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Abstract:

 In this paper, we study two inverse eigenvalue problems (IEPs) of constructing two special acyclic matrices. The first problem involves the reconstruction of matrices whose graph is a path, from given information on one eigenvector of the required matrix and one eigenvalue of each of its leading principal submatrices. The second problem involves reconstruction of matrices whose graph is a broom, the eigen data being the maximum and minimum eigenvalues of each of the leading principal submatrices of the required matrix. In order to solve the problems, we use the recurrence relations among leading principal minors and the property of simplicity of the extremal eigenvalues of acyclic matrices.
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1. Introduction


The problems of reconstruction of specially structured matrices from a prescribed set of eigen data are collectively known as inverse eigenvalue problems (IEPs). The level of difficulty of an IEP depends on the structure of the matrices which are to be reconstructed and on the type of eigen information available. M.T. Chu in [1] gave a detailed characterization of inverse eigenvalue problems. A few special types of inverse eigenvalue problems have been studied in [2,3,4,5,6,7,8]. Inverse problems for matrices with prescribed graphs have been studied in [9,10,11,12,13,14]. Inverse eigenvalue problems arise in a number of applications such as control theory, pole assignment problems, system identification, structural analysis, mass spring vibrations, circuit theory, mechanical system simulation and graph theory [1,12,15,16].



In this paper, we study two IEPs, namely IEPP (inverse eigenvalue problem for matrices whose graph is a path) and IEPB (inverse eigenvalue problem for matrices whose graph is a broom). Similar problems were studied in [5], for arrow matrices. The usual process of solving such problems involves the use of recurrence relations among the leading principal minors of [image: there is no content] where A is the required matrix. However, we have included graphs in our analysis by bringing in the requirement of constructing matrices which are described by graphs. In particular, we have considered paths and brooms. Thus, in addition to recurrence relations among leading principal minors, we have used spectral properties of acyclic matrices to solve the problems. Particularly, the strict interlacing of the eigenvalues in IEPB could be proved because of the fact that the minimal and maximal eigenvalues of an acyclic matrix are simple.



The paper is organized as follows : In Section 2, we discuss some preliminary concepts and clarify the notations used in the paper. In Section 3, we define the inverse problems to be studied, namely IEPP and IEPB. Section 4 deals with the analysis of IEPP, the main result being presented as Theorem 4. Section 5 deals with the analysis of IEPB, the main result being presented as Theorem 9. In Section 6, we present some numerical examples to illustrate the solutions of IEPP and IEPB.




2. Preliminary Concepts


Let V be a finite set and let P be the set of all subsets of V which have two distinct elements. Let [image: there is no content]. Then [image: there is no content] is said to be a graph with vertex set V and edge set E. To avoid confusion, the vertex set of a graph G is denoted by [image: there is no content] and the edge set is denoted by [image: there is no content]. Our choice of P implies that the graphs under consideration are free of multiple edges or loops and are undirected. If [image: there is no content] and [image: there is no content], then we say that [image: there is no content] is an edge and u and v are then called adjacent vertices. The degree of a vertex u is the number of edges which are incident on u. A vertex of degree one is called a pendant vertex. A path P of G is a sequence of distinct vertices [image: there is no content] such that consecutive vertices are adjacent. The path on n vertices is denoted by [image: there is no content]. A graph is said to be connected if there exists a path between every pair of its vertices. A cycle is a connected graph in which each vertex is adjacent to exactly two other vertices. A connected graph without any cycles is called a tree.



Given an [image: there is no content] symmetric matrix A, the graph of A, denoted by [image: there is no content], has vertex set [image: there is no content] and edge set [image: there is no content]. For a graph G with n vertices, [image: there is no content] denotes the set of all [image: there is no content] symmetric matrices which have G as their graph. A matrix whose graph is a tree is called an acyclic matrix. Some simple examples of acyclic matrices are the matrices whose graphs are paths or brooms (Figure 1).


Figure 1. Path [image: there is no content] and Broom [image: there is no content].



[image: Mathematics 04 00012 g001 1024]






Throughout this paper, we shall use the following notation:

	
Matrix of a path [image: there is no content] will be a tridiagonal matrix with non zero off-diagonal entries :


[image: there is no content]=a1[image: there is no content]0…00[image: there is no content][image: there is no content]b2…000b2a3⋱00⋮⋮⋱⋱⋱⋮000⋱a[image: there is no content]b[image: there is no content]000…b[image: there is no content]an[image: there is no content],








where the [image: there is no content]s are non-zero.



	
Matrix of a broom [image: there is no content] will be of the following form:


[image: there is no content]








where the [image: there is no content]s are non zero.



	
[image: there is no content] will denote the ith leading principal submatrix of the required matrix ([image: there is no content] or [image: there is no content]).



	
Pi(λ)=det(λ[image: there is no content]-[image: there is no content]), [image: there is no content] (respectively [image: there is no content]) i.e., the ith leading principal minor of λIn-[image: there is no content] (respectively λIn+m-[image: there is no content]), [image: there is no content] being the identity matrix of order i. For the sake of writing the recurrence relations with ease, we define [image: there is no content].









3. IEPs to be Studied


In this paper we shall study the following two inverse eigenvalue problems :



IEPP Given n real numbers [image: there is no content] and a real vector [image: there is no content] find an [image: there is no content] matrix [image: there is no content]∈S([image: there is no content]) such that [image: there is no content] is an eigenvalue of [image: there is no content], [image: there is no content] and [image: there is no content] is an eigenpair of [image: there is no content].



IEPB Given [image: there is no content] real numbers [image: there is no content] and [image: there is no content], find an [image: there is no content] matrix [image: there is no content]∈S([image: there is no content]) such that [image: there is no content] and [image: there is no content] are respectively the minimal and maximal eigenvalues of [image: there is no content], [image: there is no content].




4. Solution of IEPP


The following Lemma gives the relation between successive leading principal minors of λIn-[image: there is no content]:



Lemma 1. 

The sequence {Pj(λ)=det(λIj-[image: there is no content])}[image: there is no content]nof characteristic polynomials of [image: there is no content]satisfies the following recurrence relations:

	
[image: there is no content]



	
[image: there is no content], [image: there is no content].










Here [image: there is no content]denotes the jth leading principal submatrix of [image: there is no content], the matrix corresponding to the path on n vertices.



Lemma 2. 

For any [image: there is no content] and [image: there is no content], [image: there is no content] and [image: there is no content]cannot be simultaneously zero.





Proof. 

If [image: there is no content], then [image: there is no content], which implies [image: there is no content], but this contradicts the restriction on [image: there is no content] that [image: there is no content]. Once again, for [image: there is no content], if [image: there is no content], then the recurrence relation (ii) from Lemma 1, [image: there is no content], which gives [image: there is no content]. This will in turn imply that [image: there is no content]. Thus, we will end up with [image: there is no content], implying that [image: there is no content] which is a contradiction. □





Lemma 3. 

If [image: there is no content]is an eigenvector of [image: there is no content]corresponding to an eigenvalue λ, then [image: there is no content]and the components of this eigenvector are given by


xj=[image: there is no content]∏i=1j-1[image: there is no content]x1,j=2,3,…,n.













Proof. 

Since [image: there is no content] is an eigenpair of [image: there is no content], we have [image: there is no content]X=λX. Comparing the first [image: there is no content] rows of this matrix equation on both sides, we have


[image: there is no content]



(1)






[image: there is no content]



(2)









By the second recurrence relation from Lemma 1,


[image: there is no content]



(3)







We define the quantities [image: there is no content] as


v1=x1,vj=xj∏i=1j-1[image: there is no content],2≤j≤n.











Multiplying Equation (2) by ∏i=1j-1[image: there is no content], we get


[image: there is no content]xj-1∏i=1j-1[image: there is no content]+([image: there is no content]-λ)xj∏i=1j-1[image: there is no content]+bjxj+1∏i=1j-1[image: there is no content]=0⇒[image: there is no content]vj-1+([image: there is no content]-λ)vj+vj+1=0,








which gives


[image: there is no content]



(4)







Now, from Equation (1), we have [image: there is no content]. Again from Equation (4),


[image: there is no content]











Proceeding this way, we see that [image: there is no content] which can also be written as [image: there is no content]. This further implies that


xj=[image: there is no content]∏i=1j-1[image: there is no content]x1,j=2,3,…,n.



(5)







Since X is an eigenvector, [image: there is no content]. If [image: there is no content], then from Equation (5), we see that all the other components of X become zero. Thus, [image: there is no content]. □



Theorem 4. 

The IEPP has a unique solution if and only if [image: there is no content]for all [image: there is no content]. The unique solution is given by


a1=λ1,[image: there is no content]=[image: there is no content]-[image: there is no content]Pj-2([image: there is no content])Pj-1([image: there is no content]),j=2,…,n










[image: there is no content]=x1x2P1(λn)and[image: there is no content]=x1Pj-1(λn)xj∏i=1j-2[image: there is no content],j=3,4,…,n.













Proof. 

Let [image: there is no content] for all [image: there is no content]. As per the conditions of IEPP, [image: there is no content] is an eigenvalue of [image: there is no content] for each [image: there is no content]. Thus, [image: there is no content].


Pj([image: there is no content])=0⇒([image: there is no content]-[image: there is no content])Pj-1([image: there is no content])-[image: there is no content]Pj-2([image: there is no content])=0⇒[image: there is no content]=[image: there is no content]-[image: there is no content]Pj-2([image: there is no content])Pj-1([image: there is no content]),



(6)




which gives the expression for calculating [image: there is no content]. The expression is valid as Pj-1([image: there is no content])≠0, because by Lemma 2, Pj-1([image: there is no content]) and Pj([image: there is no content]) cannot be simultaneously zero.





Now, since [image: there is no content] is an eigenpair of [image: there is no content], so by Equation (5), xj=Pj-1(λn)∏i=1j-1[image: there is no content]x1, which implies that


[image: there is no content]=x1x2P1(λn)and[image: there is no content]=x1Pj-1(λn)xj∏i=1j-2[image: there is no content].



(7)







Since xj≠0henceitfollowsthat, [image: there is no content]. Hence the above expression for [image: there is no content] is valid and [image: there is no content]≠0 for all [image: there is no content]. Successive use of Equations (6) and (7) will give us the values of [image: there is no content] and [image: there is no content] for [image: there is no content].



Conversely, if there exists a unique solution for IEPP, then since X is an eigenvector of [image: there is no content], so by Lemma 3, [image: there is no content]. The existence of a solution implies that [image: there is no content]≠0 for [image: there is no content]. It then follows from the expressions in Equation (7) that [image: there is no content] for [image: there is no content]. □




5. Solution of IEPB


Lemma 5. 

Let [image: there is no content]be a monic polynomial of degree n with all real zeros and [image: there is no content]and [image: there is no content]be the minimal and maximal zero of P respectively.

	
If μ<[image: there is no content], then [image: there is no content].



	
If μ>[image: there is no content], then [image: there is no content].










The proof immediately follows after expressing the polynomial as a product of its linear factors.



Lemma 6. 

If T is a tree, then the minimal and maximal eigenvalues of any matrix [image: there is no content]are simple i.e., of multiplicity one. [Corollary 6 of Theorem 2 in [17]]





In other words, this Lemma says that the minimal and maximal eigenvalues of an acyclic matrix are simple. Again, since for each j, the leading principal submatrix [image: there is no content] corresponds to a tree so by Lemma 6 the minimal and maximal eigenvalues of [image: there is no content] must be simple i.e., in particular [image: there is no content]≠[image: there is no content].



Lemma 7. 

The sequence {Pj(λ)=det(λIj-[image: there is no content])}[image: there is no content]n+mof characteristic polynomials of [image: there is no content]satisfies the following recurrence relations:

	
[image: there is no content].



	
[image: there is no content], [image: there is no content].



	
Pn+j(λ)=(λ-[image: there is no content])Pn+j-1(λ)-[image: there is no content]P[image: there is no content](λ)∏i=1j-1(λ-an+i),2≤j≤m.










Lemma 8. 

For any [image: there is no content]and [image: there is no content], [image: there is no content]and [image: there is no content]cannot be simultaneously zero.





Proof. 

Same as Lemma 2. □





By Cauchy’s interlacing theorem ([14,18]), the eigenvalues of a symmetric matrix and those of any of its principal submatrix interlace each other. Thus, [image: there is no content]’s and [image: there is no content]’s must satisfy:


[image: there is no content]











Each diagonal element [image: there is no content] is also a [image: there is no content] principal submatrix of A. Hence [image: there is no content]≤[image: there is no content]≤[image: there is no content],1≤i≤j. Since [image: there is no content] and [image: there is no content] are the minimal and maximal eigenvalues of [image: there is no content], so Pj([image: there is no content])=0 and Pj([image: there is no content])=0. We need to solve these equations successively using the recurrence relations in Lemma 1. For [image: there is no content], [image: there is no content]. For [image: there is no content], [image: there is no content] which imply that


[image: there is no content]











[image: there is no content] will always exist as the denominator in the above expression for [image: there is no content] can never be zero. We have [image: there is no content] and so if [image: there is no content], then by Rolle’s theorem ∃[image: there is no content] such that [image: there is no content], which is not possible. Thus, [image: there is no content]. Also, by Lemma 5, [image: there is no content] and so the expression for [image: there is no content] is non-negative and so we can get real values of [image: there is no content].



Now for [image: there is no content], we have


Pj([image: there is no content])=0,Pj([image: there is no content])=0,








which gives


[image: there is no content]Pj-1([image: there is no content])+[image: there is no content]Pj-2([image: there is no content])-[image: there is no content]Pj-1([image: there is no content])=0,










[image: there is no content]Pj-1([image: there is no content])+[image: there is no content]Pj-2([image: there is no content])-[image: there is no content]Pj-1([image: there is no content])=0.











Let [image: there is no content] denote the determinant of the coefficient matrix of the above system of linear equations in [image: there is no content] and [image: there is no content]. Then [image: there is no content]=Pj-1([image: there is no content])Pj-2([image: there is no content])-Pj-1([image: there is no content])Pj-2([image: there is no content]). If [image: there is no content]≠0, then the system will have a unique solution, given by


[image: there is no content]=[image: there is no content]Pj-1([image: there is no content])Pj-2([image: there is no content])-[image: there is no content]Pj-1([image: there is no content])Pj-2([image: there is no content])[image: there is no content],[image: there is no content]=([image: there is no content]-[image: there is no content])Pj-1([image: there is no content])Pj-1([image: there is no content])[image: there is no content].



(8)







We claim that the expression for [image: there is no content] in RHS is non negative. This follows from Lemma 5. Since [image: there is no content]≤λ1(j-1) and λj-1(j-1)≤[image: there is no content], so by Lemma 5,


(-1)j-1[image: there is no content]=(-1)(j-1)Pj-1([image: there is no content])Pj-2([image: there is no content])+(-1)j-2Pj-2([image: there is no content])Pj-1([image: there is no content])≥0.











In addition, by Lemma 2, Pj([image: there is no content]) and Pj-1([image: there is no content]) cannot be simultaneously zero. Thus, Pj-1([image: there is no content])≠0. Similarly, Pj-1([image: there is no content])≠0. This implies that [image: there is no content]≠λ1(j-1) and [image: there is no content]≠λj-1j-1. Thus, we can get non-zero real values of [image: there is no content] from Equation (8) if and only if [image: there is no content]<λ1(j-1) and λj-1(j-1)<[image: there is no content] for all [image: there is no content].



Now, if [image: there is no content]=0, then (-1)j-1[image: there is no content]=0i.e., (-1)(j-1)Pj-1([image: there is no content])Pj-2([image: there is no content])+(-1)j-2Pj-2([image: there is no content])Pj-1([image: there is no content])=0. Since both the terms in this sum are non negative, we must have Pj-1([image: there is no content])Pj-2([image: there is no content])=0 and Pj-2([image: there is no content])Pj-1([image: there is no content])=0. However, from Lemma 2, [image: there is no content] and [image: there is no content] cannot be simultaneously zero. In addition, [image: there is no content] and [image: there is no content] cannot be simultaneously zero. Thus, the only possibility is that Pj-2([image: there is no content])=Pj-2([image: there is no content])=0. However, this will then imply that [image: there is no content]=[image: there is no content]=[image: there is no content], which is not possible as by Lemma 6 [image: there is no content]≠[image: there is no content]. Thus, [image: there is no content]≠0 for all [image: there is no content].



Again, [image: there is no content] and [image: there is no content] are the eigenvalues of [image: there is no content] and so Pn+j([image: there is no content])=0 and Pn+j([image: there is no content])=0. Hence,


([image: there is no content]-[image: there is no content])Pn+j-1([image: there is no content])-[image: there is no content]P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i)=0,([image: there is no content]-[image: there is no content])Pn+j-1([image: there is no content])-[image: there is no content]P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i)=0.



(9)




so we get a system of equations linear in [image: there is no content] and [image: there is no content]


[image: there is no content]Pn+j-1([image: there is no content])+[image: there is no content]P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i)=[image: there is no content]Pn+j-1([image: there is no content]),[image: there is no content]Pn+j-1([image: there is no content])+[image: there is no content]P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i)=[image: there is no content]Pn+j-1([image: there is no content]).



(10)







We first investigate the conditions under which the coefficient matrix of the above system is singular. By Cauchy’s interlacing property, we have


[image: there is no content]≤λ1(n+j-1)≤…≤λ1(n+1)≤an+i≤λn+1(n+1)≤…λn+j-1(n+j-1)≤[image: there is no content],foralli=1,2,…,m.



(11)







Thus, ∏i=1j-1([image: there is no content]-an+i)≥0 and [image: there is no content]. Let [image: there is no content] be the determinant of the coefficient matrix of Equation (10). Then,


(-1)n+j-1[image: there is no content]=(-1)n+j-1Pn+j-1([image: there is no content])P[image: there is no content]([image: there is no content])∏i+1j-1([image: there is no content]-an+i),+(-1)n+j-2Pn+j-1([image: there is no content])P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i).











As a consequence of Lemma 5, both the products in the LHS are non-negative and so (-1)n+j-1[image: there is no content]≥0 for all [image: there is no content]. Thus, [image: there is no content] will vanish if and only if (-1)n+j-1[image: there is no content] will vanish i.e., if and only if


Pn+j-1([image: there is no content])P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i)=0








and


Pn+j-1([image: there is no content])P[image: there is no content](λ1n+j)∏i=1j-1([image: there is no content]-an+i)=0.











If P[image: there is no content]([image: there is no content])=0, then since [image: there is no content]≤λ1(n+j-1)≤…≤λ1(n)≤[image: there is no content] and [image: there is no content] is the minimum possible zero of P[image: there is no content], we get λ1n+j=λ1(n+j-1)=…=λ1(n)=[image: there is no content]. Consequently, P[image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])=0 but this contradicts Lemma 8, according to which P[image: there is no content]([image: there is no content]) and [image: there is no content]([image: there is no content]) cannot be simultaneously zero. Hence, P[image: there is no content]([image: there is no content])≠0. Similarly, it can be shown that P[image: there is no content]([image: there is no content])≠0. Thus there are the following possibilities :

	i.

	
Pn+j-1([image: there is no content])=0 and Pn+j-1([image: there is no content])=0.




	ii.

	
Pn+j-1([image: there is no content])=0 and ∏i=1j-1([image: there is no content]-an+i)=0.




	iii.

	
Pn+j-1([image: there is no content])=0 and ∏i=1j-1([image: there is no content]-an+i)=0.




	iv.

	
∏i=1j-1([image: there is no content]-an+i)=0 and ∏i=1j-1([image: there is no content]-an+i)=0.









If (i) happens, then, since [image: there is no content], so from the equations in Equation (10), ∏i=1j-1([image: there is no content]-an+i)=0 and ∏i=1j-1([image: there is no content]-an+i)=0. This implies that an+i=[image: there is no content] for some [image: there is no content] and an+i=[image: there is no content] for some [image: there is no content]. However, as per the inequality Equation (11), it then follows that [image: there is no content]=λ1(n+j-1)=…=λ1(n+1) and λn+1(n+1)=λn+2(n+2)=…=[image: there is no content]. Since [image: there is no content] and [image: there is no content], so the above equalities imply that Pn+2([image: there is no content])=0 and Pn+1([image: there is no content])=0. Hence from the recurrence relation (3) of Lemma 7, we get


([image: there is no content]-an+1)Pn+1([image: there is no content])-bn+12P[image: there is no content]([image: there is no content])([image: there is no content]-an+1)=0








which implies that [image: there is no content]=an+1. Similarly, it will follow that [image: there is no content]=an+1. However, [image: there is no content]≤an+1≤[image: there is no content] and so [image: there is no content]=[image: there is no content], but this is not possible as [image: there is no content] and [image: there is no content] are the minimal and maximal eigenvalues of the acyclic matrix [image: there is no content] and by Lemma 6, the minimal and maximal eigenvalues of an acyclic matrix are simple. Hence (i) cannot hold. From the above arguments, it also follows that (iv) cannot hold.



If (ii) holds, then the augmented matrix of the system of Equation (10) will be of rank one and so the system will have infinite number of solutions. Similarly, if (iii) holds, then the system will have infinite number of solutions. However, if we put the additional constraint that [image: there is no content]<λ1(n+j-1) and λn+j-1(n+j-1)<[image: there is no content] for all [image: there is no content] then Pn+j-1([image: there is no content])≠0 and Pn+j-1([image: there is no content])≠0, so that (ii) and (iii) will not hold.



Thus, we see that [image: there is no content]≠0 if and only if


[image: there is no content]<λ1(n+j-1)<…<λ1(n+1)<λn+1(n+1)<…<λn+j-1(n+j-1)<[image: there is no content],foralli=1,2,…,m











Under this constraint, the unique solution of the system Equation (10) is given by


[image: there is no content]=[image: there is no content]-Bj[image: there is no content],[image: there is no content]=([image: there is no content]-[image: there is no content])Pn+j-1([image: there is no content])P+j-1([image: there is no content])[image: there is no content],



(12)




where [image: there is no content]=[image: there is no content]Pn+j-1([image: there is no content])P[image: there is no content]([image: there is no content])∏i=1j-1([image: there is no content]-an+i) and Bj=[image: there is no content]Pn+j-1([image: there is no content])P[image: there is no content](λ1(n+j))∏i=1j-1(λ1(n+j)-an+i).




[image: there is no content]=([image: there is no content]-[image: there is no content])Pn+j-1([image: there is no content])P+j-1([image: there is no content])[image: there is no content].



(13)





The above analysis of the IEP can be framed as the following theorem :



Theorem 9. 

The IEPB has a solution if and only if


[image: there is no content]








and the solution is given by


a1=λ1(1),[image: there is no content]=λ2(2)P1(λ2(2))-λ1(2)P1(λ1(2))P1(λ2(2))-P1(λ1(2)),[image: there is no content]=(λ2(2)-λ1(2))P1(λ1(2))P1(λ2(2))P1(λ1(2))-P1(λ1(2)),[image: there is no content]=[image: there is no content]Pj-1([image: there is no content])Pj-2([image: there is no content])-[image: there is no content]Pj-1([image: there is no content])Pj-2([image: there is no content])Pj-1([image: there is no content])Pj-2([image: there is no content])-Pj-1([image: there is no content])Pj-2([image: there is no content]),j=3,4,…,n+1,[image: there is no content]=([image: there is no content]-[image: there is no content])Pj-1([image: there is no content])Pj-1([image: there is no content])Pj-1([image: there is no content])Pj-2([image: there is no content])-Pj-1([image: there is no content])Pj-2([image: there is no content]),j=3,4,…,n+1,[image: there is no content]=[image: there is no content]-Bj[image: there is no content],j=1,2,…,m,[image: there is no content]=([image: there is no content]-[image: there is no content])Pn+j-1([image: there is no content])P+j-1([image: there is no content])[image: there is no content],j=2,3,…,m.













The solution is unique except for the signs of the non-zero off-diagonal entries.




6. Numerical Examples


We apply the results obtained in the previous section to solve the following :



Example 1. 

Given 7 real numbers [image: there is no content]and a real vector [image: there is no content], find a matrix [image: there is no content]such that [image: there is no content]is an eigenvalue of [image: there is no content]for each [image: there is no content]and [image: there is no content]is an eigenpair of [image: there is no content].





Solution Using Theorem 1, we obtain the following matrix as the solution :


[image: there is no content]=11.6000001.64.364.8000004.8-1.0642-3.483200000-3.48322.0515-39.536800000-39.5368-347.5644115.793700000115.7937-32.63790.3448000000.3448-3.1724











The eigenvalues of the all the leading principal submatrices are :



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]



σ([image: there is no content])={-389.1678,-8.0084,-3.2694,-3.0000,0.8638,7.4211,18.1333}



Example 2. 

Given 13 real numbers [image: there is no content], rearrange and label them as [image: there is no content],1≤j≤7and [image: there is no content],2≤j≤7and find a matrix [image: there is no content]such that [image: there is no content]and [image: there is no content]are the minimal and maximal eigenvalues of [image: there is no content], the jth leading principal sub matrix of [image: there is no content].





Solution Using Theorem 9, we rearrange the numbers in the following way


[image: there is no content]








i.e.,


[image: there is no content]











Then, using the expressions for [image: there is no content],[image: there is no content],[image: there is no content] and [image: there is no content] we get


[image: there is no content]=1.00000.7071000000.70711.50001.9380000001.9380-0.00472.1580000002.15803.36151.89913.18843.72470001.8991-3.1612000003.18840-1.582300003.724700-3.1925.











Here we have taken all the [image: there is no content]s as positive. We can take some of the [image: there is no content]s as negative also. In fact, we can construct [image: there is no content] such matrices for the above problem, the only difference being in the signs of the non-zero off-diagonal entries.



We compute the spectra of all the leading principal submatrices of [image: there is no content] to verify the the conditions of the IEPB are satisfied. The minimal and maximal eigenvalues of each principal submatrix are shown in italics.



σ([image: there is no content])={-6.0000,-3.1677,-2.1477,-1.4356,0.8594,2.8124,7.0000}



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]



[image: there is no content]




7. Conclusions


The inverse eigenvalue problems discussed in this paper require the construction of specially structured matrices from mixed eigendata. The results obtained here provide an efficient way to construct such matrices from given set of some of the eigenvalues of leading principal submatrices of the required matrix.



The problems IEPP and IEPB are significant in the sense that they are partially described inverse eigenvalue problems i.e., they require the construction of matrices from partial information of eigenvalues and eigenvectors. Such partially described problems may occur in computations involving a complicated physical system where it is often difficult to obtain the entire spectrum. Many times, only the minimal and maximal eigenvalues are known in advance. Thus, the study of inverse problems having such prescribed eigen structure are significant. It would be interesting to consider such IEPs for other acyclic matrices as well.
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