormal polynomials, from the outset, makes OPPQ less cumbersome in its derivation.

In order to develop a “global-local” quantization strategy that can couple the power moments to the local structure of the corresponding solution, one needs a robust wave function representation capable of recovering (in a stable manner) the local structure of the wave function from the global power moments. Weighted polynomial expansions [38], as implemented within the OPPQ representation, can provide this. Specifically, we will work with:



Ψ(x)=∑j=0∞[image: there is no content]Pj(x)[image: there is no content](x),



(9)




where the orthonormal polynomials, [image: there is no content], satisfy:


∫Pj1(x)Pj2(x)[image: there is no content](x)dx=δj1,j2.



(10)




The projection coefficients are easily generated:



[image: there is no content]=∫dxΨ(x)Pj(x),



(11)






=∑i=0jΞi(j)μi,



(12)




or:


[image: there is no content]([image: there is no content],…,μ[image: there is no content])=∑ℓ=0[image: there is no content]∑i=0jΞi(j)Mi,ℓ(E)μℓ.



(13)




If the weight [image: there is no content] satisfies the condition that ∫dx[image: there is no content][image: there is no content]<∞, then one can argue that [13]:



[image: there is no content]



(14)




This analysis is repeated, in a more complete manner, in Section 2.3. These conditions hold, in particular, if the weight decays, asymptotically, no faster than the physical solutions: lim|x|→∞[image: there is no content][image: there is no content]<∞.

Within the OPPQ quantization analysis, we approximate this asymptotic limit by taking [image: there is no content]=0 for N≤n≤N+[image: there is no content], [image: there is no content]. This leads to an [image: there is no content] determinant constraint on the energy, yielding rapidly converging approximations to the physical energies.

This approach allows for great flexibility in how the weight, or reference function, is chosen. In particular, one can allow the weight to mimic the asymptotic form of the physical solution or to take on the form of any positive physical solution (i.e., the bosonic ground state, if known, even approximately).

In general, within the OPPQ ansatz, the better the reference function mimics the asymptotic form of the solution, the faster the convergence to the physical energies. Other redeeming features of the OPPQ procedure are that the reference function need not be analytic. Thus, for the quartic anharmonic potential, [image: there is no content], converging results are obtained if [image: there is no content](x)=[image: there is no content]. In principle, for this case, a differentiable form of the reference function would be [image: there is no content](x)=1exp(x33)+exp(−x33).

Furthermore, for generating the energies, one does not need the explicit configuration space representation for the reference function. Thus, one could use the (unknown) bosonic ground state (which must be positive), provided its power moments can be generated to high accuracy, enabling the generation of its corresponding orthonormal polynomials. In principle, the Eigenvalue Moment Method (EMM) could be used for such cases (generating high precision values for the power moments of the ground state, as well as the energy, through converging bounds) [20,24,25].

We note that the OPPQ basis {[image: there is no content](x)[image: there is no content](x)|n≥0} is not orthogonal. A more conventional analysis involving expanding [image: there is no content] in terms of an orthonormal basis Pn(x)[image: there is no content]12(x), or Ψ(x)=∑nγnPn(x)[image: there is no content]12(x), does not provide the flexibility of OPPQ, since the generation of the projection coefficients involves the integrals γn=∫dxPn(x)[image: there is no content]12(x)Ψ(x), which cannot be expressed, generally, as a known (i.e., in closed form) linear combination of the power moments of [image: there is no content]12(x)Ψ(x), except for special weights.

A better example of the flexibility offered by the OPPQ formalism, in contrast to a more conventional, ortho-normal basis expansion, is the aforementioned observation that OPPQ allows the use of the (accurately determined) power moments of the (bosonic) ground state, for quantizing the excited states. This type of analysis is not possible within the more conventional, ortho-normal basis (Rayleigh–Ritz) formalism.



2.2. Deficiencies of the Hill Determinant Method

The flexibility in the choice of the reference function within the OPPQ method is in sharp contrast to the popular Hill determinant approach corresponding to taking [image: there is no content] in Equation (8) and letting [image: there is no content]. Within the Hill determinant approach, truncating the a-power series is relevant if the system is exactly, or quasi-exactly, solvable (and the [image: there is no content] in Equation (7) assumes the exact asymptotic form for these solutions). One might then believe that this works as an approximation in the general case. Initial studies of the Hill determinant approach confirmed this, for weights that did not mimic the physical asymptotic form of the solution, as argued in Section 1.

One simple observation that suggests potential problems with the Hill determinant approach is that the asymptotic behavior of the a’s cannot be directly related to the normalizable, or non-normalizable, behavior of the physical or unphysical states, respectively. Indeed, it was pointed out by Tater and Turbiner [8] that the Hill determinant fails to converge, or converges to the wrong energy levels, in cases where the reference function is chosen to mimic the physical asymptotic form.

They used the sextic anharmonic potential as an example: [image: there is no content]. The asymptotic form of the wavefunction is [image: there is no content](x)=e−(x4+bx2)/4. The corresponding recursion relation for the a’s is:



an+2=(m+2n−1−b2/4)an−2+b(n+1/2)−E[image: there is no content](n+1)(n+2).



(15)




Consistent with the results of Tater and Turbiner [8], Hautot [9] had argued that such finite difference relations, coupled with the Hill determinant conditions ([image: there is no content], [image: there is no content], [image: there is no content], for parity invariant systems) can fail to take into account certain dominant solutions essential to quantization. He proposed a complicated procedure for fixing this problem. We believe that OPPQ is a more transparent solution that achieves the same result.

For illustrative purposes, we note that in Figure 1a–c, we give the convergence of the first two even energy levels for three parameter cases: ([image: there is no content], [image: there is no content]), ([image: there is no content], [image: there is no content]) and ([image: there is no content], [image: there is no content]). In the first case, both energy levels appear to converge to the correct limit, albeit at a very slow rate. For the second case, only the ground state shows correct convergence, while the first excited state converges to the wrong limit. In the third situation, the Hill determinant method fails for all energy levels; there is no convergence; and in some cases, there are no real solutions, represented by a value of “0” in Figure 1c.

All three cases in Figure 1 are correctly recovered by either the original OPPQ formulation [13] or the global-local OPPQ variant developed in this paper (described in Section 3.1), as given in Table 1. The indicated limits in Table 1, are in keeping with a pure OPPQ analysis as published elsewhere [13]. For the [image: there is no content] case, Table A1 in the Appendix allows the reader to compare the results of the original OPPQ formulation (for the [image: there is no content] physical weight) with those of a global-local analysis. Both results are consistent.


Table 1. Convergence properties for [image: there is no content] using [image: there is no content] by using the global-local quantization.



	
N

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content], [image: there is no content]




	
10

	
−23.943914597

	
−17.917277160

	
−11.400078722

	
−8.480104521




	
20

	
−21.324952739

	
−21.322438503

	
−7.599903464

	
−7.359503437




	
30

	
−21.323394711

	
−21.321841616

	
−7.599035456

	
−7.360657993




	
40

	
−21.323394694

	
−21.321841620

	
−7.599035461

	
−7.360657990




	
[image: there is no content], [image: there is no content]




	
10

	
−5.477684656

	
−3.531662882

	
1.811585056

	
6.570677286




	
20

	
−3.900838586

	
−3.534341976

	
2.086375864

	
6.054510025




	
30

	
−3.900635158

	
−3.534354171

	
2.086528016

	
6.055405087




	
40

	
−3.900635159

	
−3.534354170

	
2.086528012

	
6.055405205




	
[image: there is no content], [image: there is no content]




	
10

	
−0.625342803

	
1.038625070

	
5.801273017

	
8.725547624




	
20

	
−0.523263742

	
1.005832318

	
5.374951631

	
10.5614373902




	
30

	
−0.523268623

	
1.005768335

	
5.374969926

	
10.572585458




	
40

	
−0.523268622

	
1.005768340

	
5.374970009

	
10.572585045











In the same reference [13], it is also demonstrated that even though the Hill determinant fails for the exact asymptotic reference function [image: there is no content], it can provide converging results when the reference function is taken as the much more slowly decaying [image: there is no content] (Fig. in [13]). In this case, the Hill determinant results manifest a very poor convergence rate diminishing its practical value. Table A1 confirms for the reader (i.e., the top entry results for [image: there is no content]) that OPPQ is much faster than HD when using physical weights.



2.3. General Considerations: Motivating OPPQ’s [image: there is no content] and Pointwise Convergence

Traditional orthonormal basis expansion methods in quantum mechanics, [image: there is no content] (i.e., [image: there is no content]) are not designed to recover the pointwise structure of the approximated solution, since they emphasize an [image: there is no content] convergence. That is, the N-th partial sum, [image: there is no content], converges to the physical solution according to lim[image: there is no content]∫dx|Ψ(x)−ΨN(x)|2=0. This does not imply pointwise convergence, since in the infinite limit, one could have [image: there is no content] on a subset of measure zero. The OPPQ representation has a greater chance of pointwise convergence, because its underlying structure mimics the usual power series expansion.

As previously noted, the OPPQ basis functions [image: there is no content](x)[image: there is no content](x) are non-orthonormal. The advantage of this representation is that the [image: there is no content] projection coefficients are easily determined for the types of (multidimensional) systems of interest to us, although the present work is limited to one-dimensional problems.

We note that [image: there is no content](x)[image: there is no content] is expected to correspond to a complete orthonormal basis; however, the expansion Ψ(x)=∑nγn[image: there is no content](x)[image: there is no content] does not lead to an easy, algebraic (closed form) generation of the projection coefficients, γn=⟨[image: there is no content](x)[image: there is no content]|Ψ⟩, for arbitrary [image: there is no content], as pursued here.

Despite this, Ψ[image: there is no content]=∑n=0∞[image: there is no content][image: there is no content](x)[image: there is no content] will correspond to a conventional orthonormal basis expansion, with expected [image: there is no content] convergence:



Lim[image: there is no content]∫dx|[image: there is no content][image: there is no content]−∑n=0N[image: there is no content][image: there is no content](x)[image: there is no content]|2=0.



(16)




Given that Minx1[image: there is no content]>0 (a positive global minimum), we then also have:



Lim[image: there is no content]∫dx|Ψ(x)−ΨN(x)|2=0,



(17)




where the OPPQ N-th partial sum is defined by:


ΨN(x)=∑n=0N[image: there is no content][image: there is no content](x)[image: there is no content](x).



(18)




That is, the OPPQ representation will also be [image: there is no content] convergent.

The relation in Equation (18), upon squaring and taking the corresponding integrals, gives the important result:



Lim[image: there is no content]∑n=0NΩn2=∫dxΨ2[image: there is no content]<∞(i.e.,conditionon[image: there is no content]),



(19)




or:


Limn→∞[image: there is no content]=0.



(20)




That is, if the basis {[image: there is no content](x)[image: there is no content]} is complete, then the limit in Equation (20) holds.

An alternative representation for the orthonormality relations of the [image: there is no content]’s is:



∫dx[image: there is no content][image: there is no content](x)[image: there is no content](x)=0,



(21)




for [image: there is no content], leading to:


[image: there is no content]=∫dx[image: there is no content]ΨN(x),0≤p≤N.



(22)




Thus, the N-th OPPQ partial sum has its first [image: there is no content] moments identical to that of the physical state. This is the more general interpretation of the equality in Equation (9). Thus, the [image: there is no content] contain physical information.

Let us assume that the physical Fourier transform, [image: there is no content], and the Fourier transform of the N-th OPPQ partial sum, [image: there is no content], are entire functions in the complex k plane. This is easily the case if the [image: there is no content] and [image: there is no content] decay, along the asymptotic real axis, much faster than [image: there is no content], for any [image: there is no content]. Many quantum systems satisfy this. Therefore, since both [image: there is no content] and [image: there is no content] have identical power series expansions, to order [image: there is no content], we can expect [image: there is no content] over some interval on the real k axis, [image: there is no content], where Lim[image: there is no content]ϵN=0 and Lim[image: there is no content]κN=∞. Indeed, [image: there is no content] uniformly converges to [image: there is no content] over any compact domain. Therefore, the error in local approximation is controlled by |Ψ(x)−ΨN(x)|<12π|∫dkeixk(Ψ^(k)−Ψ^N(k))|<12π2ϵNκN+∫|k|>κNdk|Ψ^(k)−Ψ^N(k)|. If Lim[image: there is no content]ϵNκN=0, combined with Lim[image: there is no content]κN=∞, and the boundedness assumption for both [image: there is no content] and [image: there is no content] would result in (uniform) pointwise convergence in x. This is further enhanced if the chosen reference function mimics the true physical asymptotic form in x-space, as well as in k-space, since it would greatly diminish the contribution of the integral expression “[image: there is no content]” given above, implying a faster pointwise convergence at x.

In other words, how the reference function is chosen will lead to enhanced convergence rates to the local properties of the wavefunction in configuration space. More generally, it is to be expected that the OPPQ representation will generally converge, pointwise, to the physical solution. This is in keeping with available theorems [38].




3. Global-Local Quantization


3.1. The Global-Local Quantization Conditions and Application to the Sextic Anharmonic Oscillator

The OPPQ expansion in Equation (9) was originally developed in the spirit of a (non-orthonormal) basis expansion where the expansion coefficients are given by Equation (11) and the following integral expression is required to be finite: ∫dx[image: there is no content][image: there is no content]=∑jΩj2<∞. There was no demand for pointwise convergence. However, there are good mathematical reasons for expecting the OPPQ representation to be (non-uniformly) convergent in a pointwise manner. As previously noted, this representation is a specific case of the more general problem of representing analytic functions by weighted families of polynomials. For Freudian weights of the form [image: there is no content], [image: there is no content], it is known [38] that the representation in Equation (9) converges within an infinite strip in the complex-x plane whose width is determined by the closest singularity (of the physical solution) to the real axis.

If we assume this, in general, for the types of physical systems of interest, then the natural question is to test the pointwise convergence of such representations at the origin (among other possibilities):



[image: there is no content][image: there is no content]=∑j=0∞[image: there is no content]Pj(x)=∑n=0∞[image: there is no content]xn,



(23)




where:


∑j=n∞Ξn(j)[image: there is no content]=[image: there is no content]=Tn,0(E)a0+Tn,1(E)a1.



(24)




We approximate this through the truncation:



∑j=nNΞn(j)[image: there is no content]([image: there is no content],…,μ[image: there is no content])=[image: there is no content]=Tn,0(E)a0+Tn,1(E)a1,



(25)




where we make explicit Ω’s linear dependence on the missing moments.
Since there are [image: there is no content]+3 linear variables {a0,a1,[image: there is no content],…,μ[image: there is no content]}, we must take n=0,…,[image: there is no content]+2, in Equation (25), although [image: there is no content]. An energy-dependent, ([image: there is no content]+3)×([image: there is no content]+3) determinantal equation ensues, yielding converging results for the physical energies, as [image: there is no content].

The above analysis was implemented on the anomalous parameter values for the sextic anharmonic oscillator, as calculated through the Hill determinant approach given in Figure 1. Table 1 shows the exceptional stability of the above “global-local” quantization procedure. These results agree with a pure OPPQ analysis as given in [13], thereby strongly affirming the reliability of the OPPQ representation in capturing the local behavior of the physical solutions. A second example is given in the next section.



3.2. Global-Local Quantization for a Rational Anharmonic Oscillator

In order to further evaluate the convergence properties of the local-global OPPQ method, we chose a non-trivial problem that has a solution that is known exactly. To the best of our knowledge this potential function has not been previously studied.

We consider the rational anharmonic oscillator potential:



[image: there is no content]



(26)




for which the ground state is exactly known:


[image: there is no content](x)≡e−x2/2(1+23x2).








This potential and the ground state associated with eigen-energy [image: there is no content] are represented in Figure 2, together with the underlying harmonic oscillator potential (represented with a dashed line). The advantage of knowing the ground state exactly is that the claimed pointwise convergence of global-local method can be easily verified.

Figure 2. The anharmonic potential (solid line), the unperturbed harmonic potential energy curves and the ground state wave function corresponding to ground state energy [image: there is no content].



[image: Mathematics 03 01045 g002 1024]







The corresponding moment equation for this system is:



μp+6=(E−3)μp+4+p(p+7)+3E+394μp+2(27)+3p(p+3)+94E+18[image: there is no content]+94p(p−1)μp−2,








with [image: there is no content]=5. The corresponding recursion relation for Taylor’s coefficients is:


an+2=4(2n−E−7)an−4+4(n(11−n)−3E−15)an−2−3(13+3E+2n(3n−5))[image: there is no content]9(n+1)(n+2).



(28)




Three representative calculations are given in Table 2. The first is OPPQ using the weight [image: there is no content](x)=e−x2/2, the asymptotic form for the bound states. The second is obtained by implementing the global-local ansatz given in Equation (25), ensuring not only accurate and fast converging energy eigenvalues, but also faithful representation of the wave function that has implicitly both the correct local ([image: there is no content]) and global behavior. The third set of results illustrates the freedom of choice of the reference function within the OPPQ method, by taking it to be the exactly known ground state.


Table 2. Convergence for energy levels of the rational anharmonic potential for various methods as a function of truncation order. OPPQ, orthogonal polynomial projection quantization.



	
N

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Direct OPPQ method with reference function [image: there is no content]




	
20

	
−2.919286247

	
0.910167637

	
3.603889662

	
5.913948003




	
40

	
−2.996045597

	
0.799435213

	
3.437942536

	
5.720225364




	
60

	
−2.999705662

	
0.792968365

	
3.426931961

	
5.705551770




	
80

	
−2.999970901

	
0.792460681

	
3.426034090

	
5.704282111




	
100

	
−2.999996463

	
0.792409589

	
3.425942480

	
5.704148274




	
Matching local and global behavior through Equation (25)




	
20

	
−3.192388811

	
−0.534923547

	
3.546551239

	
5.743802129




	
40

	
−3.008483327

	
0.735594478

	
3.407202508

	
5.604497284




	
60

	
−3.000567710

	
0.789212601

	
3.424198982

	
5.696740280




	
80

	
−3.000052234

	
0.792139749

	
3.425751715

	
5.703466230




	
100

	
−3.000006028

	
0.792374246

	
3.425907672

	
5.704054764




	
Ground state wave function as the reference function




	
10

	
−3.000000000

	
0.757672016

	
3.265699150

	
5.407722347




	
20

	
−3.000000000

	
0.790563451

	
3.418884509

	
5.691130493




	
30

	
−3.000000000

	
0.792220915

	
3.425272253

	
5.702879442




	
40

	
−3.000000000

	
0.792377300

	
3.425841380

	
5.703957354




	
50

	
−3.000000000

	
0.792398005

	
3.425914514

	
5.704099238




	
60

	
−3.000000000

	
0.792401433

	
3.425926384

	
5.704122686









Figure 3 demonstrates the pointwise convergence properties for the wave function calculated using the global-local quantization. The results presented are obtained by using Equations (9) and (18) with truncation order [image: there is no content]. It is also instructive to compare the power expansion of the reconstructed ground state wave function, scaled by the reference function [image: there is no content](x)=e−x2/2, which is given by:

Figure 3. The difference between the ground state wave function calculated by using the local-global OPPQ method and the exact wave function [image: there is no content].



[image: Mathematics 03 01045 g003 1024]







[image: there is no content]








with the corresponding exact expansion of the ground state:


[image: there is no content]








This shows that the solution provided by the global-local quantization has the claimed pointwise convergence properties of the wave function together with the fast convergence of energy levels.

It is instructive to compare the global convergence (on the real line) of the OPPQ representation with the local Taylor series expansion. Specifically, the wave function representation in terms of orthogonal polynomials as in Equation (18) has global convergence properties, as opposed to the local convergence of Taylor’s power expansion, which is always restricted to a disk. This point is illustrated in Figure 4, where the convergence domain in the complex x-plane of [image: there is no content] covers an increasing horizontal strip, as the OPPQ truncation order in Equation (18) increases from [image: there is no content] to [image: there is no content]. The strip is determined by the [image: there is no content] singularities. On the other hand, the convergence of Taylor’s expansion of the ground state is always local, limited by a disk around the expansion center (chosen in Figure 4 to be centered at 1.4) and bordered by the singularities.

Figure 4. Converge domains in the complex plane for Taylor’s expansion and OPPQ expansion for the ground state wave function scaled by the reference function ([image: there is no content]/[image: there is no content]) of the rational anharmonic oscillator in Equation (26). The OPPQ expansion is carried out for the sequence of truncation orders [image: there is no content] and 140, showing that in the [image: there is no content] limit, its convergence domain is a horizontal strip bordered by the singular point of the wave function. In contrast, Taylor’s expansion does not converge outside the disk centered at the chosen expansion center, in the calculated case [image: there is no content].
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The process of the analytic continuation of a function, [image: there is no content], results in power series expansions for the local expression [image: there is no content], involving non-global expansion coefficients (i.e., the [image: there is no content] are τ dependent). The orthonormal polynomial expansion in Equation (19) transcends this into a global statement, particularly close to the real axis. Of course, one advantage of the conventional analytic continuation process is that one can control the uniformity of the convergence of the analytic continuation to the target function. For our purposes, the non-uniform nature of the pointwise convergence of the OPPQ expansion is not a problem, since we are using the local information (i.e., the derivatives, etc.) at a chosen point.




4. Conclusions

The importance of moment representations in the context of algebraic quantization problems is often overlooked. The importance, and flexibility, of weighted orthonormal polynomial representations has been amply demonstrated here and in previous works with regards to their ability to generate the discrete energies to arbitrary precision. The relevance of such representations for reconstructing the wavefunctions is strongly suggested by the present work, including our ability to quantize by imposing global-local constraints on the OPPQ, weighted polynomial expansion.
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Appendix

In this section, we give two sets of data demonstrating the effectiveness of OPPQ versus HD, as discussed in Section 1.
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