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Abstract:

 Burg’s entropy plays an important role in this age of information euphoria, particularly in understanding the emergent behavior of a complex system such as statistical mechanics. For discrete or continuous variable, maximization of Burg’s Entropy subject to its only natural and mean constraint always provide us a positive density function though the Entropy is always negative. On the other hand, Burg’s modified entropy is a better measure than the standard Burg’s entropy measure since this is always positive and there is no computational problem for small probabilistic values. Moreover, the maximum value of Burg’s modified entropy increases with the number of possible outcomes. In this paper, a premium has been put on the fact that if Burg’s modified entropy is used instead of conventional Burg’s entropy in a maximum entropy probability density (MEPD) function, the result yields a better approximation of the probability distribution. An important lemma in basic algebra and a suitable example with tables and graphs in statistical mechanics have been given to illustrate the whole idea appropriately.
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1. Introduction


The concept of entropy [1] figured strongly in the physical sciences during the 19th century, especially in thermodynamics and statistical mechanics [2], as a measure of equilibrium and evolution of thermodynamic systems. Two main views were developed which were the macroscopic view formulated originally by Clausius and Carnot and the microscopic approach associated with Boltzmann and Maxwell. Since then, both the approaches have made introspection in natural thermodynamic and microscopically probabilistic systems possible. Entropy is defined as the measure of a system’s thermal energy per unit temperature that is unavailable for doing useful work. Because work is obtained from ordered molecular motion, the amount of entropy is also a measure of molecular disorder or randomness of a system. The concept of entropy provides deep insight into the direction of spontaneous change for many day-to-day phenomena. Now, how entropy was developed by Rudolf Clausius [3] is discussed below.



1.1. Clausius’s Entropy


To provide a quantitative measure for the direction of spontaneous change, Clausius introduced the concept of entropy as a precise way of expressing the second law of thermodynamics. The Clausius form of the second law states that spontaneous change for an irreversible process [4] in an isolated system (that is, one that does not exchange heat or work with its surroundings) always proceeds in the direction of increasing entropy. By the Clausius definition, if an amount of heat [image: there is no content] flows into a large heat reservoir at temperature [image: there is no content] above absolute zero, then [image: there is no content]. This equation effectively gives an alternate definition of temperature that agrees with the usual definition. Assume that there are two heat reservoirs [image: there is no content] and [image: there is no content] at temperatures [image: there is no content] and [image: there is no content]. (such as the stove and the block of ice). If an amount of heat [image: there is no content] flows from [image: there is no content] to [image: there is no content], then the net entropy change for the two reservoirs is [image: there is no content] which is positive, provided that [image: there is no content]. Thus, the observation that heat never flows spontaneously from cold to hot is equivalent to requiring the net entropy change to be positive for a spontaneous flow of heat. When the system is in thermodynamic equilibrium, then [image: there is no content], i.e., if [image: there is no content], then the reservoirs are in equilibrium, no heat flows, and [image: there is no content]. If the gas absorbs an incremental amount of heat [image: there is no content] from a heat reservoir at temperature [image: there is no content] and expands reversibly against the maximum possible restraining pressure [image: there is no content], then it does the maximum work and [image: there is no content]. The internal energy of the gas might also change by an amount [image: there is no content] as it expands. Then, by conservation of energy, [image: there is no content]. Because the net entropy change for the system plus reservoir is zero when maximum work is done and the entropy of the reservoir decreases by an amount [image: there is no content], this must be counterbalanced by an entropy increase of [image: there is no content] for the working gas so that [image: there is no content]. For any real process, less than the maximum work would be done (because of friction, for example), and so the actual amount of heat [image: there is no content] absorbed from the heat reservoir would be less than the maximum amount [image: there is no content]. For example, the gas could be allowed to expand freely into a vacuum and do no work at all. Therefore, it can be stated that [image: there is no content] with, [image: there is no content] in the case of maximum work corresponding to a reversible process. This equation defines [image: there is no content] as a thermodynamic state variable, meaning that its value is completely determined by the current state of the system and not by how the system reached that state. Entropy is a comprehensive property in that its magnitude depends on the amount of material in the system.



In one statistical interpretation of entropy, it is found that for a very large system in thermodynamic equilibrium, entropy [image: there is no content] is proportional to the natural logarithm of a quantity [image: there is no content] corresponding to [image: there is no content] and can be realized; that is, [image: there is no content], in which [image: there is no content] is related to molecular energy. On the other hand, entropy generation analysis [5,6,7,8,9,10,11] is used to optimize the thermal engineering devices for higher energy efficiency; it has attracted wide attention to its applications and rates in recent years. In order to access the best thermal design of systems, by minimizing the irreversibility, the second law of thermodynamics could be employed. Entropy generation is a criterion for the destruction of a systematized work.The development of the theory followed two conceptually different lines of thought. Nevertheless, they are symbiotically related, in particular through the work of Boltzmann.




1.2. Boltzmann’s Entropy


In addition to thermodynamic (or heat-change) entropy, physicists also study entropy statistically [12,13]. The statistical or probabilistic study of entropy is presented in Boltzmann’s law. Boltzmann’s equation is somewhat different from the original Clausius (thermodynamic) formulation of entropy. Firstly, the Boltzmann formulation is structured in terms of probabilities, while the thermodynamic formulation does not consist in the calculation of probabilities. The thermodynamic formulation can be characterized as a mathematical formulation, while the Boltzmann formulation is statistical. Secondly, the Boltzmann equation yields a value of entropy [image: there is no content] while the thermodynamic formulation yields only a value for the change in entropy [image: there is no content]. Thirdly, there is a shift in content, as the Boltzmann equation was developed for research on gas molecules rather than thermodynamics. Fourthly, by incorporating probabilities, the Boltzmann equation focuses on microstates, and thus explicitly introduces the question of the relationship between macrostates and microstates. Boltzmann investigated such microstates and defined entropy in a new way such that the macroscopic maximum entropy state corresponded to a thermodynamic configuration which could be formulated by the maximum number of different microstates. He noticed that the entropy of a system can be considered as a measure of the disorder in the system and that in a system having many degrees of freedom, the number measuring the degree of disorder also measured the uncertainty in a probabilistic sense about the particular microstates.



The value [image: there is no content] was originally intended to be proportional to the Wahrscheinlichkeit (means probability) of a macrostate for some probability distribution of a possible microstate, in which the thermodynamic state of a system can be realized by assigning different [image: there is no content] and [image: there is no content] of different molecules. The Boltzmann formula is the most general formula for thermodynamic entropy; however, his hypothesis was for an ideal gas of [image: there is no content] identical particles, of which [image: there is no content] are the [image: there is no content]th microscopic condition of position and momentum of a given distribution [image: there is no content]. Here, [image: there is no content], [image: there is no content],…etc. For this state, the probability of each microstate system is equal, so it was equivalent to calculating the number of microstates associated with a macrostate. Then the statistical disorder is given by [14] [image: there is no content]. Therefore, the entropy given by Boltzmann is: [image: there is no content] Where [image: there is no content]



Let us now take an approximate value of [image: there is no content] for a large [image: there is no content]. Using Stirling’s approximation [image: there is no content], we have:


[image: there is no content]








[image: there is no content] where [image: there is no content] is the probability of the occurrence of [image: there is no content] th microstates. Boltzmann was the first to emphasize the probabilistic meaning of entropy and the probabilistic nature of thermodynamics.




1.3. Information Theory andShannon’s Entropy


Unlike the first two entropy approaches (thermodynamic entropy by Clausius and Boltzmann’s entropy), the third major form of entropy did not fall within the field of physics, but was developed instead in a new field known as information theory [15,16,17] (also known as communication theory). A fundamental step in using entropy in new contexts unrelated to thermodynamics was provided by Shannon [18], who came to conclude that entropy could be used to measure types of disorder other than that of thermodynamic microstates. Shannon was interested in information theory [19,20], particularly in the ways in which information can be conveyed via a message. This led him to examine probability distributions in a very general sense and he worked to find a way of measuring the level of uncertainty in different distributions.



For example, suppose the probability distribution for the outcome of a coin toss experiment is P(H) = 0.999 and P(T) = 0.001. One is likely to notice that there is much more “certainty” than “uncertainty” about the outcome of this experiment and, consequently, the probability distribution. If, on the other hand, the probability distribution governing that same experiment were P(H) = 0.5 and P(T) = 0.5, then there is much less “certainty” and much more “uncertainty” when compared to the previous distribution. However, how can these uncertainties can be quantified? Is there some algebraic function which measures the amount of uncertainty in any probabilistic distribution in terms of the individual probabilities? From these types of simple examples and others, Shannon was able to devise a set of criteria which any measure of uncertainty may satisfy. He then tried to find an algebraic form which would satisfy his criteria and discovered that there was only one formula which fit. Let the probabilities of [image: there is no content] possible outcomes [image: there is no content] of an experiment be [image: there is no content], giving rise to the probability distribution [image: there is no content]. There is an uncertainty as to the outcome when the experiment is performed. Shannon suggested the measure [image: there is no content], which is identical to the previous entropy relation if the constant of probability is taken as the Boltzmann constant [image: there is no content]. Thus, Shannon showed that entropy, which measures the amount of disorder in a thermodynamic system, also measures the amount of uncertainty in any probability distribution. Let us now give the formal definition of Shannon’s entropy as follows: Consider a random experiment [image: there is no content] whose possible outcomes have probabilities [image: there is no content] that are known. Can we guess in advance which outcome we shall obtain? Can we measure the amount of uncertainty? We shall denote such an uncertainty measure by [image: there is no content]. The most common as well as the most useful measure of uncertainty is Shannon's informational entropy (which should satisfy some basic requirements), which is defined as follows:

Definition I: 

Let [image: there is no content] be the probability of the occurrence of the events [image: there is no content] associated with a random experiment. The Shannon’s entropy probability distribution [image: there is no content] of the random experiment system [image: there is no content] is defined by [image: there is no content] where, [image: there is no content]. The above definition is generalized straightforwardly as the definition of entropy of a random variable.







Definition II: Let X [image: there is no content]R be a discrete random variable which takes the value [image: there is no content] with the probability [image: there is no content]; then the entropy [image: there is no content] of [image: there is no content] is defined by the expression [image: there is no content] Examination of H or [image: there is no content] reveals why Shannon’s measure is the most satisfactory measure of entropy because of the following:

	(i)

	
[image: there is no content] is a continuous function of [image: there is no content]




	(ii)

	
[image: there is no content] is a symmetric function of its arguments.




	(iii)

	
[image: there is no content], i.e., it should not change if there is an impossible outcome to the probability.




	(iv)

	
Its minimum is 0 when there is no uncertainty about the outcome. Thus, it should vanish when one of the outcomes is certain to happen so that


[image: there is no content]












	(v)

	
It is the maximum when there is maximum uncertainty, which arises when the outcomes are equally likely so that [image: there is no content] is the maximum when [image: there is no content].




	(vi)

	
The maximum value of [image: there is no content] increases with [image: there is no content].




	(vii)

	
For two independent probability distributions [image: there is no content] and [image: there is no content], the uncertainty of the joint scheme [image: there is no content] should be the sum of their uncertainties: [image: there is no content]









Shannon’s entropy has various applications in the field of portfolio analysis, the measurement of economic analysis, transportation, and urban and regional planning as well as in the fields of statistics, thermodynamics, queuing theory, parametric estimation, etc. It has been used in the field non-commensurable and conflicting criteria [21] and in the nonlinear complexity of random sequences [22] as well.





2. Discussion


2.1. Jaynes’ Maximum Entropy (MaxEnt) Principle


Let the random variable of an experiment be [image: there is no content], and assume the probability mass associated with the value [image: there is no content] is [image: there is no content], i.e., [image: there is no content]. The set [image: there is no content] is called the source ensemble as described by Karmeshu [23]. In general, we may find expected values of the functions [image: there is no content] to get [image: there is no content] and with natural constraint [image: there is no content] given a number of constraints. Thus, we have [image: there is no content] relations between [image: there is no content]. There may be infinite probability distributions [image: there is no content] satisfying the above equation. If we know only [image: there is no content], then we get a family of max entropy distributions. If, in addition, we know the values of [image: there is no content] we get a specific member of this family and we call it the max entropy probability distribution. According to a great article by Jaynes [24,25,26], we choose the probability distribution out of all these which maximizes the measure of entropy as shown by Shannon’s equation, [image: there is no content].



Any distribution of the form [image: there is no content][image: there is no content] may be regarded as the maximum entropy distribution where [image: there is no content] are determined as functions of [image: there is no content]; then the maximum entropy [image: there is no content] is given by [image: there is no content].



Kapur [27,28] showed that there is always a concave function of [image: there is no content] We also note that all the probabilities given by [image: there is no content] are always positive. We naturally want to know whether there is another measure of entropy other than Shannon’s entropy which, when maximized, subject to, [image: there is no content][image: there is no content], gives positive probabilities and for which [image: there is no content] is possibly a concave function [29] of parameters. Kapur [30] studied that Burg’s [31] measure of entropy, which has been very successfully used in spectral analysis, does always give positive probabilities. The maximum entropy principal of Jaynes has been used frequently to derive the distribution of statistical mechanics by maximizing the entropy of the system subject to some given constraints. The Maxwell-Boltzman distribution is obtained when there is only one constraint on a system which prescribes the expected energy per particle of the system by Bose-Einstein (B.E.) distribution, Fermi-Dirac (F.D.) distribution and intermediate statistics (I.S.) distributions; these are obtained by maximizing the entropy subject to two constraints by Kapur and Kesavan, and Kullback [32,33] and also by the present authors [34].




2.2. Formulation of MEPD in Statistical Mechanics Using Shannon’s Measure of Entropy


Let [image: there is no content] be the probabilities of a particle having energy levels [image: there is no content][image: there is no content]….,[image: there is no content], respectively, and let the expected value of energy be prescribed as [image: there is no content]; then, to get MEPD, we maximize the Shannon’s measure of entropy:


[image: there is no content]



(1)







Subject to


[image: there is no content]



(2)







Let the Lagrangian be


[image: there is no content]



(3)







Differentiating with respect to [image: there is no content]’s, we get:



[image: there is no content] where, [image: there is no content] are to be determined by using Equation (2) so that


[image: there is no content]



(4)







Where


[image: there is no content]



(5)







Equation (4) is the well-known Maxwell-Boltzmann distribution from statistical mechanics which is used in many areas [35,36,37].




2.3. Burg’s Entropy Measure and MEPD


When [image: there is no content] was replaced by Burg’s measure of entropy [image: there is no content], it gave interesting results as shown by Kapur. Burg’s measure of entropy is always negative, but this does not matter in entropy maximization, where it has been found that a probability distribution with maximum entropy satisfies the same constraint and it does not matter if all the entropies are negative. So, in Equation (1) when we use


[image: there is no content]



(6)







we get


[image: there is no content]



(7)




where [image: there is no content] are obtained by solving the equations


[image: there is no content]



(8)







Multiplying first and second Equation (8) by [image: there is no content] respectively then adding



We get


[image: there is no content]



(9)




so that from Equation (8),


[image: there is no content]



(10)







Then, [image: there is no content] is an obvious solution but that will give us [image: there is no content] and this will satisfy the second equation of (8)



if [image: there is no content]. Now, Equation (10) is the [image: there is no content]th degree polynomial in [image: there is no content], and one of its roots is zero. Its non-zero solutions will be obtained by solving an equation of [image: there is no content]th degree in [image: there is no content]. Lemma has been proved by Kapur as the following:

Lemma: 

All the roots of [image: there is no content] are real; in other words, none of the roots can be complex.








Proof: 

Let [image: there is no content] be a pair of complex conjugate roots of Equation (10). Then,



[image: there is no content] and [image: there is no content]; subtracting the second from the first, we get



[image: there is no content], which gives [image: there is no content], or [image: there is no content]. The second possibility can easily be ruled out. To find the actual location of the n real roots, let us assume



[image: there is no content] and this function is discontinuous at the following points:



[image: there is no content], where [image: there is no content] and [image: there is no content] is a “+” fraction. More precisely, [image: there is no content] when [image: there is no content] points from one side and [image: there is no content] when [image: there is no content] points from other side. Again,


[image: there is no content]










[image: there is no content]










[image: there is no content]
















2.4. d Burg’s Modifie Entropy (MBE) Measure and MEPD


2.4.1. Monotonic Character of MBE


We propose use of Burg’s modified entropy instead of Burg’s entropy. Maximizing the Burg’s modified measure of entropy:


[image: there is no content]



(11)






[image: there is no content]



(12)







Therefore, [image: there is no content] is the monotonic increasing function of [image: there is no content]. For the probability distribution


[image: there is no content]










[image: there is no content]



(13)







it is showed (see: Table 1.) that [image: there is no content].


Table 1. The [image: there is no content] values & maximum values of Burg’s Modified Entropy.


	[image: there is no content]
	[image: there is no content]





	0.5
	0.04082



	1.0
	0.11778



	1.5
	0.20294



	2.0
	0.28768



	5.0
	0.71376



	10.0
	1.1856



	20.0
	1.7512



	30.0
	2.1111



	40.0
	2.3754



	50.0
	2.5843



	[image: there is no content]
	[image: there is no content]









The measure of entropy [image: there is no content] is the Burg’s modified entropy. This is a better measure than the standard Burg’s measure since it is always positive and there is no computational problem when [image: there is no content] is very small. In the above case, the maximum value increases with the number of possible outcomes [image: there is no content].




2.4.2. MBE and Its Relation with Burg’s Entropy



[image: there is no content]









So, when [image: there is no content], maximizing [image: there is no content] and [image: there is no content] will give the same result in both cases;again, if [image: there is no content] is maximized under the constraints


[image: there is no content]



(14)







we get [image: there is no content]. Letting, we have


[image: there is no content]



(15)







The [image: there is no content]’s are determined by using Constraints (14) and (15) and this gives the MEPD when Burg’s entropy is maximized as subject to Equation (14).



Therefore, when [image: there is no content], the MEPD of BME [image: there is no content] Burg’s MEPD; in fact:


[image: there is no content]










[image: there is no content]












2.4.3. MBE and Its Concavity of [image: there is no content] under Prescribed Mean



[image: there is no content]



(16)





subjectto [image: there is no content].



We obtain this using Lagranges multiplier mechanics:


[image: there is no content]



(17)







From the above equation:


[image: there is no content]



(18)







[image: there is no content], i.e., [image: there is no content] and


[image: there is no content]



(19)







So


[image: there is no content]



(20)






[image: there is no content]



(21)







Therefore,


[image: there is no content]



(22)




and


[image: there is no content]



(23)




where [image: there is no content] is determined as a function of [image: there is no content] and that is


[image: there is no content]










[image: there is no content]











Therefore,


[image: there is no content]










[image: there is no content]











So that


[image: there is no content]



(24)







[image: there is no content] will be a concave function of [image: there is no content] if [image: there is no content], that is, if either [image: there is no content] when the denominator [image: there is no content], respectively.



In the above case, when [image: there is no content] we get [image: there is no content] and the derivative of [image: there is no content] as follows:


[image: there is no content]



(25)






[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]



(26)







So that


[image: there is no content]



(27)







Additionally, we have


[image: there is no content]



(28)







So that


[image: there is no content]



(29)







Therefore,


[image: there is no content]



(30)







So,


[image: there is no content]



(31)







Therefore, from Equations (27) and (30),



[image: there is no content] will be a concave function of [image: there is no content] if either


[image: there is no content]



(32)







Or


[image: there is no content]



(33)







Additionally, when [image: there is no content], all the probabilities are equal, and from Equation (24) we have:



We have,


[image: there is no content]



(34)







Now, if we proceed algebraically as done Section 2.3, we get:


[image: there is no content]











[image: there is no content]. The obvious solution of the above problem is [image: there is no content] which will give [image: there is no content], i.e., uniform distribution, and thus we get, [image: there is no content].






3. An Illustrative Example in Statistical Mechanics


3.1. Example


Let [image: there is no content] be the probabilities of a particle having energy levels [image: there is no content][image: there is no content]….,[image: there is no content]; respectively, and let the expected value of energy be prescribed as [image: there is no content]; then, we get the maximum entropy probability distribution (MEPD) with MBE as follows:


[image: there is no content]












Solution: 

Maximizing the measure of entropy subject to the given constraints, we have [image: there is no content].







When [image: there is no content], [image: there is no content]i.e., [image: there is no content], we get the probability distribution in the form of a table and also get the values of [image: there is no content] as described by Kapur and Kesavan.



There may be two cases,



Case (i) when [image: there is no content].



In this case, when [image: there is no content] lies between 1 and 5.5, [image: there is no content] implies [image: there is no content] and then [image: there is no content] is increasing.



Case (ii) when [image: there is no content].



In this case, when [image: there is no content] lies between 5.5 and 10, [image: there is no content] implies [image: there is no content] and then [image: there is no content] is decreasing.



When [image: there is no content], [image: there is no content], [image: there is no content].



it can be shown that [image: there is no content] will be concave if we prescribe [image: there is no content] instead of [image: there is no content], where [image: there is no content] is a monotonic increasing function of [image: there is no content]; then we will apply the necessary changes. Again, since the concavity of [image: there is no content] has already been proven, this will enable us to handle the inequality constraint of the type [image: there is no content].




3.2. Simulated Results


Following Table (Table 2) Found Using LINGO Software 2011 where Different Max-Entropy Values Are Given for Different m Values:


Table 2. Comparative Maximum Entropy Values.


	m
	Maximum Entropy Value of [image: there is no content]
	Maximum Entropy Value of [image: there is no content]
	Maximum Entropy Value of [image: there is no content]





	1.00
	0
	−158.225
	0



	1.25
	0.0896122
	−45.13505
	0.6255029



	1.50
	0.1345336
	−38.98478
	0.9547543



	1.75
	0.1633092
	−35.43113
	1.194875



	2.00
	0.1836655
	−32.94620
	1.385892



	2.25
	0.1989097
	−31.05219
	1.542705



	2.50
	0.2107459
	−29.53735
	1.675885



	2.75
	0.2201939
	−28.28982
	1.790029



	3.00
	0.2279397
	−27.24394
	1.888477



	3.25
	0.2344146
	−26.35851
	1.973503



	3.50
	0.2399041
	−25.60649
	2.046725



	3.75
	0.24461
	−24.96958
	2.109324



	4.00
	0.248682
	−24.43512
	2.162186



	4.25
	0.252127
	−23.99419
	2.205980



	4.50
	0.2549453
	−23.64047
	2.241209



	4.75
	0.257137
	−23.36942
	2.268253



	5.00
	0.2587024
	−23.17789
	2.287386



	5.25
	0.2596416
	−23.06376
	2.298794



	5.50
	0.2599546
	−23.02585
	2.302585



	5.75
	0.2596416
	−23.06376
	2.298794



	6.00
	0.2587024
	−23.17789
	2.287386



	6.25
	0.257137
	−23.36942
	2.268253



	6.50
	0.2549453
	−23.64047
	2.241209



	6.75
	0.252127
	−23.99419
	2.205980



	7.00
	0.248682
	−24.43512
	2.162186



	7.25
	0.24461
	−24.96958
	2.109324



	7.50
	0.2399041
	−25.60649
	2.046725



	7.75
	0.2344146
	−26.35851
	1.973503



	8.00
	0.2279397
	−27.24394
	1.888477



	8.25
	0.2201939
	−28.28982
	1.790029



	8.50
	0.2107459
	−29.53735
	1.675885



	8.75
	0.1989097
	−31.05219
	1.542705



	9.00
	0.1836655
	−32.94620
	1.385892



	9.25
	0.1633092
	−35.43113
	1.194875



	9.50
	0.1345336
	−38.98478
	0.9547543



	9.75
	0.0896122
	−45.13505
	0.6255029



	10.0
	0
	−141.25285
	0









Graphs obtained from the above table are given on the next page (Figure 1, Figure 2 and Figure 3):


Figure 1. Maximum Burg’s modified entropy.



[image: Mathematics 04 00010 g001 1024]





Figure 2. Maximum Burg’s entropy.



[image: Mathematics 04 00010 g002 1024]





Figure 3. Maximum Shannon’s entropy.



[image: Mathematics 04 00010 g003 1024]






If [image: there is no content] is plotted against [image: there is no content], we get rectangular hyperbolic types of curves (Table 3 and Figure 4).


Figure 4. Rectangular hyperbolic types of graphs. (a) when [image: there is no content]; (b) when [image: there is no content].
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Table 3. [image: there is no content] and [image: there is no content] graph.


	[image: there is no content]
	[image: there is no content]





	1
	1.000000



	2
	0.2899575



	3
	0.1747893



	4
	0.1253783



	5
	0.1027619



	6
	0.1027620



	7
	0.1253782



	8
	0.1747891



	9
	0.2899574



	10
	1.000000











4. Conclusions


In the present paper we have presented different MEPDs and respective entropy measures with their properties. It has been found that MBE is a better measure than Burg’s entropy when the maximized subject to the mean is prescribed, and it also has been shown that unlike Burg’s entropy, the maximum value of MBE increases with [image: there is no content]. The main problem here will consist of solving [image: there is no content] simultaneous transcendental equations for the Lagranges multipliers. An application in statistical mechanics with simulated data has been studied with the help of Lingo11 software and corresponding graphs are provided. Now, one question arises: Will this result continue to hold for other moment constraints also? When we take generalized moment expectation of [image: there is no content] instead of expectation of [image: there is no content], then [image: there is no content] must be a monotonic increasing function of [image: there is no content], and if [image: there is no content] becomes negative for some values of the moments, then we have to set those probabilities to zero and reformulate the problem for the remaining probabilities over the remaining range and solve it.







Acknowledgments


Authors would like to express their sincere gratitude and appreciation to the reviewers for their valuable comments and good suggestions to make this paper enriched and impactful, and a special thank you to the Assistant Editor.




Author Contributions


A. Ray and S. K. Majumder conceived and designed the experiments; A. Ray performed the experiments, analyzed the data and both A. Ray and S. K. Majumder contributed in analysis tools; A. Ray wrote the paper.




Conflicts of Interest


The authors declare no conflict of interest.




Nomenclature



	
[image: there is no content] = Entropy



	
[image: there is no content], probability of [image: there is no content]th event



	
[image: there is no content] = Information entropy



	
[image: there is no content] = Shannon’s entropy



	
[image: there is no content] = Burg’s entropy



	
[image: there is no content] = Burg’s modified entropy



	
[image: there is no content] = Number of energy levels/number of possible outcome



	
[image: there is no content]



	
[image: there is no content] = Boltzmann constant



	
[image: there is no content] = Absolute temperature



	
[image: there is no content] = Identical particle of ideal gas



	
[image: there is no content] = Increase of entropy



	
[image: there is no content] = Change in entropy



	
[image: there is no content] = Greatest integer value of [image: there is no content]



	
Where [image: there is no content] is the mean value:



	
[image: there is no content] = Expectation



	
[image: there is no content]= Change in volume



	
[image: there is no content] = Union of two sets



	
[image: there is no content], [image: there is no content] ranges from 1 to 10 with step length of 0.25



	
[image: there is no content] = Maximum entropy



	
[image: there is no content] = Maximum value under the given probability distribution



	
MBE=Modified Burg’s Entropy







Greek Symbols



	
[image: there is no content] = The maximum number of microscopic ways in the macroscopic state



	
[image: there is no content] = Position of the molecule



	
[image: there is no content] = Momentum of the molecule



	
[image: there is no content]=Lagrangian constant



	
[image: there is no content]=Different energy levels



	
[image: there is no content] =Mean energy







Subscripts 



	
B=Boltzmann



	
max =Maximum



	
mod =modified







Superscript 



	
[image: there is no content] =New constant different from [image: there is no content]
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