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Abstract:



The purpose of this paper is to present a new approach to study the existence of fixed points for multivalued F-contraction in the setting of modular metric spaces. In establishing this connection, we introduce the notion of multivalued F-contraction and prove corresponding fixed point theorems in complete modular metric space with some specific assumption on the modular. Then we apply our results to establish the existence of solutions for a certain type of non-linear integral equations.
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1. Introduction


The Banach contraction principle [1] is one of the most important analytical results and considered as the main source of metric fixed point theory. It is the most widely applied fixed point result in many branches of mathematics. This result has been generalized in many different directions. Subsequently, in 2012, Wordowski [2] introduced the concept of F-contraction which generalized the Banach contraction principal in many ways. Further, Sgroi et al. [3] obtained a multivalued version of Wordowski’s result.



On other hand, Chistyakov [4] introduced the concept of modular metric spaces and gave some fundamental results on this topic. The fixed point property in this space has been defined and investigated by many authors [5,6,7,8,9]. It is important to note that in the classical Banach contraction, the contractive condition of the mapping implies that any orbit is bounded (see [10]). In case of modular metric space, due to failure of triangle inequality, it is not always true that the contractive condition of the mapping implies the boundedness of the orbit. Therefore, it is very important to handle this obstacle when dealing with a fixed point in modular metric space. Keeping the above facts in mind, in this paper, we define multivalued F-contraction in the setting of modular metric spaces with specific modular situations. Our result is a partial extension of Nadler [11], Wardowski [2] and Sgroi [3] to modular metric spaces. We also give an application of our main results to establish the existence of the solution of a non-linear integral equation.




2. Preliminaries


Throughout the article N,R+ and [image: there is no content] will denote the set of natural numbers, positive real numbers and real numbers respectively.



Let X be a nonempty set. Throughout this paper, for a function [image: there is no content] we write


[image: there is no content]








for all [image: there is no content] and [image: there is no content]



Definition 1. 

[4,5] Let X be a nonempty set. A function [image: there is no content] is said to be a metric modular on [image: there is no content] it satisfies, for all [image: there is no content] the following conditions:

	(i)

	
[image: there is no content] for all [image: there is no content] if and only if [image: there is no content];




	(ii)

	
[image: there is no content] for all [image: there is no content];




	(iii)

	
[image: there is no content] for all [image: there is no content].











If instead of [image: there is no content] we have only the condition [image: there is no content]


wλ(x,x)=0forallλ>0,x∈X








then w is said to be a pseudomodular (metric) on [image: there is no content] A modular metric w on X is said to be regular if the following weaker version of [image: there is no content] is satisfied:


[image: there is no content]











This condition play a significant role to insure the existence of fixed point for contractive type mapping in the setting of modular metric.



Example 2. 

Let [image: there is no content] and w is defined by [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content] it is easy to verify that w is regular but not metric modular on X.





Finally, w is said to be convex if, for [image: there is no content] and [image: there is no content] it satisfies the inequality


[image: there is no content]











Note that for a metric pseudomodular w on a set [image: there is no content] and any [image: there is no content] the function [image: there is no content] is nonincreasing on [image: there is no content]. Indeed, if [image: there is no content] then


[image: there is no content]











Definition 3. 

[4,5] Let w be a pseudomodular on [image: there is no content] Fix [image: there is no content] The set


Xw=Xw(x0)={x∈X:wλ(x,x0)⟶0asλ⟶∞}








is said to be modular spaces (around [image: there is no content]).





Definition 4. 

[5] Let [image: there is no content] be a modular metric space.

	(i)

	
The sequence [image: there is no content] in [image: there is no content] is said to be w-convergent to [image: there is no content] if and only if [image: there is no content] as [image: there is no content].




	(ii)

	
The sequence [image: there is no content] in [image: there is no content] is said to be w-Cauchy if [image: there is no content] as [image: there is no content].




	(iii)

	
A subset D of [image: there is no content] is said to be w-complete if any w-Cauchy sequence in D is a convergent sequence and its limit is in D.




	(iv)

	
A subset D of [image: there is no content] is said to be w-closed if the w-limit of a w-convergent sequence of D always belongs to [image: there is no content]




	(v)

	
A subset D of [image: there is no content] is said to be w-bounded if for some [image: there is no content] we have


[image: there is no content]












	(vi)

	
A subset D of [image: there is no content] is said to be w-compact if for any [image: there is no content] in D there exists a subset sequence [image: there is no content] and [image: there is no content] such that [image: there is no content]











In general, if [image: there is no content] for some [image: there is no content] then we may not have [image: there is no content] for all [image: there is no content] Therefore, as is done in modular function spaces, we will say that w satisfies the [image: there is no content]-condition (see page 4 in [5] ) if this the case, i.e., [image: there is no content] for some [image: there is no content] implies [image: there is no content] for all [image: there is no content].



The motivation of the following definition can easily be predicted from the last step of proof of Cauchy sequence in Theorems 13 and 15 (given below).



Definition 5. 

[12] Let [image: there is no content] be a modular metric space and [image: there is no content] be sequence in [image: there is no content] We will say that w satisfies the [image: there is no content]-condition if this the case, i.e., [image: there is no content] for (m,n∈N,m>n) implies limm,n⟶∞wλ(xn,xm)=0 for some [image: there is no content]





Let [image: there is no content] is nonempty w-closed and w-bounded subsets of [image: there is no content][image: there is no content] is nonempty w-compact subsets of [image: there is no content] and the Hausdorff metric modular defined on [image: there is no content] by


[image: there is no content]








where [image: there is no content]



Lemma 6. 

[5] Let [image: there is no content] be a modular metric space. Assume that w satisfies [image: there is no content]-condition. Let D be a nonempty subset of [image: there is no content] Let [image: there is no content] be a sequence of sets in [image: there is no content] and suppose [image: there is no content] where [image: there is no content] Then if [image: there is no content] and [image: there is no content] it follows that [image: there is no content]






3. Fixed Point Results for Multivalued F-Contractions


Definition 7. 

[2] Let [image: there is no content] satisfying the following condition:

	[image: there is no content])

	
F is strictly increasing on [image: there is no content]




	[image: there is no content])

	
for every sequence [image: there is no content] in [image: there is no content] we have [image: there is no content] if and only if [image: there is no content]




	[image: there is no content]

	
there exists a number [image: there is no content] such that [image: there is no content]











We denote by [image: there is no content] the family of all function that satisfy the conditions (F1)–(F3).



Example 8. 

The following functions [image: there is no content] belong to [image: there is no content]:

	(i)

	
[image: there is no content] with [image: there is no content]




	(ii)

	
[image: there is no content]











Definition 9. 

Let [image: there is no content] be a modular metric space. Let D be non empty bounded subset of X. A multivalued mapping [image: there is no content] is called F-contraction on X if [image: there is no content] and [image: there is no content], for all [image: there is no content] with [image: there is no content] there exists [image: there is no content] such that [image: there is no content] the following inequality holds:


[image: there is no content]



(3.1)




where [image: there is no content]





Definition 10. 

Let [image: there is no content] be a modular metric space. Let D be a nonempty subset of [image: there is no content]. A multivalued mapping [image: there is no content] is said to be F-contraction of Hardy-Rogers-type if [image: there is no content] and [image: there is no content] such that,


[image: there is no content]



(3.2)




for all [image: there is no content] with [image: there is no content] where α,β,γ,L≥0,α+β+γ=1 and [image: there is no content]





Example 11. 

Let [image: there is no content] be given by [image: there is no content] For each multivalued mapping [image: there is no content] satisfying Equation (3.1) we have


w1(y,z)≤e−τM(x,y),for allx,y∈D,y≠z













It is clear that for [image: there is no content] such that [image: there is no content] the previous inequality also holds.



Example 12. 

Let [image: there is no content] be given by [image: there is no content] It is clear that F satisfies [image: there is no content] for any [image: there is no content] Each mapping [image: there is no content] satisfying Equation (3.2) is an F-contraction such that


Hw(Tx,Ty)≤e−τw1(x,y),for allx,y∈D,Tx≠Ty













It is clear that for [image: there is no content] such that [image: there is no content] the previous inequality also holds and hence T is a contraction.



Theorem 13. 

Let [image: there is no content] be a modular metric space. Assume that w is a regular modular satisfying [image: there is no content]-condition and [image: there is no content]-condition. Let D be a nonempty w-bounded and w-complete subset of [image: there is no content] Let [image: there is no content] be a continuous F-contraction. Then T has a fixed point.





Proof. 

Let [image: there is no content] be an arbitrary point of D and choose [image: there is no content]. If [image: there is no content] then [image: there is no content] is a fixed point of T and the proof is completed. Suppose that [image: there is no content] Since T is an F-contraction, then there exists [image: there is no content] such that


τ+F(w1(x1,x2)≤F(M(x0,x1))andx1≠x2













Therefore, we have that there exists [image: there is no content] such that


τ+F(w1(x2,x3)≤F(M(x1,x2))andx2≠x3











Repeating this process, we find that there exists a sequence [image: there is no content] with initial point [image: there is no content] such that xn+1∈Txn,xn+1≠xn and


τ+F(w1(xn,xn+1))≤F(M(xn−1,xn))foralln∈N











This implies


F(w1(xn,xn+1))<F(M(xn−1,xn))foralln∈N











Consequently,


w1(xn,xn+1)<M(xn−1,xn)(SinceFisstrictlyincreasing.)=max{w1(xn−1,xn),w1(xn−1,Txn−1),w1(xn,Txn),w1(xn,Txn−1)}=max{w1(xn−1,xn),w1(xn,Txn)}≤max{w1(xn−1,xn),w1(xn,xn+1)}











Obviously, if [image: there is no content] we have a contradiction and so [image: there is no content]



Consequently, By [image: there is no content] we have


τ+F(w1(xn,xn+1)≤F(w1(xn−1,xn))foralln∈N



(3.3)







By Equation (3.3), we have


F(w1(xn,xn+1))≤F(w1(xn−1,xn))−τ≤⋯≤F(w1(x0,x1))−nτ,foralln∈N



(3.4)




and hence [image: there is no content] By [image: there is no content] we have that [image: there is no content] as [image: there is no content] Now, let [image: there is no content] such that [image: there is no content] By Equation (3.4), the following holds for all [image: there is no content]


[image: there is no content]



(3.5)







Taking [image: there is no content] in Equation (3.5), we deduce


[image: there is no content]











Then there exists [image: there is no content] such that [image: there is no content] for all [image: there is no content] that is,


w1(xn,xn+1)≤1n1/kforalln≥n1











Now, For all [image: there is no content] with [image: there is no content] we have


wm−n(xn,xm)≤w1(xn,xn+1)+w1(xn+1,xn+2)+⋯+w1(xm−1,xm)≤1n1/k+1(n+1)1/k+⋯+1m1/k<Σi=n∞1i1/k











Since the series [image: there is no content] is convergent, this implies


[image: there is no content]











Since w satisfies [image: there is no content]-condition. Hence, we have


[image: there is no content]











This shows that [image: there is no content] is a w-Cauchy sequence. D is w-complete, there exists [image: there is no content] such that [image: there is no content] as [image: there is no content] Now, we prove that v is a fixed point of T.



Let [image: there is no content] be a sequence in CB(D). Since T is continuous then we have [image: there is no content] so [image: there is no content], where [image: there is no content] Then if [image: there is no content] and [image: there is no content] it follows from Lemma 6 that [image: there is no content] Hence v is a fixed point of T. ☐



Example 14. 

Let [image: there is no content] and w1(x,y)=1λ|x−y|,x,y∈D. Then [image: there is no content] is a w-complete modular metric space. Define the mapping [image: there is no content] by the:


[image: there is no content]













Then, as shown in Example 3 of [13], T is a multivalued F-contraction with respect to [image: there is no content] and [image: there is no content] Therefore, Theorem 13 are satisfied and so T has a fixed point in [image: there is no content]



On the other hand, since


[image: there is no content]








then T is not multivalued contraction.



Next, we give a fixed point result for multivalued F-contractions of Hardy-Rogers-type in modular metric space.



Theorem 15. 

Let [image: there is no content] be a modular metric space. Assume that w is a regular modular satisfying [image: there is no content]-condition and [image: there is no content]-condition. Let D be a nonempty w-bounded and w-complete subset of [image: there is no content] and [image: there is no content] be an F-contractions of Hardy-Rogers-type. Then T has a fixed point.





Proof. 

Let [image: there is no content] be an arbitrary point in D. As [image: there is no content] is nonempty for all [image: there is no content], we can choose [image: there is no content] If [image: there is no content], then [image: there is no content] is a fixed point of T and so the proof is complete. Assume [image: there is no content] Then, since [image: there is no content] is closed, [image: there is no content] On the other hand, from [image: there is no content] and (F1)


[image: there is no content]













From Equation (3.2), we can write that


F(w(x1,Tx1)≤F(Hw(Tx0,Tx1))≤F(αw1(x0,x1)+βw1(x0,Tx0)+γw1(x1,Tx1)+Lw1(x1,Tx0))−2τ











Since [image: there is no content] is compact, there exists [image: there is no content] such that


[image: there is no content]











Then,


F(w1(x1,x2))=F(w(x1,Tx1)≤F(Hw(Tx0,Tx1))≤F(αw1(x0,x1)+βw1(x0,Tx0)+γw1(x1,Tx1)+Lw1(x1,Tx0))−2τ











Thus,


F(w1(x1,x2))≤F(Hw(Tx0,Tx1))≤F(αw1(x0,x1)+βw1(x0,Tx0)+γw1(x1,Tx1)+Lw1(x1,Tx0))−2τ≤F(αw1(x0,x1)+βw1(x0,x1)+γw1(x1,x2))−2τ≤F((α+β)w1(x0,x1)+γw1(x1,x2))











Thus,


[image: there is no content]











Since F is strictly increasing, we deduce that


[image: there is no content]








and hence


[image: there is no content]











From [image: there is no content] and [image: there is no content] we deduce that [image: there is no content] and so


[image: there is no content]











Consequently,


[image: there is no content]











Continuing in this manner, we can define a sequence [image: there is no content] such that [image: there is no content] and


τ+F(w1(xn+1,xn+2))≤F(w1(xn,xn+1))foralln∈N∪{0}











Proceeding as in the proof of Theorem 13, we obtain that [image: there is no content] is a w-Cauchy sequence. Since D is a w-complete modular metric space, there exists [image: there is no content] such that [image: there is no content] as [image: there is no content] Now, we prove that v is a fixed point of [image: there is no content] If there exists an increasing sequence [image: there is no content] such that [image: there is no content] for all [image: there is no content] since [image: there is no content] is w-closed and [image: there is no content] we have [image: there is no content] and the proof is completed. So we can assume that there exists [image: there is no content] such that [image: there is no content] for all [image: there is no content] This implies that [image: there is no content] for all [image: there is no content] Now, using Equation (3.2) with [image: there is no content] and [image: there is no content] we obtain


2τ+F(Hw(Txn,Tv))≤F(αw1(xn,v)+βw1(xn,Txn)+γw1(v,Tv)+Lw1(v,Txn))








which implies


2τ+F(w1(xn+1,Tv))≤2τ+F(Hw(Txn,Tv))≤F(αw1(xn,v)+βw1(xn,Txn)+γw1(v,Tv)+Lw1(v,Txn))≤F(αw1(xn,v)+βw1(xn,xn+1)+γw1(v,Tv)+Lw1(v,xn+1))











Since F is strictly increasing, we have


w1(xn+1,Tv)<αw1(xn,v)+βw1(xn,xn+1)+γw1(v,Tv)+Lw1(v,xn+1).











Letting [image: there is no content] in the previous inequality, as [image: there is no content] we have [image: there is no content] which implies [image: there is no content] Since [image: there is no content] is w-closed, we obtain that [image: there is no content] that is, v is a fixed point of T. ☐



Remark 16. 

If we consider [image: there is no content] in Theorem 15 i.e., we are relaxing compactness of co-domain of mapping T but then we have to assume T be continuous. In this case, we can write proof as Theorem 15 upto Cauchy. Further, by the completeness of D, we have [image: there is no content] such that [image: there is no content] Since T is continuous, we have [image: there is no content] and as xn+1∈Txnwithxn+1→v then by Lemma 6 we obtain [image: there is no content] Hence v is fixed point of [image: there is no content]






4. Application to Integral Equations


Integral equations arise in many scientific and engineering problems. A large class of initial and boundary value problem can be converted to Volterra or Fredholm integral equation (see for instant [14]).



In this section we consider the following integral equation:


u(t)=βAu(t)+γBu(t)+g(t),t∈[0,T],T>0



(4.1)




where


Au(t)=∫0tK1t,s,u(s)ds,Bu(t)=∫0tK2t,s,u(s)dsandβ,γ≥0











Let [image: there is no content] be the space of all continuous functions on [image: there is no content] where [image: there is no content] with the norm [image: there is no content] and the metric [image: there is no content] for all [image: there is no content] For [image: there is no content] and [image: there is no content] we denote by [image: there is no content] the closed ball concerned at u and of radius [image: there is no content]



Theorem 17. 

Let [image: there is no content] be a fixed real number and the following conditions are satisfied:

	(i) 

	
[image: there is no content] and [image: there is no content] are continuous;




	(ii) 

	
there exists [image: there is no content] such that [image: there is no content]




	(iii) 

	
if [image: there is no content], [image: there is no content] then


|Kit,s,u(s)−Kit,s,v(s)|≤Li(t,s,u(s),v(s))|u(s)−v(s)|1+τ|u(s)−v(s)|λ2,i=1,2








for all [image: there is no content] and for some continuous functions [image: there is no content]






such that Lit,s,u(s),v(s)(β+γ)T≤1,i=1,2 for all [image: there is no content], then the integral Equation (4.1) admit a solution.





Proof. 

Note that [image: there is no content] is a complete modular metric space. Define [image: there is no content] by


[image: there is no content]













Since [image: there is no content] then by the definition of T and (iii) we have


wλ(Tu,Tv)=1λsupt∈I|βAu(t)+γBu(t)−βAv(t)−γBv(t)|=1λsupt∈I|β∫0t[K1t,s,u(s)−K1t,s,v(s)]ds+γ∫0t[K2t,s,u(s)−K2t,s,v(s)]ds|≤1λsupt∈I{β∫0t|K1t,s,u(s)−K1t,s,v(s)|ds+γ∫0t|K2t,s,u(s)−K2t,s,v(s)|ds}≤1λsupt∈I{β∫0t|L1(t,s,u(s),v(s))|u(s)−v(s)|1+τ|u(s)−v(s)|λ2ds+γ∫0t|L2(t,s,u(s),v(s))|u(s)−v(s)|1+τ|u(s)−v(s)|λ2ds}≤|u(s)−v(s)|λ11+τ|u(s)−v(s)|λ2supt∈Iβ∫0t1(β+γ)Tds+γ∫0t1(β+γ)Tds≤wλ(u,v)1+τwλ(u,v)2supt∈ItT











This implies


[image: there is no content]








☐



Now, we observe that the function [image: there is no content] defined by [image: there is no content] is in [image: there is no content] and so we deduce that the mapping T satisfies all condition of Theorem 13 with M(u,v)=wλ(u,v)forλ=1. Hence there exists a solution of the integral Equation (4.1).



Remark 18. 

Our above Theorem 4.1 is an abstract application of F- contraction mapping which can not be covered by Banach contraction principle.









Acknowledgments


The authors thank Editor-in-Chief and Referee(s) for their valuable comments and suggestions, which were very useful to improve the paper significantly. The first author thanks for the support of Petchra Pra Jom Klao Doctoral Scholarship Academic. This work was completed while the second author (Dhananjay Gopal) was visiting Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand, during 15 October–8 November 2015. He thanks Professor Poom Kumam and the University for their hospitality and support.




Author Contributions


All authors read and approved the final manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux Ã©quations intÃ©grales. Fund. Math. 1922, 3, 133–181.

	2. 
Wardowski, D. Fixed points of new type of contractive mappings in complete metric space. Fixed Point Theory Appl. 2012, 94. [CrossRef]

	3. 
Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259–1268. [CrossRef]

	4. 
Chistyakov, V.V. Modular metric spaces I basic concepts. Nonlinear Anal. 2010, 72, 1–14. [CrossRef]

	5. 
Abdou, A.A.N.; Khamsi, M.A. Fixed points of multivalued contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2014, 2014, 249. [CrossRef]

	6. 
Abdo, A.A.N.; Khamsi, M.A. Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013, 2013, 163. [CrossRef]

	7. 
Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011, 93. [CrossRef]

	8. 
Alfuraidan, M.R. Fixed points of multivalued contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2015, 2015, 46. [CrossRef]

	9. 
Chaipunya, P.; Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed-point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 2012, 503504.

	10. 
Kadelburg, Z.; Radenovic, S. Remarks on some recent M. Borcut’s results in partially ordered metric spaces. Int. J. Nonlinear Anal. Appl. 2015, 6, 96–104.

	11. 
Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [CrossRef]

	12. 
Padcharoen, A.; Kumam, P.; Gopal, D.; Chaipunya, P. Fixed points and periodic point results for α-type F-contractions in modular metric spaces. Fixed Point Theory Appl. 2016, 39. [CrossRef]

	13. 
Acar, O.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces. Bull. Iranian Math. Soc. 2014, 40, 1469–1478.

	14. 
Moradi, S.; Mohammadi Anjedani, M.; Analoei, E. On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation. Int. J. Nonlinear Anal. Appl. 2015, 6, 62–68.





© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  mathematics-04-00051


  
    		
      mathematics-04-00051
    


  




  





