

  Conformal Maps, Biharmonic Maps, and the Warped Product




Conformal Maps, Biharmonic Maps, and the Warped Product







Mathematics 2016, 4(1), 15; doi:10.3390/math4010015




Article



Conformal Maps, Biharmonic Maps, and the Warped Product



Seddik Ouakkas * and Djelloul Djebbouri





Laboratory of Geometry, Analysis, Control and Applications, University de Saida, BP138, En-Nasr, 20000 Saida, Algeria









*



Correspondence: Tel.: +213-663-367-423







Academic Editor: Sadayoshi Kojima



Received: 19 December 2015 / Accepted: 23 February 2016 / Published: 8 March 2016



Abstract:
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1. Introduction.


Let [image: there is no content] be a smooth map between Riemannian manifolds. Then [image: there is no content] is said to be harmonic if it is a critical point of the energy functional :


[image: there is no content]



(1)




for any compact subset [image: there is no content]. Equivalently, ϕ is harmonic if it satisfies the associated Euler-Lagrange equations :


[image: there is no content]



(2)




and [image: there is no content] is called the tension field of ϕ. One can refer to [1,2,3,4] for background on harmonic maps. In the context of harmonic maps, the stress-energy tensor was studied in details by Baird and Eells in [5]. The stress-energy tensor for a map [image: there is no content] defined by


[image: there is no content]








and the relation between [image: there is no content] and [image: there is no content] is given by


[image: there is no content]











The map ϕ is said to be biharmonic if it is a critical point of the bi-energy functional :


[image: there is no content]



(3)







Equivalently, ϕ is biharmonic if it satisfies the associated Euler-Lagrange equations :


[image: there is no content]



(4)




where [image: there is no content] is the connection in the pull-back bundle [image: there is no content] and, if [image: there is no content] is a local orthonormal frame field on M, then


Trg[image: there is no content]2τϕ=∇eiϕ∇eiϕ-∇∇eieiϕτϕ,








where we sum over repeated indices. We will call the operator [image: there is no content], the bi-tension field of the map ϕ. In analogy with harmonic maps, Jiang In [6] has constructed for a map ϕ the stress bi-energy tensor defined by


[image: there is no content]








where


[image: there is no content]








for any [image: there is no content] The stress bi-energy tensor was also studied in [7] and those results could be useful when we study conformal maps. The stress bi-energy tensor of ϕ satisfies the following relationship


[image: there is no content]








Clearly any harmonic map is biharmonic, therefore it is interesting to construct non-harmonic biharmonic maps. In [8] the authors found new examples of biharmonic maps by conformally deforming the domain metric of harmonic ones. While in [9] the author analyzed the behavior of the biharmonic equation under the conformal change the domain metric, she obtained metrics [image: there is no content] such that the idendity map [image: there is no content] is biharmonic non-harmonic. Moreover, in [10] the author gave some extensions of the result in [9] together with some further constructions of biharmonic maps. The author in [11] deform conformally the codomain metric in order to render a semi-conformal harmonic map biharmonic. In [12] the authors studied the case where [image: there is no content] is a conformal mapping between equidimensional manifolds where they show that a conformal mapping ϕ is biharmonic if and only if the gradient of its dilation satisfies a second order elliptic partial differential equation. We can refer the reader to [13], for a survey of biharmonic maps. In the first section of this paper, we present some properties for a conformal mapping [image: there is no content], we prove that the stress bi-energy tensor depend only on the dilation (Theorem 1) and we calculate the bitension field of ϕ (Theorem 2). In the last section we study the biharmonicity of some maps on the warped product (Theorem 4 and 5), with this setting we obtain new examples of biharmonic non-harmonic maps.




2. Some properties for conformal maps.


We study conformal maps between equidimensional manifolds of the same dimension [image: there is no content]. Note that by a result in [12], any such map can have no critical points and so is a local conformal diffeomorphism. Recall that a mapping [image: there is no content] is called conformal if there exist a [image: there is no content] function [image: there is no content] such that for any [image: there is no content] :


[image: there is no content]








The function λ is called the dilation for the map ϕ. The tension field and the stress energy tensor for a conformal map are given by (see [14]):



Proposition 1. 

Let [image: there is no content] be a conformal map of dilation λ, we have


(i)divS(ϕ)=(n-2)λ2dlnλ,



(5)






(ii)divh(τ(ϕ),dϕ)=(2-n)2λ2gradlnλ2+λ2Δlnλ.



(6)






(iii)τ(ϕ)=(2-n)dϕ(gradlnλ).



(7)






(iv)τ(ϕ)2=(2-n)2λ2gradlnλ2.



(8)




Note that the conformal map [image: there is no content] of dilation λ is harmonic if and only if [image: there is no content] or the dilation λ is constant.





In the first, wa calculate the stress bi-energy tensor for a conformal map ϕ when we prove that [image: there is no content] depend only the dilation.



Theorem 1. 

Let [image: there is no content] be a conformal map with dilation λ, then we have


[image: there is no content]



(9)




and the trace of [image: there is no content] is given by


[image: there is no content]



(10)









To prove Theorem 1, we need the following Lemma:



Lemma 1. 

Let [image: there is no content] be a conformal map with dilation λ, then for any function f∈[image: there is no content](M) and for any [image: there is no content], we have


h∇Xdϕgradf,dϕY=λ2XlnλYf-YlnλXf+λ2∇dfX,Y+λ2dlnλgradfgX,Y.



(11)









Proof of Lemma 1. Let f∈[image: there is no content]M, for any [image: there is no content], we have


h∇Xdϕgradf,dϕY=Xλ2ggradf,Y-hdϕgradf,∇XdϕY=Xλ2ggradf,Y+λ2g∇Xgradf,Y+λ2ggradf,∇XY-hdϕgradf,∇dϕX,Y-hdϕgradf,dϕ∇XY=Xλ2ggradf,Y+λ2g∇Xgradf,Y+λ2ggradf,∇XY-hdϕgradf,∇dϕX,Y-λ2ggradf,∇XY.








Note that


[image: there is no content]








then we obtain


[image: there is no content]








By similary, we have


[image: there is no content]








Then, we deduce that


h∇Xdϕgradf,dϕY=hdϕX,∇Ydϕgradf+2λ2XlnλYf-YlnλXf.



(12)




For the term [image: there is no content], we have


h∇Ydϕgradf,dϕX=h∇dϕgradf,Y,dϕX+λ2g∇Ygradf,X=h∇gradfdϕY,dϕX-λ2g∇gradfY,X+λ2g∇Ygradf,X=gradfλ2gX,Y-h∇gradfdϕX,dϕY-λ2g∇gradfY,X+λ2g∇Ygradf,X=2λ2dlnλgradfgX,Y-h∇dϕX,gradf,dϕY+λ2g∇Ygradf,X.








We deduce that


h∇Ydϕgradf,dϕX=-h∇Xdϕgradf,dϕY+2λ2∇dfX,Y+2λ2dlnλgradfgX,Y.



(13)




Finally, if we replace (13) in (12), we obtain


h∇Xdϕgradf,dϕY=λ2XlnλYf-YlnλXf+λ2∇dfX,Y+λ2dlnλgradfgX,Y.








This completes the proof of Lemma 1.



Remark 1. 

Let [image: there is no content] be a conformal map with dilation λ, then if we consider [image: there is no content], the equation (11) gives


[image: there is no content]













Proof of Theorem 1. By definition, the stress bi-energy tensor is given by :


[image: there is no content]



(14)




Using the equations (2) et (4) for the Proposition 1, we have


[image: there is no content]



(15)




Calculate now [image: there is no content], we have by definition for any [image: there is no content]


symh∇τ(ϕ),dϕX,Y=12h∇Xτϕ,dϕY+h∇Yτϕ,dϕX=2-n2h∇Xdϕgradlnλ,dϕY+h∇Ygradlnλ,dϕX.








By Lemma 1, we have


[image: there is no content]








and


[image: there is no content]








then


[image: there is no content]



(16)




If we substitute (15) and (16) in (14), we conclude that


[image: there is no content]








Calculate now the trace of stress bi-energy tensor. Let [image: there is no content] be an orthonormal frame on M, we have


TrgS2(ϕ)=S2(ϕ)(ei,ei)=2-nλ2n-22gradlnλ2+Δlnλgei,ei-22-nλ2∇dlnλei,ei=2-nnλ2n-22gradlnλ2+Δlnλ-22-nλ2Δlnλ=2-nλ2nn-22gradlnλ2+n-2Δlnλ.








Then


[image: there is no content]








By calculating the Laplacian of the function [image: there is no content] and by using


Δ[image: there is no content]=n2[image: there is no content]n2gradlnλ2+Δlnλ,








we obtain immediately the following corollary



Corollary 1. 

Let [image: there is no content], [image: there is no content] to be a conformal map of dilation λ, then the trace of [image: there is no content] is zero if and only if the function [image: there is no content] is harmonic.





The bi-tension field of the conformal map is given by



Theorem 2. 

Let [image: there is no content], ([image: there is no content]) to be a conformal map of dilation λ, then bi-tension field of ϕ is given by :


[image: there is no content]








where


H=gradΔlnλ-n-62gradgradlnλ2+2RicciMgradlnλ-2Δlnλ+n-2gradlnλ2gradlnλ.



(17)









Remark 2. 

A. Balmus in [9] studied the case where [image: there is no content], she obtained the biharmonicity of the identity map from [image: there is no content] onto [image: there is no content], this case was also studied in [15].





To prove the Theorem 2, we need two Lemmas. In the first Lemma, we give a simple formula of the term Trg[image: there is no content]2dϕgradγ for a conformal map [image: there is no content] ([image: there is no content]) of dilation λ and for any function γ∈[image: there is no content]M.



Lemma 2. 

Let [image: there is no content] ([image: there is no content]) to be a conformal map of dilation λ, then for any function γ∈[image: there is no content]M, we have


Trg[image: there is no content]2dϕgradγ=dϕgradΔγ+4dϕ∇grad lnλgradγ+dϕRicciMgradγ+Δlnλdϕgradγ-2Δγdϕgradlnλ-n-2dlnλgradγdϕgradlnλ.



(18)









Proof of Lemma 2. Let γ∈[image: there is no content]M, by definition, we have


Trg[image: there is no content]2dϕgradγ=∇eiϕ∇eiϕdϕgradγ-∇∇eieiϕdϕgradγ.



(19)




(Here henceforth we sum over repeated indices.) Let us start with the calculation of the term [image: there is no content] we have


[image: there is no content]








It is known that (see [16])


[image: there is no content]








then


∇eiϕdϕgradγ=eilnλdϕgradγ+dlnλgradγdϕei-eiγdϕgradlnλ+dϕ∇eigradγ.



(20)




It follows that


∇eiϕ∇eiϕdϕgradγ=∇eiϕeilnλdϕgradγ+∇eiϕdlnλgradγdϕei-∇eiϕeiγdϕgradlnλ+∇eiϕdϕ∇eigradγ.



(21)




We will study term by term the right-hand of this expression. For the first term [image: there is no content], we have


[image: there is no content]








By using the Equation (20), we deduce that


[image: there is no content]=eilnλeilnλdϕgradγ+eilnλdlnλgradγdϕei-eilnλeiγdϕgradlnλ+eilnλdϕ∇eigradγ+eieilnλdϕgradγ,








then, we obtain


[image: there is no content]=grad lnλ2dϕgradγ+dϕ∇grad lnλgradγ+eieilnλdϕgradγ.



(22)




For the second term [image: there is no content], a similar calculation gives


[image: there is no content]=dlnλgradγ∇eiϕdϕei+eiggradlnλ,gradγdϕei=dlnλgradγ∇eiϕdϕei+g∇eigradlnλ,gradγdϕei+ggradlnλ,∇eigradγdϕei=dlnλgradγ∇eiϕdϕei+g∇gradγgradlnλ,eidϕei+g∇grad lnλgradγ,eidϕei,








it follows that


[image: there is no content]=dlnλgradγ∇eiϕdϕei+dϕ∇gradγgradlnλ+dϕ∇gradlnλgradγ.



(23)




For the third term [image: there is no content], by using the same calculation method and the equation (20), we have


[image: there is no content]=eiγ∇eiϕdϕgradlnλ+eieiγdϕgradlnλ=eiγeilnλdϕgradlnλ+eiγdlnλgradlnλdϕei-eiγeilnλdϕgradlnλ+eiγdϕ∇eigradlnλ+eieiγdϕgradlnλ,








which gives us


[image: there is no content]=gradlnλ2dϕgradγ+dϕ∇gradγgradlnλ+eieiγdϕgradlnλ.



(24)




Now let us look at the last term [image: there is no content], a simple calculation gives


[image: there is no content]=eilnλdϕ∇eigradγ+dlnλ∇eigradγdϕei-gei,∇eigradγdϕgradlnλ+dϕ∇ei∇eigradγ=2dϕ∇gradlnλgradγ-Δγdϕgradlnλ+dϕ∇ei∇eigradγ,








then


[image: there is no content]=dϕ∇ei∇eigradγ+2dϕ∇gradlnλgradγ-Δγdϕgradlnλ.



(25)




If we replace (22), (23), (24) and (25) in (21), we obtain


∇eiϕ∇eiϕdϕgradγ=4dϕ∇gradlnλgradγ+eieilnλdϕgradγ+dlnλgradγ∇eiϕdϕei-eieiγdϕgradlnλ+dϕ∇ei∇eigradγ-Δγdϕgradlnλ.



(26)




To complete the proof, it remains to investigate the term [image: there is no content], we have


[image: there is no content]








Therefore, by using the equation (20), we obtain


[image: there is no content]=∇eieilnλdϕgradγ+dlnλgradγdϕ∇eiei-∇eieiγdϕgradlnλ+dϕ∇∇eieigradγ.



(27)




By substituting (26) and (27) in (19), we deduce


Trg[image: there is no content]2dϕgradγ=∇eiϕ∇eiϕdϕgradγ-∇∇eieiϕdϕgradγ=dϕTrg∇2gradγ+4dϕ∇gradlnλgradγ+Δlnλdϕgradγ+dlnλgradγτϕ-2Δγdϕgradlnλ.








Finally, using the fact that (see [11])


[image: there is no content]








and


[image: there is no content]








we conclude that


Trg[image: there is no content]2dϕgradγ=dϕgradΔγ+4dϕ∇gradlnλgradγ+dϕRicciMgradγ+Δlnλdϕgradγ-2Δγdϕgradlnλ-n-2dlnλgradγdϕgradlnλ.








This completes the proof of Lemma 2. Now, in the second Lemma, we will calculate [image: there is no content] for a conformal maps [image: there is no content] ([image: there is no content]) of dilation λ and for any function γ∈[image: there is no content]M



Lemma 3. 

Let [image: there is no content] ([image: there is no content]) to be a conformal map of dilation λ, then for any function γ∈[image: there is no content]M, we have


[image: there is no content]=dϕRicciMgradγ-n-2dϕ∇gradγgradlnλ-Δlnλ+n-2gradlnλ2dϕgradγ+n-2dlnλgradγdϕgradlnλ



(28)









Proof of Lemma 3. Let γ∈[image: there is no content]M, by definition we have


[image: there is no content]



(29)




but we know that (see [16])


RicNdϕX,dϕY=RicMX,Y+n-2XlnλYlnλ-n-2gradlnλ2gX,Y-n-2∇dlnλX,Y-ΔlnλgX,Y.








Then


RicNdϕgradγ,dϕei=RicMgradγ,ei+n-2gradγlnλeilnλ-n-2gradlnλ2ggradγ,ei-n-2∇dlnλgradγ,ei-Δlnλggradγ,ei








it follows that


RicNdϕgradγ,dϕei=RicMgradγ,ei+m-2dlnλgradγeilnλ-n-2gradlnλ2eiγ-n-2∇dlnλgradγ,ei-Δlnλeiγ.



(30)




If we replace (30) in (29), we deduce that


[image: there is no content]=RNdϕgradγ,dϕeidϕei=dϕRicciMgradγ+n-2dlnλgradγdϕgradlnλ-n-2gradlnλ2dϕgradγ-n-2∇dlnλgradγ,eidϕei-Δlnλdϕgradγ.








To complete the proof, we will simplify the term [image: there is no content], we obtain


[image: there is no content]=eiggradlnλ,gradγ-dlnλ∇eigradγdϕei=g∇eigradlnλ,gradγdϕei=g∇gradγgradlnλ,eidϕei=dϕ∇gradγgradlnλ,








which finally gives


[image: there is no content]=dϕRicciMgradγ-n-2dϕ∇gradγgradlnλ-Δlnλ+n-2gradlnλ2dϕgradγ+n-2dlnλgradγdϕgradlnλ.








This completes the proof of Lemma 3. We are now able to prove Theorem 2.



Proof of Theorem 2. By definition, the bi-tension field is given by


τ2ϕ=-Trg[image: there is no content]2τϕ-TrgRNτϕ,dϕdϕ.








The tension field of the conformal map ϕ is given by


[image: there is no content]








it follows that


τ2ϕ=n-2Trg[image: there is no content]2dϕgradlnλ+TrgRNdϕgradlnλ,dϕdϕ.



(31)




By Lemma 2, we have


Trg[image: there is no content]2dϕgradlnλ=dϕgradΔlnλ+2dϕgradgradlnλ2-Δlnλdϕgradlnλ+dϕRicciMgradlnλ-n-2gradlnλ2dϕgradlnλ.



(32)




By using lemma 3 and the fact that [image: there is no content]


TrgRNdϕgradlnλ,dϕdϕ=dϕRicciMgradlnλ-Δlnλdϕgradlnλ-n-22dϕgradgradlnλ2.



(33)




If we replace (32) and (33) in (31), we deduce that


τ2ϕ=n-2dϕgradΔlnλ-n-2n-62dϕgradgradlnλ2-n-22Δlnλ+n-2gradlnλ2dϕgradlnλ+2n-2dϕRicciMgradlnλ.








Then the bi-tension field of ϕ is given by :


[image: there is no content]








where


H=gradΔlnλ-n-62gradgradlnλ2+2RicciMgradlnλ-2Δlnλ+n-2gradlnλ2gradlnλ.








The proof of Theorem 2 is complete. By application of Theorem 2, we get the following result (see [15]).



Theorem 3. 

([12]) Let [image: there is no content] ([image: there is no content]) to be a conformal map of dilation λ, then ϕ is biharmonic if and only if the dilation λ satisfies


gradΔlnλ-2Δlnλ+(n-2)gradlnλ2gradlnλ+6-n2gradgradlnλ2+2RicciM(gradlnλ)=0.













In particular, we prove that the biharmonicity of the conformal map [image: there is no content] ([image: there is no content]) where the dilation λ is radial lnλ=αr,r=x andα∈[image: there is no content]R,R is equivalent to an ordinary differential equation of the second order. More precisely, we have



Corollary 2. 

Let [image: there is no content] ([image: there is no content]) to be a conformal map of dilation λ when we suppose that [image: there is no content] is radial lnλ=αr,r=x andα∈[image: there is no content]R,R. Then ϕ is biharmonic if and only if [image: there is no content] satisfies the following ordinary differential equation :


[image: there is no content]



(34)









Proof of Corollary 2 Let [image: there is no content] ([image: there is no content]) to be a conformal map of dilation λ such that [image: there is no content]. By Theorem 3, ϕ is biharmonic if and only if the dilation λ satisfies


gradΔlnλ-2Δlnλ+(n-2)gradlnλ2gradlnλ+6-n2gradgradlnλ2+2RicciM(gradlnλ)=0.








A direct calculation gives


[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]








and


[image: there is no content]








Therefore ϕ is biharmonic if and only if the function α satisfies the following differential equation


[image: there is no content]








If we denote [image: there is no content], the biharmonicity of ϕ is equivalent to the differential equation


[image: there is no content]








As a consequence of the Corollary 2, We will present some remarks which we give a particular solutions of the Equation (34) that allows us to construct a biharmonic non-harmonic maps.



Remark 3. 

. Looking for particular solutions of type [image: there is no content] ([image: there is no content]). By (34), we deduce that [image: there is no content] ([image: there is no content]) is biharmonic if and only if a is a solution of the algebraic equation


[image: there is no content]








This equation has real solutions if and only if [image: there is no content].

	
If [image: there is no content], we find [image: there is no content] or [image: there is no content], so [image: there is no content] or [image: there is no content] ([image: there is no content]). It follows that any conformal map [image: there is no content] of dilation [image: there is no content] or [image: there is no content] is biharmonic non-harmonic.



	
If [image: there is no content], we find [image: there is no content] or [image: there is no content], so [image: there is no content] or [image: there is no content] ([image: there is no content]). Then, in this case any conformal map [image: there is no content] of dilation [image: there is no content] or [image: there is no content] is biharmonic non-harmonic. For example, the inversion [image: there is no content] definded by [image: there is no content] is a conformal map with dilation [image: there is no content]. By (34), the inversion is biharmonic non-harmonic if and only if [image: there is no content].










Remark 4. 

. Looking for particular solutions of type [image: there is no content] ([image: there is no content]). By (34), [image: there is no content] ([image: there is no content]) is biharmonic if and only we have


[image: there is no content]








and


[image: there is no content]








These two equations gives [image: there is no content] and [image: there is no content], it follows that the dilation is equal to [image: there is no content] ([image: there is no content]). Then, all conformal maps [image: there is no content] of dilation [image: there is no content] are biharmonic non-harmonic. For example, the inverse of the stereographic projection of the sphere [image: there is no content] definded by [image: there is no content] is a conformal map with dilation [image: there is no content]. By (34), the inverse of the stereographic projection is biharmonic non-harmonic if and only if [image: there is no content].





The last part of this paper is devoted to the study of biharmonic maps between warped product manifolds, these maps were also studied in [17]. We will give some results of the biharmonicity in other particular cases.




3. Biharmonic maps and the warped product


Let [image: there is no content] and [image: there is no content] two Riemannian manifolds and let f∈[image: there is no content]M be a positive function. The warped product [image: there is no content] is the product manifolds [image: there is no content] endowed with the Riemannian metric [image: there is no content] defined, for [image: there is no content], by


[image: there is no content]X,Y=gdπX,dπY+f∘π2hdηX,dηY,








where [image: there is no content] and [image: there is no content] are respectively the first and the second projection. The function f is called the warping function of the warped product. Let [image: there is no content], [image: there is no content], [image: there is no content] Denote by ∇ the Levi-Civita connection on the Riemannian product [image: there is no content] . The Levi-Civita connection [image: there is no content] of the warped product [image: there is no content] is given by


[image: there is no content]



(35)




In the first, we consider a smooth map ϕ:[image: there is no content]⟶Pp,k and we defined the map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k by [image: there is no content]. We will study the biharmonicity of [image: there is no content]. By calculating the tension field of [image: there is no content], we obtain the following result :



Proposition 2. 

Let ϕ:[image: there is no content]⟶Pp,k be a smooth map. The tension field of the map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k defined by [image: there is no content] is given by


τ[image: there is no content]=τϕ+ndϕgradlnf



(36)









Proof of Proposition 2. Let us choose [image: there is no content] to be an orthonormal frame on M and [image: there is no content] to be an orthonormal frame on N. An orthonormal frame on [image: there is no content] is given by [image: there is no content]. Note that in this case we have d[image: there is no content]X,Y=dϕX,0 for any [image: there is no content] and [image: there is no content]. By definition to the tension field, we have


τ[image: there is no content]=Tr[image: there is no content]∇d[image: there is no content]=∇ei,0[image: there is no content]d[image: there is no content]ei,0+1f2∇0,fj[image: there is no content]d[image: there is no content]0,fj-d[image: there is no content]∇˜ei,0ei,0-1f2d[image: there is no content]∇˜0,fj0,fj.








A simple calculation gives


∇ei,0[image: there is no content]d[image: there is no content]ei,0=∇eiϕdϕei








and


∇0,fj[image: there is no content]d[image: there is no content]0,fj=0,








By using the equation (35), we deduce that


[image: there is no content]








and


[image: there is no content]








It follows that


τ[image: there is no content]=∇eiϕdϕei-dϕ∇eiMei+ndϕgradlnf,








then, we obtain


τ[image: there is no content]=τϕ+ndϕgradlnf.











Remark 5. 

If ϕ:[image: there is no content]⟶Pm,k ([image: there is no content]) is a conformal map with dilation λ, the tension field of [image: there is no content] is given by


τ[image: there is no content]=2-mdϕgradlnλ+ndϕgradlnf=dϕgradlnλ2-mfn.








Then [image: there is no content] is harmonic if and only if the function [image: there is no content] is constant.





We will now calculate the bitension field of the map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k.



Theorem 4. 

Let ϕ:[image: there is no content]⟶Pp,k be a smooth map. The bitension field of the map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k defined by [image: there is no content] is given by


τ2[image: there is no content]=τ2ϕ-nTrg∇2dϕgradlnf+TrgRpdϕgradlnf,dϕdϕ-n∇gradlnfτϕ-n2∇gradlnfdϕgradlnf.



(37)









Proof of Theorem 4. By definition of the bi-tension field, we have


τ2[image: there is no content]=-Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]-Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content]



(38)




For the first term Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content], we have


Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]=∇ei,0[image: there is no content]∇ei,0[image: there is no content]τ[image: there is no content]+1f2∇0,fj[image: there is no content]∇0,fj[image: there is no content]τ[image: there is no content]-∇∇˜ei,0ei,0[image: there is no content]τ[image: there is no content]-1f2∇∇˜0,fj0,fj[image: there is no content]τ[image: there is no content].








We will study term by term the right-hand of this expression. A simple calculation gives


∇ei,0[image: there is no content]∇ei,0[image: there is no content]τ[image: there is no content]=∇ei,0[image: there is no content]∇ei,0[image: there is no content]τϕ+n∇ei,0[image: there is no content]∇ei,0[image: there is no content]dϕgradlnf=∇eiϕ∇eiϕτϕ+n∇eiϕ∇eiϕdϕgradlnf








and


∇0,fj[image: there is no content]∇0,fj[image: there is no content]τ[image: there is no content]=0.








By using the equation (35), we obtain


∇∇˜ei,0ei,0[image: there is no content]τ[image: there is no content]=∇∇eiMeiϕτϕ+n∇∇eiMeiϕdϕgradlnf,








and


∇∇˜0,fj0,fj[image: there is no content]τ[image: there is no content]=-nf2∇gradlnfϕτϕ-n2f2∇gradlnfϕdϕgradlnf.








Then, we deduce that


Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]=Trg[image: there is no content]2τϕ+nTrg[image: there is no content]2dϕgradlnf+n∇gradlnfϕτϕ+n2∇gradlnfϕdϕgradlnf.



(39)




To complete the proof, we will simplify the term Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content], we have


Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content]=RPτ[image: there is no content],d[image: there is no content]ei,0d[image: there is no content]ei,0+1f2RPτ[image: there is no content],d[image: there is no content]0,fjd[image: there is no content]0,fj=RPτ[image: there is no content],d[image: there is no content]ei,0d[image: there is no content]ei,0=RPτϕ,dϕeidϕei+nRPdϕgradlnf,dϕeidϕei.








It follows that


Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content]=TrgRPτϕ,dϕdϕ+nTrgRPdϕgradlnf,dϕdϕ.



(40)




If we replace (39) and (40) in (38), we obtain


τ2[image: there is no content]=τ2ϕ-nTrg∇2dϕgradlnf+TrgRpdϕgradlnf,dϕdϕ-n∇gradlnfτϕ-n2∇gradlnfdϕgradlnf.








The proof of Theorem 4 is complete.



Remark 6. 

Theorem 4 is a particular result of generalized warped product manifolds (see [18]).





As a consequence, if ϕ is harmonic, we have



Corollary 3. 

Let ϕ:[image: there is no content]⟶Pp,k a harmonic map. The map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k defined by [image: there is no content] is biharmonic if and only if


[image: there is no content]








In particular if [image: there is no content], the first projection P1:Mm×fNn,[image: there is no content]⟶[image: there is no content] defined by [image: there is no content] is biharmonic if and only if (see [17])


[image: there is no content]













In the following we shall present an example of biharmonic non-harmonic maps.



Example 1. 

Let [image: there is no content] defined by [image: there is no content] when we suppose that [image: there is no content] is radial [image: there is no content]. Then by Theorem 4, we deduce that the map [image: there is no content] is biharmonic if and only if the function α satisfies the following differential equation


[image: there is no content]








Let [image: there is no content], this equation becomes


[image: there is no content]








Looking for particular solutions of type [image: there is no content] ([image: there is no content]), then [image: there is no content] is biharmonic if and only if


[image: there is no content]








This equation has two solutions [image: there is no content] and [image: there is no content].

	1.

	
For [image: there is no content], we obtain [image: there is no content] and in this case [image: there is no content] is harmonic so biharmonic.




	2.

	
For [image: there is no content], we obtain [image: there is no content] and in this case [image: there is no content] is biharmonic non-harmonic.











Now, we consider a smooth map [image: there is no content] and we define the map [image: there is no content]:Mm×fNn,[image: there is no content]⟶Pp,k by [image: there is no content]. We will study the biharmonicity of [image: there is no content], we obtain the following result :



Theorem 5. 

Let ψ:[image: there is no content]→Pp,k be a smooth map, we define [image: there is no content]:Mm×f2Nn,Gf2→Pp,k by [image: there is no content]x,y=ψy. The tension field and the bi-tension field of [image: there is no content] are given by


τ[image: there is no content]=1f2∘πτψ



(41)




and


τ2[image: there is no content]=1f4∘πτ2ψ-2f2∘πΔlnf+n-2gradlnf2∘πτψ.



(42)









Proof of Theorem 5. In the first, we calculate the tension field of of [image: there is no content]. By definition to the tension field, we have


τ[image: there is no content]=Tr[image: there is no content]∇d[image: there is no content]=∇ei,0[image: there is no content]d[image: there is no content]ei,0+1f2∘π∇0,fj[image: there is no content]d[image: there is no content]0,fj-d[image: there is no content]∇˜ei,0ei,0-1f2∘πd[image: there is no content]∇˜0,fj0,fj.








By using the equation (35), we obtain


τ[image: there is no content]=1f2∘π∇fjψdψfj-1f2∘πdψ∇fjfj=1f2∘πτψ,








then


τ[image: there is no content]=1f2∘πτψ.








By this expression, we deduce that [image: there is no content] is harmonic if and only if ψ is harmonic. Now, we will calculate the bi-tension field of [image: there is no content]. By definition, we have


τ2[image: there is no content]=-Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]-Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content].



(43)




For the first term Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content], we have


Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]=∇ei,0[image: there is no content]∇ei,0[image: there is no content]τ[image: there is no content]+1f2∘π∇0,fj[image: there is no content]∇0,fj[image: there is no content]τ[image: there is no content]-∇∇˜ei,0ei,0[image: there is no content]τ[image: there is no content]-1f2∘π∇∇˜0,fj0,fj[image: there is no content]τ[image: there is no content].








A long calculation gives


∇ei,0[image: there is no content]∇ei,0[image: there is no content]τ[image: there is no content]=2f2∘π2gradlnf2-eieilnf∘πτψ








and


1f2∘π∇0,fj[image: there is no content]∇0,fj[image: there is no content]τ[image: there is no content]=1f4∘π∇fjψ∇fjψτψ.








Finally, by (35), we obtain


∇∇˜ei,0ei,0[image: there is no content]τ[image: there is no content]=2f2∘π∇eieilnf∘πτψ








and


1f2∘π∇∇˜0,fj0,fj[image: there is no content]τ[image: there is no content]=1f4∘π∇∇fjfjψτψ+2nf2∘πgradlnf2∘πτψ.








Which gives us


Tr[image: there is no content]∇[image: there is no content]2τ[image: there is no content]=1f4∘πTrh∇2τψ-2f2∘πΔlnf+n-2gradlnf2∘πτψ



(44)




Finally for the first term Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content], it is easy to verify that


Tr[image: there is no content]RPτ[image: there is no content],d[image: there is no content]d[image: there is no content]=1f4∘πTrhRPτψ,dψdψ.



(45)




If we substitute (44) and (45) in (43), we obtain


τ2[image: there is no content]=1f4∘πτ2ψ-2f2∘πΔlnf+n-2gradlnf2∘πτψ.








This completes the proof of Theorem 5. An immediate consequence of Theorem 5 is given by the following corollary :



Corollary 4. 

Let ψ:[image: there is no content]⟶Pp,k a biharmonic non-harmonic map. The map [image: there is no content]:Mm×fNn,Gf2⟶Pp,k defined by [image: there is no content] is biharmonic if and only if the function [image: there is no content] is harmonic.
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