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Abstract:



A smooth function of the second moments of N continuous variables gives rise to an uncertainty relation if it is bounded from below. We present a method to systematically derive such bounds by generalizing an approach applied previously to a single continuous variable. New uncertainty relations are obtained for multi-partite systems that allow one to distinguish entangled from separable states. We also investigate the geometry of the “uncertainty region” in the [image: there is no content]-dimensional space of moments. It is shown to be a convex set, and the points on its boundary are found to be in one-to-one correspondence with pure Gaussian states of minimal uncertainty. For a single degree of freedom, the boundary can be visualized as one sheet of a “Lorentz-invariant” hyperboloid in the three-dimensional space of second moments.
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1. Introduction


Uncertainty relations express limitations on the precision with which one can measure specific properties of a quantum system, such as position and momentum of a quantum particle. These relations come in different flavours. They may express the inability to prepare a quantum system in a state for which incompatible properties possess exact values. Alternatively, error-disturbance uncertainty relations refer to the constraints encountered when attempting to extract precise values through measurements on a single system. Both cases point to the uncertainty inherent in the quantum description of the world.



Heisenberg was the first to realize, in 1927, that uncertainty relations exist for quantum systems [1]. His physical arguments were quickly developed by Kennard [2], Weyl [3], Robertson [4] and Schrödinger [5]. Except for Heisenberg’s paper, the focus of these contributions was on preparational uncertainty, not yet clearly distinguished from measurement uncertainty. In 1965, Arthurs and Kelly presented a model of joint measurement of position and momentum [6], laying the foundations for interest in error-disturbance uncertainty relations, which has grown considerably over the last two decades. Different approaches rely on different concepts of error, which has led to lively debates [7,8].



In recent years, the discussion of uncertainty relations has turned from conceptual aspects to applications, in line with the overall thrust of quantum information. For example, the first protocol of quantum cryptography, known as BB84 [9], is based on pairs of mutual unbiased bases that are known to come with maximal preparational uncertainty. It is also possible to use variance-based uncertainty relations to formulate criteria which detect entangled states of bi-partite systems [10,11].



This work investigates the structure of preparational uncertainty relations in quantum systems with more than one continuous variable, i.e., [image: there is no content]. Examples are given by a point particle moving in a plane ([image: there is no content]) or in three-dimensional space ([image: there is no content]; alternatively, one may consider N particles each moving along a real line, each with configuration space [image: there is no content]. Our main goals are (i) to obtain lower bounds for given smooth functions depending on the [image: there is no content] second moments of a system with N continuous variables, (ii) turn these bounds into criteria that enable us to detect entangled states, and (iii) to understand the geometric structure of uncertainty functionals in the space of second moments, spanned by the independent elements of the covariance matrix.



Using a variational technique originally introduced by Jackiw [12], we will generalize an approach that has been carried out successfully for quantum systems with a single particle-type degree of freedom, i.e., [image: there is no content] [13]. Encouraged by the new uncertainty relations obtained in this way for a single continuous variable, we are particularly interested in the possibility to create inequalities that are capable of detecting entangled states in systems with two or more continuous variables. Tools to detect entanglement are crucial for the implementation of any protocol in quantum information that relies on entangled states. For continuous variables, quantum optical methods are available to reliably check variance-based entanglement criteria, allowing one to verify that a required entangled state has indeed been created [14,15,16].



In Section 2, we will introduce uncertainty functionals for N continuous variables depending on second moments and describe a method to determine their extrema and, subsequently, their minima. Section 3 applies the approach to simple cases, leading to new uncertainty relations, some of which may be used to signal the presence of entangled states. A useful geometrical picture of the uncertainty region—i.e., the covariance matrices represented in the space of second moments—is derived in Section 4. The final section contains a brief summary.




2. Lower Bounds of Uncertainty Functionals


2.1. Extrema of Uncertainty Functionals


To describe a quantum system with N continuous variables, one associates N pairs of canonical operators obeying the commutation relations


[q^k,p^k′]=iℏδkk′,[q^k,q^k′]=[p^k,p^k′]=0,k,k′=1,…,N



(1)







We will arrange the momentum and position operators of the k-th degree of freedom, [image: there is no content] and [image: there is no content], respectively, into a column vector [image: there is no content],


z^⊤=(p^1,q^1,…,p^N,q^N)≡(z^1,z^2,…,z^2N−1,z^2N)



(2)




with components [image: there is no content]. The pure states of the quantum systems considered here are represented by unit vectors [image: there is no content], elements of an infinite-dimensional Hilbert space [image: there is no content]. Of the [image: there is no content] second moments


cμν=12⟨ψ|z^μz^ν+z^μz^ν|ψ⟩,μ,ν=1,…,2N



(3)




only [image: there is no content] are independent. We assume (without loss of generality) that all first moments vanish, which follows from the invariance of the second moments under rigid phase-space translations. The second moments [image: there is no content] form the covariance matrix [image: there is no content] associated with the pure state [image: there is no content].



With [image: there is no content] and for [image: there is no content] ([image: there is no content]), we obtain the variance of momentum (position) of the k-th degree of freedom, while for [image: there is no content], we obtain their covariance; all other values of the indices [image: there is no content], correspond to moments that mix different degrees of freedom. Occasionally, we will denote the variances of the k-th momentum and position with [image: there is no content] and [image: there is no content], respectively, and their covariance by [image: there is no content].



Given a real function of the second moments for N continuous variables, [image: there is no content][image: there is no content], we wish to establish whether it has a non-trivial lower bound b. If it does, the statement [image: there is no content] provides an uncertainty relation.



Following an idea of Jackiw [12] (see also [17,18,19]), we define an uncertainty functional associated with the function f by


J[ψ]=fΔ2p1,Δ2q1,Cp1q1,…Cp1p2,Cp1q2,⋯−λ(⟨ψ|ψ⟩−1)=fx1,y1,w1,…,c13,c14,⋯−λ(⟨ψ|ψ⟩−1)



(4)




where the Lagrange multiplier λ ensures that any solutions will be given by a normalised state. We first list all local second moments for each degree of freedom (the two variances and the covariance), followed by the non-local moments which involve different degrees of freedom. A variation of such a functional will, in analogy to the one-dimensional case (cf. [13,20]), lead to an eigenvalue equation quadratic in position and momentum operators. Let us briefly spell out the derivation in the more general setting.



First, we compare the value of the functional [image: there is no content] in the state [image: there is no content] with its value in the state [image: there is no content], where [image: there is no content] is an arbitrary normalised state. Expanding it up to a second order in the small parameter ε, we find


[image: there is no content]



(5)




where the expression


[image: there is no content]



(6)




denotes a Gâteaux derivative. The stationary points of the functional are characterised by the vanishing of the first-order term in the expansion (5),


DεJ[ψ]=⟨e|δδ⟨ψ|fx1,y1,w1,…,c13,c14,⋯−λ|ψ⟩+c.c.=0



(7)







More explicitly, this condition reads


⟨e|∑μ≤ν∂f∂cμνδcμνδ⟨ψ|−λ|ψ⟩+c.c.=0



(8)




where the sum runs over the values [image: there is no content] and [image: there is no content]. Since Equation (8) should hold for arbitrary variations of the ket [image: there is no content] and its dual [image: there is no content] (which are independent), the expression in round brackets as well as its complex conjugate must vanish identically.



The functional derivatives of the second moments are


δcμνδ⟨ψ|≡12z^μz^ν+z^νz^μ|ψ⟩



(9)




resulting in a Euler-Lagrange-type equation


∑μ≤ν12z^μz^ν+z^νz^μ∂f∂cμν−λ|ψ⟩=0



(10)







The value of the multiplier λ can be found by multiplying this equation with the bra [image: there is no content] from the left and solving for λ. Substituting its value back into Equation (10), one finds the nonlinear eigenvector-eigenvalue equation


∑μ≤ν12z^μz^ν+z^νz^μ∂f∂cμν|ψ⟩=∑μ≤νcμν∂f∂cμν|ψ⟩



(11)




or, in matrix notation,


z^⊤Fz^|ψ⟩=TrCF|ψ⟩



(12)




where the matrix [image: there is no content] is defined in terms of the first partial derivatives of the function f: its diagonal elements are equal to [image: there is no content], while the off-diagonal ones are given by [image: there is no content] with [image: there is no content], using the standard convention to denote partial derivatives by subscripts. As an example, the eigenvalue equation becomes, for [image: there is no content],


∑k=12fxkp^k2+fykq^k2+fwk2q^kp^k+p^kq^k+fc13p^1p^2+…+fc24q^1q^2|ψ⟩==∑k=12xkfxk+ykfyk+wkfzk+c13fc13+…+c24fc24|ψ⟩



(13)







Note that Equation (12) is generally non-linear in the state [image: there is no content] since the second moments and the partial derivatives of f are functions of expectation values in the state [image: there is no content]. As we will show in next section, one can nevertheless solve Equation (12), given a number of assumptions.




2.2. Consistency Conditions


To solve Equation (12), we initially assume that the matrix [image: there is no content] of partial derivatives is constant, i.e., we suppress its dependence on the state [image: there is no content]. If we further require that [image: there is no content] is positive definite, then Williamson’s theorem [21,22] guarantees the existence of a symplectic matrix Σ that puts [image: there is no content] into a diagonal form, i.e.,


F=Σ⊤DΣ



(14)




where the diagonal matrix [image: there is no content] is defined by [image: there is no content], and the positive real numbers [image: there is no content], [image: there is no content], are the symplectic eigenvalues of [image: there is no content] [22,23,24]. We recall that a symplectic matrix of order [image: there is no content] satisfies Σ⊤ΩΣ=Ω, where Ω is uniquely determined by the commutation relations, [image: there is no content], [image: there is no content].



Multiplying both sides of Equation (12) with the metaplectic unitary operator [image: there is no content] from the left, defined by the relation


Σz^=S^z^S^†



(15)




we find that its left-hand-side can be expressed as


S^†z^⊤Fz^S^S^†|ψ⟩=S^†z^⊤S^FS^†z^S^S^†|ψ⟩=Σ−1z^⊤Σ⊤DΣΣ−1z^S^†|ψ⟩



(16)







Thus, Equation (12) simplifies to


z^⊤Dz^S^†|ψ⟩=TrCFS^†|ψ⟩



(17)




which can be written as


∑k=1Nλkp^k2+q^k22S^†|ψ⟩=12TrCFS^†|ψ⟩



(18)







Thus, we have transformed the quadratic operator on the left-hand-side of Equation (12) into a Hamiltonian operator given by a sum of N decoupled harmonic oscillators. The solutions of Equation (18) are given by tensor products of number states for each degree of freedom:


[image: there is no content]



(19)







Note that the constraint


12TrCF=∑k=1Nλknk+12ℏ



(20)




must be satisfied by all potential extremal states.



Recall that we have treated the matrix elements of the matrix [image: there is no content] introduced in Equation (12) as constants, on which the unitary transformation [image: there is no content] and hence the states [image: there is no content] in Equation (19) now depend. To achieve consistency, we determine the expectation value of the covariance matrix in the solution [image: there is no content]. A set of coupled equations in matrix form results for the extremal second moments, which we will call the consistency conditions. Explicitly, we find


C=⟨ψ|C^|ψ⟩≡12⟨ψ|z^⊗z^⊤+z^⊗z^⊤⊤|ψ⟩=12⨂k=1N⟨nk|S^†z^⊗z^⊤+z^⊗z^⊤⊤S^⨂k′=1N|nk′⟩



(21)




where [image: there is no content] denotes the Kronecker product of the column vector [image: there is no content] with its transpose, [image: there is no content]. Using the identity (15) in the form Σ−1z^=S^†z^S^, we can express the covariance matrix in the form


C=Σ−112N+N⊤(Σ−1)⊤



(22)




with the matrix


N=⨂k=1N⟨nk|z^⊗z^⊤⨂k′=1N|nk′⟩



(23)




having elements


Nμν=⟨n1,…,nN|z^μz^ν|n1,…,nN⟩,μ,ν=1,…,2N



(24)







Recalling that the components of the vector [image: there is no content] are position and momentum operators, it is not difficult to see that the only non-zero matrix elements of [image: there is no content] are on its diagonal, i.e.,


[image: there is no content]



(25)







Using the property [image: there is no content], which holds for any diagonal matrix, we finally obtain the consistency conditions for N continuous variables,


C=Σ−1N(Σ−1)⊤



(26)







These conditions select the extrema that are compatible with the specific function of the second moments considered. The constraint given in (20) can be rewritten as


Tr(CF)=Tr(DN)



(27)




and it is easy to check that this condition is trivially satisfied if the consistency conditions (26) hold.



The take-away message from the conditions (26) can be summarised as follows: a function f of the second moments of N positions and momenta has an extremum in a pure state [image: there is no content] if there exists a symplectic matrix Σ that diagonalises the covariance matrix [image: there is no content] and, at the same time, the transpose of its inverse, [image: there is no content], diagonalises the matrix [image: there is no content] of the partial derivatives of the function f.



According to (26), the determinant of the covariance matrix for extremal states of the uncertainty functional [image: there is no content] takes the value


detC=∏k=1Nnk+122ℏ2



(28)







Clearly, the minimum is achieved when each oscillator resides in its ground state,


detC≥ℏ22N



(29)




corresponding to [image: there is no content] in Equation (28).



No pure N-particle state can give rise to a covariance matrix [image: there is no content] violating the inequality (29). This universally valid constraint generalizes the single-particle inequality derived by Robertson and Schrödinger to N particles, expressing it elegantly as a condition on the determinant of the covariance matrix of a state. Supplying (28) with the lower-dimensional Robertson-Schrödinger-type inequalities that need to be obeyed in by each subsystem of dimension 2 to [image: there is no content], we get the general uncertainty statement for more than one degrees of freedom, usually expressed in the form,


C+iℏ2Ω≥0



(30)







Alternatively, this requirement can be expressed in terms of inequalities for the symplectic eigenvalues of the covariance matrix [22,24].



We conclude this section by explicitly working out the consistency conditions for one degree of freedom, [image: there is no content]. In this case, we obtain the matrices [image: there is no content] and [image: there is no content], with symplectic matrices [image: there is no content] and [image: there is no content] given by


Gb=10b1,andSγ=e−γ00eγ



(31)




respectively, and real parameters


b=fw2fy∈Randγ=12lnfydetF∈R



(32)







The consistency conditions now take the simple form


C=Σ−1N(Σ−1)⊤=Gb−1Sγ−1(Sγ−1)⊤(Gb−1)⊤ℏn+12=F−1ℏn+12detF



(33)




or finally,


FCdetF=ℏn+12I,n∈N0



(34)







Therefore, the formalism developed here correctly reproduces the findings of [13].





3. Inequalities for Two or More Continuous Variables


3.1. Inequalities without Correlation Terms


Let us now examine the consistency conditions for more than one degree of freedom while allowing only product states. Correlations between the degrees of freedom being absent, the functional will only depend on the local second moments, i.e., [image: there is no content]; the [image: there is no content] moments mixing the degrees of freedom are always zero in a separable state. For simplicity, we only consider [image: there is no content] in some detail, the generalisation to [image: there is no content] being straightforward.



Using matrices [image: there is no content] and [image: there is no content] defined in (31), we construct two symplectic matrices [image: there is no content] and [image: there is no content] as follows:


Σ1=Sγ1Gb100IandΣ2=I00Sγ2Gb2



(35)







Their product, [image: there is no content] describes the action of the factorised unitary operator


S^=S^1⊗S^2



(36)




when solving the eigenvalue Equation (12). The consistency conditions become


C=Σ−1N(Σ−1)⊤=Σ−1(Σ−1)⊤N=Fpr−1N



(37)




with


Fpr=F1/detF100F2/detF2



(38)




so that we finally obtain


FprC=N



(39)







In Equation (38), the [image: there is no content] matrices [image: there is no content], denote the collection of partial derivatives of the function f with respect to the moments of the k-th degree of freedom. Therefore, the consistency conditions for functionals of product states reduce to a pair of one-dimensional ones that must be solved simultaneously.



The generalisation to N degrees of freedom is straightforward: for each extra degree of freedom, a matrix Fk/detFk must be added to the diagonal of the block matrix [image: there is no content]. After introducing the suitably generalized matrices [image: there is no content] and [image: there is no content], Equation (39) describes the consistency conditions for separable quantum states. It is often useful to express Equation (39) as


xkfxk=ykfyk,2wkfyk=−xkfwk,xkyk−wk2=ℏ2nk+12



(40)




with [image: there is no content].



The simplest example of a factorized uncertainty relation is given by the product of two one-dimensional Robertson-Schrödinger inequalities, following from the functional


f(x1,y1,w1,x2,y2,w2)=(x1y1−w12)(x2y2−w22)



(41)







The resulting inequality,


Δ2p1Δ2q1−Cp1q12Δ2p2Δ2q2−Cp2q22≥ℏ24



(42)




corresponds to the boundary described by Equation (29) in the absence of correlations, to be discussed in more detail in Section 4. Note that this inequality is only invariant under [image: there is no content] transformations instead of those of the [image: there is no content] group that leave invariant the Robertson–Schrödinger-type inequality for two degrees of freedom. However, the matrix inequality [image: there is no content] is invariant under any symplectic transformation and serves as the required generalisation.



Starting from the functional


f(x1,y1,w1,x2,y2,w2)=x1y1x2y2−w12w22



(43)




we arrive -after solving (39)- at


Δ2p1Δ2q1Δ2p2Δ2q2≥ℏ24+Cp1q12Cp2q22



(44)




which cannot be obtained by a combination of inequalities for [image: there is no content]. It is stronger than the (factorized) “Heisenberg”-type inequality for more than two observables


Δp1Δq1Δp2Δq2≥ℏ22



(45)




first mentioned in a paper by Robertson [25], but weaker than (42). An inequality [image: there is no content] is said to be weaker than the inequality [image: there is no content] if fewer states saturate [image: there is no content] than [image: there is no content].



Mixing products of variances related to different degrees of freedom also leads to non-trivial inequalities such as


aΔ2p1Δ2q2n+bΔ2p2Δ2q1n≥2abℏ22n,a,b>0



(46)







For [image: there is no content] and [image: there is no content], one obtains


Δp1Δq2+Δp2Δq1≥ℏ








which resembles the inequality for the sum of two one-dimensional Heisenberg inequalities,


Δp1Δq1+Δp2Δq2≥ℏ



(47)




but differs fundamentally from it.




3.2. Inequalities with Correlation Terms


Dropping the limitation to product states, we now turn to functionals that involve terms to which different degrees of freedom contribute. To begin, let us consider a linear combination of second moments,


fΔ2p1,…,Cq1q2=aΔ2p1+Δ2q1+bΔ2p2+Δ2q2+cCp1p2−Cq1q2








for which the matrix [image: there is no content] takes the form


F=a0c200a0−c2c20b00−c20b



(48)







It is positive definite whenever the coefficients [image: there is no content] obey the conditions [image: there is no content] and [image: there is no content], which we assume from now on. The symplectic matrix [image: there is no content] that brings [image: there is no content] to diagonal form is given by (cf. [26]):


Σ=σ+0σ−00σ+0−σ−σ−0σ+00−σ−0σ+



(49)




where


σ±=a+b±y2y,andy=(a+b)2−c2



(50)







The consistency conditions (26) can be solved in closed form, leading to the covariance matrix at the extrema


C=Δ2p1(e)0Cp1p2(e)00Δ2q1(e)0Cq1q2(e)Cp1p2(e)0Δ2p2(e)00Cq1q2(e)0Δ2q2(e)



(51)




with elements explicitly given by


Δ2p1(e)=Δ2q1(e)=(n1−n2)ℏ2+(a+b)(n1+n2+1)ℏ2(a+b)2−c2



(52)






Δ2p2(e)=Δ2q2(e)=(n2−n1)ℏ2+(a+b)(n1+n2+1)ℏ2(a+b)2−c2



(53)




and


Cp1p2(e)=−Cq1q2(e)=−c(n1+n2+1)ℏ2(a+b)2−c2



(54)







One can check that the expressions on the right-hand side of Equations (52) and (53) are positive, while


Cp1p2(e)2≤Δ2p1(e)Δ2p2(e)andCq1q2(e)2≤Δ2q1(e)Δ2q2(e)



(55)




also hold, as required. In fact, these two inequalities are never saturated by the extremal states, although one can get arbitrarily close if [image: there is no content] is zero, while [image: there is no content] tends to infinity (or vice versa).



Substituting the extremal values of the second moments back into the functional, we find


[image: there is no content]



(56)




implying the following inequality, satisfied by any quantum state:


aΔ2p1+Δ2q1+bΔ2p2+Δ2q2+cCp1p2−Cq1q2≥ℏ(a+b)2−c2



(57)







Pure separable states are known to satisfy the relation


aΔ2p1+Δ2q1+bΔ2p2+Δ2q2≥(a+b)ℏ



(58)







Now consider the limit [image: there is no content] in (57) which, however, breaks the positive definiteness of [image: there is no content]: its right-hand-side tends to zero and the terms on the left are just the sum of the variances of the Einstein-Podolsky-Rosen-type (EPR) operators u^1=ap^1+bp^2 and u^2=aq^1−bq^2 [10,11]. In this case, the pair of inequalities (57) and (58) form the prototypical example of using uncertainty relations for entanglement detection. More specifically, whenever the sum of the variances of [image: there is no content] and [image: there is no content] in a given state [image: there is no content] violates the bound of (58), then the state is entangled. Although inequality (58) provides only a sufficient condition for inseparability of an arbitrary state, it can become a sufficient and necessary condition for pure Gaussian states, if recast in an appropriate form [10].



Returning to inequality (57) in the case of arbitrary [image: there is no content], it is not immediately obvious whether it can be used to detect entangled states. However, let us define four EPR-type operators:


u^1=α1p^1+β1p^2,v^1=γ1q^1−δ1q^2u^2=α2p^1+β2p^2,v^2=γ2q^1−δ2q^2



(59)




with eight real parameters [image: there is no content], which are constrained by the relations


α12+α22=γ12+γ22=a,β12+β22=δ12+δ22=bα1β1+α2β2=γ1δ1+γ2δ2=c/2



(60)







Now, we can write Equation (57) as


Δ2u1+Δ2v1+Δ2u2+Δ2v2≥ℏ(a+b)2−c2



(61)




reducing to the inequality


[image: there is no content]



(62)




if the the system resides in a separable state. Since its right-hand-side is always greater than or equal to the bound in (61), the violation of (62) indicates the presence of an entangled state.



Clearly, inequality (61) is more general than the corresponding one for the pair of operators u^1=ap^1+bp^2 and u^2=aq^1−bq^2, as the former reduces to the latter in the limit [image: there is no content] and thus extends a known result [10].



As a final example, consider the sum of the variances of the EPR-type operators for three degrees of freedom, [image: there is no content], [image: there is no content], [image: there is no content], which is in general only bounded by zero. However, the lower possible value achievable in a separable state is given by the inequality


Δ2u1+Δ2u2+Δ2u3≥32ℏ



(63)




readily obtained from the solution of Equation (39). Again, violations of (63) detect the presence of entangled degrees of freedom.



It is, of course, possible to minimise other functions than the sum of the variances, leading to different entanglement-detecting inequalities that we will discuss elsewhere.





4. The Uncertainty Region


In this section, we will develop a geometric view of quantum uncertainty for a system with N continuous variables. To do so, we associate a direction of the space [image: there is no content] with each of the second moments [image: there is no content]. Then, any quantum state gives rise to a point in the space of second moments, [image: there is no content] which has dimension [image: there is no content].



Some points in the space [image: there is no content] will represent moments of quantum states while others will not. The accessible part of the space is called the uncertainty region, as the points it contains are in one-to-one correspondence with admissible covariance matrices [image: there is no content]. This region is bounded by a [image: there is no content]-dimensional surface given by the relation


detC+iℏ2Ω=0



(64)




where Ω is the standard symplectic matrix of order [image: there is no content].



4.1. More Than One Continuous Variable: [image: there is no content]


We will show now that the uncertainty region in the space [image: there is no content] is a convex set, by affirming (i) that its boundary (64) is convex and (ii) that all points of the uncertainty region emerge as expectations taken in pure states. In other words, the uncertainty region has no “pure-state holes.” This property justifies our initial decision to search for extrema of uncertainty functionals among pure states only: no other extrema would result had we included mixed states. On the boundary of the uncertainty region, the relationship between quantum states and their moments is unique (up to rigid translations) while (iii) points inside the uncertainty region can also be obtained from infinitely many different convex combinations of pure (or mixed) states.



4.1.1. The Uncertainty Region Has a Convex Boundary


The region defined by Equation (29) is a convex set in the [image: there is no content]-dimensional space of second moments. To see this, we consider two covariance matrices [image: there is no content] and [image: there is no content] that are located on its boundary given by (64), i.e., they satisfy


detC1=detC2=ℏ22N



(65)







We recall that covariance matrices are positive definite, [image: there is no content], and that they must have sufficiently large symplectic eigenvalues in order to stem from quantum states. Convexity holds if the (positive definite) convex combination of two covariance matrices,


C(t)=tC1+(1−t)C2,t∈[0,1]



(66)




either lies on the boundary of the uncertainty region or in its interior. This property follows from the fact that the matrix function


[image: there is no content]



(67)




is convex [27], i.e., the inequality


[image: there is no content]



(68)




holds for any pair of strictly positive definite matrices, [image: there is no content]. Rewriting (65) in the form


−lndetC1/ℏ=−lndetC2/ℏ=2Nln2



(69)




one immediately finds that


−lndettC1+(1−t)C2/ℏ≤−tlndetC1/ℏ−(1−t)lndetC2/ℏ=2Nln2



(70)







Since


dettC1+(1−t)C2≥ℏ22N,t∈[0,1]



(71)




follows, and we have shown that the convex combination of two covariance matrices on the boundary of the uncertainty region cannot produce a point outside of it. Equality holds in (71) only if [image: there is no content] or [image: there is no content]. Therefore, states on the boundary cannot be written as mixtures, which means that the states on the boundary must be pure states.



Clearly, the argument just given extends to convex combinations of covariance matrices located inside the uncertainty region: no such combination will produce a covariance matrix on its boundary or outside of it.




4.1.2. The Uncertainty Region Has No Pure-State Holes


We determined the conditions for uncertainty functionals to have extrema by evaluating them on all pure states of N quantum particles. We now show that the inclusion of mixed states as potential extrema does not change our findings. It is sufficient to show that all points of the uncertainty region defined by the inequality (29) correspond to covariance matrices that stem from pure states.



Recall that any admissible covariance matrix can be diagonalised according to Williamson’s theorem [21,23] using a suitable symplectic transformation. Let us order its N finite symplectic eigenvalues [image: there is no content] to [image: there is no content] from smallest to largest and choose an integer [image: there is no content] such that [image: there is no content] holds. Suppose now that the k-th subsystem resides in the pure state


|ψk⟩=tk|nk=0⟩+1−tk|nk=M⟩,k∈{1,…,N},tk∈[0,1]



(72)







The variances of position and momentum take the values


Δ2pkψk=Δ2qkψk=(1−tk)M+12ℏ,k∈{1,…,N},tk∈[0,1]



(73)




where we use the fact that the expectations of the operators [image: there is no content] and [image: there is no content] vanish (cf. remark after Equation (3)). Thus, a suitable value of the parameter [image: there is no content] leads to the desired entries [image: there is no content] on the diagonal of the covariance matrix, and the covariance of position and momentum [image: there is no content] and [image: there is no content] equals zero. In addition, the remaining off-diagonal matrix elements—associated with the bilinear operators [image: there is no content] for [image: there is no content]—also vanish in the product state


|Ψ⟩=|ψ1⟩⊗…⊗|ψN⟩



(74)







Consequently, there is a pure product state, namely [image: there is no content], to generate any desired diagonal covariance matrix—which is sufficient to create any admissible non-diagonal covariance matrix, simply by undoing the symplectic transformation used to diagonalize the initially given covariance matrix.



The map from the set of pure states to the interior of the space of moments is, of course, many-to-one. This can be seen directly by recalling that each admissible covariance matrix [image: there is no content] can also be obtained from a Gaussian state characterized by a quadratic form determined by the matrix [image: there is no content].




4.1.3. All Moments Arise as Convex Combinations of Two Pure States


Given any point inside the uncertainty region, one can find infinitely many convex combinations of two pure Gaussian states on the boundary that produce the desired [image: there is no content] moments. Here is one way to construct such pairs. Consider any two-dimensional Euclidean plane that passes through the origin of the space of moments, [image: there is no content], and the given point inside the uncertainty region. The intersection of its boundary with the plane is a one-dimensional set of points that divides the plane into two regions corresponding to acceptable covariance matrices (forming the uncertainty region) and the rest. This line inherits convexity from the boundary in the space [image: there is no content] since any two points on the curve are, of course, also located on the high-dimensional boundary.



To conclude the argument, we only need to identify two points on the boundary such that the line connecting them goes through the point representing the desired set of moments. It is geometrically obvious that there exist infinitely many pairs of points on the boundary that satisfy this requirement. This situation is illustrated in Figure 1 in Section 4.2.3 for a single continuous variable where the boundary of the uncertainty region is known to be a hyperbola.


Figure 1. Cross-section ([image: there is no content]) of the uncertainty region (shaded) illustrating the convexity of its boundary [image: there is no content]; convex combinations of moment triples located on the hyperboloid (associated with pure Gaussian states with minimal uncertainty) reproduce any given moment vector [image: there is no content] inside the uncertainty region (the points must be outside of the “back-ward light-cone” of the point [image: there is no content], indicated by the dashed segment of the hyperbola).
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4.2. One Continuous Variable: [image: there is no content]


It is instructive to study the properties of the uncertainty region for a single continuous variable since the space of moments has only three dimensions. Even in the absence of entangled states, the uncertainty region has a number of interesting features as it resembles the Bloch ball used to visualize the states of a qubit. For one continuous variable, each point inside the uncertainty region is characterized uniquely by a triple of numbers, the states on the convex boundary are the only pure states, and the decomposition of mixed states into pairs of pure states is clearly not unique. The group of [image: there is no content] transformations that leave the uncertainty region invariant play the role of the [image: there is no content] transformations mapping the Bloch ball to itself.



We simplify the notation to discuss the case [image: there is no content] Renaming the elements of the [image: there is no content] covariance matrix according to


C=Δ2pCpqCpqΔ2q≡xwwy



(75)




the consistency conditions (34) take the form


xfx=yfy,xfw=−2wfy



(76)




and


xy−w2=n+122ℏ2,n∈N0



(77)







The third constraint is universal since it does not depend on the function [image: there is no content] that characterizes an uncertainty functional [image: there is no content]. It will be convenient to use the variables


u=12x+y>0,v=12x−y∈R



(78)




to parametrize the points in the three-dimensional space of second moments, with coordinates [image: there is no content]. For each non-negative integer, the third condition


u2−v2−w2=en2,en=n+12ℏ,n∈N0



(79)




determines one sheet of a two-sheeted hyperboloid, located in the “upper” half of the space of moments, i.e., [image: there is no content] and [image: there is no content]. The n-th sheet—which we call [image: there is no content], [image: there is no content]—intersects the u-axis at [image: there is no content], and it is in one-to-one correspondence with the squeezed states originating from the number state [image: there is no content] (cf. [13]).



The states which satisfy Equation (79) for [image: there is no content]saturate the standard Robertson-Schrödinger inequality. Consequently, not all points in the space of moments can arise as moment triples. The accessible part of the space is bounded by the hyperboloid [image: there is no content] defined in Equation (79), suggesting us to visualize the uncertainty region as a solid body with boundary [image: there is no content].



We follow the presentation of the multidimensional case in Section 4.1, giving at times alternative proofs of the general results, by appealing to intuition available in the space of second moments due to its low dimension.



4.2.1. The Uncertainty Region Has a Convex Boundary


Given two mixed quantum states described by density matrices [image: there is no content] and [image: there is no content], their convex combinations [image: there is no content], [image: there is no content], are also quantum states. We now show that the uncertainty region in the space [image: there is no content] inherits convexity from the body of density matrices: any convex combination of the states [image: there is no content] and [image: there is no content] with moment triples [image: there is no content], [image: there is no content], inside the uncertainty region produces another state with a moment triple also in that region. The boundary of an analogously defined uncertainty region for a quantum spin s [28] is not convex. This approach does not use the convexity of the logarithm of positive definite matrices in (68).



The moments [image: there is no content], [image: there is no content], etc., satisfy the Robertson-Schrödinger inequality,


xkyk−wk2≥ℏ24≡e02,k=1,2



(80)




and the moments of the mixture are given by


σt=tσ1+(1−t)σ2,σ=x,y,w



(81)







Writing [image: there is no content], the variances of the convex combination satisfy


xtyt−wt2≥t2+t¯2e02+tt¯x1y2+x2y1−2w1w2



(82)




using (80). Since


x1y2+x2y1−2w1w2≥e02y2y1+y1y2+w1y2y1−w2y1y22≥2e02








holds, the moment triple of the convex combination [image: there is no content] must also be contained in the uncertainty region, i.e.,


xtyt−wt2≥ℏ24



(83)







The minimum is obtained only if either [image: there is no content] or [image: there is no content], so that the resulting density matrix must describe a state on the boundary of the uncertainty region, i.e., a Gaussian state with minimal uncertainty.




4.2.2. The Uncertainty Region Has No Pure-State Holes


Each mixed state [image: there is no content] generates a moment triple [image: there is no content] with components [image: there is no content], etc., satisfying the Robertson-Schrödinger inequality [29]. Thus, the uncertainty region necessarily contains all potential mixed-state minima [image: there is no content] of a given functional. We want to show that all moment triples inside the uncertainty region can be obtained through pure states. Two cases occur.



If the triple [image: there is no content] is located on one of the hyperboloids [image: there is no content], [image: there is no content], then there exists a squeezed number state—i.e., a pure state—which gives rise to the same three expectations. Hence, the point [image: there is no content] has already been included in the search for extrema.



Alternatively, the point [image: there is no content] is located between two hyperboloids, [image: there is no content] and [image: there is no content], say, with [image: there is no content]. Again, there is a pure state with moments given by [image: there is no content]. To see this, we first consider only the line segment with end points [image: there is no content] and [image: there is no content], which are associated with the number states [image: there is no content] and [image: there is no content], respectively. The moments of the superposition


|n⟩t=t|n⟩+1−t|n+1⟩,t∈[0,1]



(84)




indeed lead to all moment triples located on the line segment,


n→t=un+1+tun−un+1,0,0,t∈[0,1]



(85)




since the matrix elements of the second moments between states of different parity vanish.



Finally, any moment triple [image: there is no content] off the u-axis will lie on a hyperboloid with a specific value of [image: there is no content], for example. This moment triple can be obtained, however, from the state [image: there is no content], with a suitable value ξ. Using relativistic terminology, the operator [image: there is no content]) must induce a Lorentz transformation that maps the given point on the u-axis to the desired point [image: there is no content] on the same hyperboloid.



In conclusion, each triple [image: there is no content] of the uncertainty region can be obtained from a suitable pure state. Thus, mixed states do not give rise to candidates for minima different from those associated with pure states.




4.2.3. All Moments Arise as Convex Combinations of Two Pure States


Consider a state [image: there is no content] giving rise to the moment vector [image: there is no content]inside the uncertainty region. It is possible to identify infinitely many pairs of Gaussian states on the boundary such that their mixture reproduces the given triple [image: there is no content].



On the level of moments, it is geometrically obvious that any moment triple [image: there is no content] can be reached as a convex combination of two points located on the boundary (cf. Figure 1). It is sufficient to consider states with vanishing covariance, [image: there is no content]. This choice is equivalent to selecting a particular two-dimensional plane in the space of moments that passes through the origin and the given moment triple [image: there is no content] (cf. Section 4.1). Picking any point [image: there is no content] “space-like” relative to [image: there is no content] and located on the hyperboloid, the pair determines a line intersecting the boundary in a unique point [image: there is no content]. Then, the desired point [image: there is no content] must lie on the line segment [image: there is no content], [image: there is no content], connecting the points [image: there is no content] and [image: there is no content]; it will pass through the point [image: there is no content] if


t0=uξ−uφuψ−uφ≡vξ−vφvψ−vφ∈[0,1]



(86)







When writing the line segment in the form [image: there is no content], it becomes obvious that the reasoning valid in the space of moments extends to quantum states. In other words, the mixture


[image: there is no content]



(87)




of the rank-1 projectors P^ψ=|ψ⟩⟨ψ| and P^φ=|φ⟩⟨φ| onto Gaussian states on the boundary defines a mixed quantum state with the desired moment triple [image: there is no content]. Clearly, continuously many other convex combinations of pure states exist that lead to the same moment triple.



The relationships between quantum states and points inside the uncertainty region is, of course, many-to-one. For example, the state [image: there is no content] with moment vector [image: there is no content], i.e., the first excited state of a harmonic oscillator with unit mass and frequency, being a pure state, cannot be written as a mixture of two Gaussian states. Nevertheless, suitable mixtures of Gaussian states will produce its moment vector [image: there is no content]. The only moment vectors [image: there is no content] that cannot be obtained from mixtures are those on the boundary of the uncertainty region. Here, the relationship between states and moment vectors is one-to-one, in agreement with the fact that these Gaussian states are determined uniquely by their covariance matrix [image: there is no content].






5. Conclusions


We have presented a method to systematically determine lower bounds of uncertainty functionals, defined in terms of second moments of quantum systems with two or more continuous variables. In analogy to the one-dimensional case discussed in [13], we find that the states which extremize an uncertainty functional of N degrees of freedom must satisfy a (non-standard) eigenvalue equation that is quadratic in the [image: there is no content] position and momentum operators. If the quadratic form associated with this operator is positive (or negative) definite, Williamson’s theorem ensures that it can be diagonalised by a symplectic transformation. In general, the matrix describing the quadratic form depends on the unknown state suggesting to solve it in a self-consistent way. The solutions of the resulting consistency conditions determine the set of states that minimise a given functional. We also introduced the [image: there is no content]-dimensional uncertainty region for a system with N continuous variables. We show that this region is a convex subset of the space of second moments, and the points located on the boundary correspond to Gaussian states with minimal uncertainty.



Applying this method to specific functionals associated with quantum systems described by two continuous variables, we both re-derived existing uncertainty relations and previously unknown ones. We are not aware of other methods to obtain these inequalities.



One of the new inequalities generalizes an existing inequality that is capable of detecting entanglement in states of bi-partite particle systems. This example hints at the possibility to systematically construct inequalities that can be used for entanglement detection: take an arbitrary number of EPR-type operators that pairwise commute, and define a monotonically increasing function of their variances that is finite at the origin. Typically, the lower bound given by the value of the functional at the origin will be achieved by an entangled state, and it will be smaller than the value of the functional, which it can take in any separable state. This bound can be obtained by solving the consistency conditions (39) for product states as described in Section 3.1. Clearly, a violation of the pure-state bound will detect the presence of an entangled state. The details of this construction will be left to a future publication.
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