Next Article in Journal
Quantum Incompatibility in Collective Measurements
Previous Article in Journal
Role of Measurement Incompatibility and Uncertainty in Determining Nonlocality
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solution for Rational Systems of Difference Equations of Order Three

by
Mohamed M. El-Dessoky
1,2
1
Mathematics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Mathematics 2016, 4(3), 53; https://doi.org/10.3390/math4030053
Submission received: 24 April 2016 / Revised: 23 August 2016 / Accepted: 24 August 2016 / Published: 3 September 2016

Abstract

:
In this paper, we consider the solution and periodicity of the following systems of difference equations: x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 ± 1 ± x n 2 y n 1 x n , with initial conditions x 2 , x 1 , x 0 , y 2 , y 1 , and y 0 are nonzero real numbers.

1. Introduction

This paper is devoted to study the form of the solution and periodicity of the following third order systems of rational difference equations
x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 ± 1 ± x n 2 y n 1 x n
with initial conditions x 2 , x 1 , x 0 , y 2 , y 1 , and y 0 are nonzero real numbers.
Recently, there has been great interest in studying difference equation systems. One of the reasons for this is the necessity for some techniques that can be used in the investigation of equations arising in mathematical models describing real life situations in population biology, economics, probability theory, genetics, psychology, etc. There are many papers related to difference equations systems; for example, The global asymptotic behavior of the positive solutions of the rational difference system
x n + 1 = 1 + x n y n m , y n + 1 = 1 + y n x n m
has been studied by Camouzis et al. in [1].
The periodicity of the positive solutions of the rational difference equations systems
x n + 1 = 1 y n , y n + 1 = y n x n 1 y n 1
has been obtained by Cinar in [2].
Elabbasy et al. [3] studied the solutions of particular cases of the following general system of difference equations:
x n + 1 = a 1 + a 2 y n a 3 z n + a 4 x n 1 z n , y n + 1 = b 1 z n 1 + b 2 z n b 3 x n y n + b 4 x n y n 1 , z n + 1 = c 1 z n 1 + c 2 z n c 3 x n 1 y n 1 + c 4 x n 1 y n + c 5 x n y n
Elsayed [4] obtained the solutions of the following system of the difference equations:
x n + 1 = 1 y n k , y n + 1 = y n k x n y n
Grove et al. [5] studied existence and behavior of solutions of the rational system
x n + 1 = a x n + b y n , y n + 1 = c x n + d y n
The behavior of positive solutions of the system,
x n + 1 = x n 1 1 + x n 1 y n , y n + 1 = y n 1 1 + y n 1 x n
has been studied by Kurbanli et al. [6].
In addition, Kurbanli [7] investigated the behavior of the solutions of the difference equation system,
x n + 1 = x n 1 x n 1 y n 1 , y n + 1 = y n 1 y n 1 x n 1 , z n + 1 = 1 z n y n
In [8], Ozban studied the positive solutions of the system of rational difference equations
x n + 1 = a y n 3 , y n + 1 = b y n 3 x n q y n q
In [9], Papaschinopoulos and Schinas studied the oscillatory behavior, the boundedness of the solutions, and the global asymptotic stability of the positive equilibrium of the system of nonlinear difference equations
x n + 1 = A + y n x n p , y n + 1 = A + x n y n q
Schinas [10] studied some invariants for difference equations and systems of difference equations of rational form.
El-Dessoky et al. [11] obtained the solution of the following system of difference equations
x n + 1 = x n y n 1 ± x n ± y n 2 , y n + 1 = x n 1 y n ± y n ± x n 2
Touafek et al. [12] investigated the periodic nature and gave the form of the solutions of the following systems of rational difference equations
x n + 1 = x n 3 ± 1 ± x n 3 y n 1 , y n + 1 = y n 3 ± 1 ± y n 3 x n 1
In [13,14], Zhang et al. studied the boundedness, the persistence, and the global asymptotic stability of the positive solutions of the systems of difference equations:
x n = A + 1 y n p , y n = A + y n 1 x n r y n s
and
x n + = A + y n m x n , y n + 1 = A + x n m y n
In [15], El-Dessoky obtained the form of the solutions and the periodicity character of some systems of rational difference equations:
x n + 1 = z n 3 a 1 + b 1 z n y n 1 x n 2 z n 3 , y n + 1 = x n 3 a 2 + b 2 x n z n 1 y n 2 x n 3 , z n + 1 = y n 3 a 3 + b 3 y n x n 1 z n 2 y n 3
Alzahrani et al. [16] obtained the form of the solution and the qualitative properties of the a rational difference equations of order two:
x n + 1 = y n y n 1 x n ± 1 ± y n y n 1 , y n + 1 = x n x n 1 y n ± 1 ± x n x n 1
For similar work to the difference equations and nonlinear systems of rational difference equations investigated herein, see references [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43].

2. The System: x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n

In this section, we investigate the solutions of the system of two difference equations
x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n
where n N 0 , and the initial conditions are arbitrary nonzero real numbers with y 2 x 1 y 0 1 , 1 2 and x 2 y 1 x 0 ± 1 .
The following theorem is devoted to the form of the solutions of system (1).
Theorem 1. 
Assume that { x n , y n } are solutions of system (1). Then, for n = 0 , 1 , 2 , . . . , we see that all solutions of system (1) are periodic with period twelve and
x 12 n 2 = x 2 , x 12 n 1 = x 1 , x 12 n = x 0 , x 12 n + 1 = y 2 ( 1 + y 2 x 1 y 0 ) , x 12 n + 2 = y 1 ( 1 + x 2 y 1 x 0 ) , x 12 n + 3 = y 0 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , x 12 n + 4 = x 2 ( 1 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , x 12 n + 5 = x 1 ( 1 + 2 y 2 x 1 y 0 ) , x 12 n + 6 = x 0 ( 1 + x 2 y 1 x 0 ) ( 1 x 2 y 1 x 0 ) , x 12 n + 7 = y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , x 12 n + 8 = y 1 ( 1 x 2 y 1 x 0 ) , x 12 n + 9 = y 0 ( 1 + y 2 x 1 y 0 ) ,
and
y 12 n 2 = y 2 , y 12 n 1 = y 1 , y 12 n = y 0 , y 12 n + 1 = x 2 ( 1 + x 2 y 1 x 0 ) , y 12 n + 2 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) , y 12 n + 3 = x 0 ( 1 x 2 y 1 x 0 ) , y 12 n + 4 = y 2 , y 12 n + 5 = y 1 , y 12 n + 6 = y 0 , y 12 n + 7 = x 2 ( 1 + x 2 y 1 x 0 ) , y 12 n + 8 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) , y 12 n + 9 = x 0 ( 1 x 2 y 1 x 0 ) .
Proof. 
For n = 0 , the result holds. Now suppose that n > 0 and that our assumption holds for n 1 . That is,
x 12 n 14 = x 2 , x 12 n 13 = x 1 , x 12 n 12 = x 0 , x 12 n 11 = y 2 ( 1 + y 2 x 1 y 0 ) , x 12 n 10 = y 1 ( 1 + x 2 y 1 x 0 ) , x 12 n 9 = y 0 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , 12 n 8 = x 2 ( 1 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , x 12 n 7 = x 1 ( 1 + 2 y 2 x 1 y 0 ) , x 12 n 6 = x 0 ( 1 + x 2 y 1 x 0 ) ( 1 x 2 y 1 x 0 ) , x 12 n 5 = y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , x 12 n 4 = y 1 ( 1 x 2 y 1 x 0 ) , x 12 n 3 = y 0 ( 1 + y 2 x 1 y 0 ) ,
and
y 12 n 14 = y 2 , y 12 n 13 = y 1 , y 12 n 12 = y 0 , y 12 n 11 = x 2 ( 1 + x 2 y 1 x 0 ) , y 12 n 10 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) , y 12 n 9 = x 0 ( 1 x 2 y 1 x 0 ) , y 12 n 8 = y 2 ,
y 12 n 7 = y 1 , y 12 n 6 = y 0 , y 12 n 5 = x 2 ( 1 + x 2 y 1 x 0 ) , y 12 n 4 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) , y 12 n 3 = x 0 ( 1 x 2 y 1 x 0 ) .
Now it follows from Equation (1) that
x 12 n 2 = y 12 n 5 1 + y 12 n 5 x 12 n 4 y 12 n 3 = x 2 ( 1 + x 2 y 1 x 0 ) 1 + x 2 ( 1 + x 2 y 1 x 0 ) y 1 ( 1 x 2 y 1 x 0 ) x 0 ( 1 x 2 y 1 x 0 ) = x 2 ( 1 + x 2 y 1 x 0 ) 1 + x 2 y 1 x 0 ( 1 + x 2 y 1 x 0 ) = x 2 , y 12 n 2 = x 12 n 5 1 + x 12 n 5 y 12 n 4 x 12 n 3 = y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) 1 + y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) y 0 ( 1 + y 2 x 1 y 0 ) = y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) 1 + y 2 x 1 y 0 ( 1 + y 2 x 1 y 0 ) = y 2 ( 1 + 2 y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) 1 + y 2 x 1 y 0 ( 1 + y 2 x 1 y 0 ) = y 2 ( 1 + 2 y 2 x 1 y 0 ) 1 + y 2 x 1 y 0 + y 2 x 1 y 0 = y 2 ,
We also see that
x 12 n 1 = y 12 n 4 1 + y 12 n 4 x 12 n 3 y 12 n 2 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) 1 + x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) y 0 ( 1 + y 2 x 1 y 0 ) y 2 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 + 2 y 2 x 1 y 0 ) 1 + y 2 x 1 y 0 ( 1 + 2 y 2 x 1 y 0 ) = x 1 ( 1 + y 2 x 1 y 0 ) 1 2 y 2 x 1 y 0 + y 2 x 1 y 0 = x 1 , y 12 n 1 = x 12 n 4 1 + x 12 n 4 y 12 n 3 x 12 n 2 = y 1 ( 1 x 2 y 1 x 0 ) 1 + y 1 ( 1 x 2 y 1 x 0 ) x 0 ( 1 x 2 y 1 x 0 ) x 2 = y 1 ( 1 x 2 y 1 x 0 ) 1 x 2 y 1 x 0 = y 1 .
We can also prove the other relation. The proof is complete. ☐
Example 1. 
See Figure 1 when we put the initial conditions x 2 = 5 , x 1 = 0 . 4 , x 0 = 0 . 13 , y 2 = 0 . 3 , y 1 = 0 . 9 , and y 0 = 2 for the difference system (1).

3. The System: x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n

In this section, we obtain the form of the solutions of the system of two difference equations
x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n
where n N 0 and the initial conditions are arbitrary non zero real numbers with y 2 x 1 y 0 ± 1 and x 2 y 1 x 0 1 , 1 2 .
The following theorem is devoted to the expression of the form of the solutions of System (2).
Theorem 2. 
Suppose that x n , y n n = 2 + are solutions of System (2). Then, { x n } n = 2 + and y n n = 2 + and are periodic with period twelve and for n = 0 , 1 , 2 , . . . ,
x 12 n 2 = x 2 , x 12 n 1 = x 1 , x 12 n = x 0 , x 12 n + 1 = y 2 ( 1 + y 2 x 1 y 0 ) , x 12 n + 2 = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) , x 12 n + 3 = y 0 ( 1 + y 2 x 1 y 0 ) , x 12 n + 4 = x 2 , x 12 n + 5 = x 1 , x 12 n + 6 = x 0 , x 12 n + 7 = y 2 ( 1 + y 2 x 1 y 0 ) , x 12 n + 8 = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) , x 12 n + 9 = y 0 ( 1 + y 2 x 1 y 0 ) ,
and
y 12 n 2 = y 2 , y 12 n 1 = y 1 , y 12 n = y 0 , y 12 n + 1 = x 2 ( 1 x 2 y 1 x 0 ) , y 12 n + 2 = x 1 ( 1 + y 2 x 1 y 0 ) , y 12 n + 3 = x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , y 12 n + 4 = y 2 ( 1 + y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , y 12 n + 5 = y 1 ( 1 + 2 x 2 y 1 x 0 ) , y 12 n + 6 = y 0 ( 1 + y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , y 12 n + 7 = x 2 ( 1 + 2 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , y 12 n + 8 = x 1 ( 1 + y 2 x 1 y 0 ) , y 12 n + 9 = x 0 ( 1 x 2 y 1 x 0 ) .
Or, equivalently,
{ x n } n = 2 + = x 2 , x 1 , x 0 , y 2 ( 1 + y 2 x 1 y 0 ) , y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) , y 0 ( 1 + y 2 x 1 y 0 ) , x 2 , x 1 , x 0 , y 2 ( 1 + y 2 x 1 y 0 ) , y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) , y 0 ( 1 + y 2 x 1 y 0 ) , x 2 , x 1 , x 0 , . . . ,
and
{ y n } n = 2 + = y 2 , y 1 , y 0 , x 2 ( 1 x 2 y 1 x 0 ) , x 1 ( 1 + y 2 x 1 y 0 ) , x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , y 2 ( 1 + y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , y 1 ( 1 + 2 x 2 y 1 x 0 ) , y 0 ( 1 + y 2 x 1 y 0 ) ( 1 + y 2 x 1 y 0 ) , x 2 ( 1 + 2 x 2 y 1 x 0 ) ( 1 + x 2 y 1 x 0 ) , x 1 ( 1 + y 2 x 1 y 0 ) , x 0 ( 1 x 2 y 1 x 0 ) , y 2 , y 1 , y 0 , . . . .
Proof. 
The proof follows the form of the proof of Theorem 1, and so will be omitted. ☐
Example 2. 
We assume the initial conditions x 2 = 0 . 5 , x 1 = 4 , x 0 = 2 . 13 , y 2 = 0 . 3 , y 1 = 9 , and y 0 = 2 for difference system (2); see Figure 2.

4. The System: x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n

In this section, we get the solutions of the system of the difference equations
x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n
where n N 0 , and the initial conditions are arbitrary nonzero real numbers such that x 2 y 1 x 0 1 and y 2 x 1 y 0 1 .
Theorem 3. 
If { x n , y n } are solutions of difference equation system (3), then every solution of system (3) is periodic with period six, and takes the form for n = 0 , 1 , 2 , . . . ,
x 6 n 2 = x 2 , x 6 n 1 = x 1 , x 6 n = x 0 , x 6 n + 1 = y 2 ( 1 + y 2 x 1 y 0 ) , x 6 n + 2 = y 1 ( 1 + x 2 y 1 x 0 ) , x 6 n + 3 = y 0 ( 1 + y 2 x 1 y 0 ) ,
and
y 6 n 2 = y 2 , y 6 n 1 = y 1 , y 6 n = y 0 , y 6 n + 1 = x 2 ( 1 + x 2 y 1 x 0 ) , y 6 n + 2 = x 1 ( 1 + y 2 x 1 y 0 ) , y 6 n + 3 = x 0 ( 1 + x 2 y 1 x 0 ) .
Proof. 
The proof follows the form of the proof of Theorem 1, and so will be omitted. ☐
Example 3. 
We consider an interesting numerical example for difference system (3) with the initial conditions x 2 = 0 . 15 , x 1 = 7 , x 0 = 0 . 3 , y 2 = 0 . 13 , y 1 = 0 . 8 , and y 0 = 2 ; see Figure 3.

5. The System: x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n

In this section, we study the solutions of the following system of difference equations
x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n
where n N 0 , and the initial conditions are arbitrary non-zero real numbers.
Theorem 4. 
Assume that { x n , y n } are solutions of System (4). Then, for n = 0 , 1 , 2 , . . . ,
x 6 n 2 = x 2 i = 0 n 1 ( 1 + ( 6 i ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) , x 6 n 1 = x 1 i = 0 n 1 ( 1 ( 6 i + 1 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 2 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) , x 6 n = x 0 i = 0 n 1 ( 1 + ( 6 i + 2 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) , x 6 n + 1 = y 2 ( 1 + y 2 x 1 y 0 ) i = 0 n 1 ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 7 ) y 2 x 1 y 0 ) , x 6 n + 2 = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) , x 6 n + 3 = y 0 ( 1 2 y 2 x 1 y 0 ) ( 1 + 3 y 2 x 1 y 0 ) i = 0 n 1 ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 8 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 9 ) y 2 x 1 y 0 ) ,
y 6 n 2 = y 2 i = 0 n 1 ( 1 ( 6 i ) y 2 x 1 y 0 ) ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 1 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) , y 6 n 1 = y 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 2 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) , y 6 n = y 0 i = 0 n 1 ( 1 ( 6 i + 2 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) , y 6 n + 1 = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) , y 6 n + 2 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 2 y 2 x 1 y 0 ) i = 0 n 1 ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 7 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 8 ) y 2 x 1 y 0 ) , y 6 n + 3 = x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 3 x 2 y 1 x 0 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) .
where i = 0 1 A i = 1 .
Proof. 
For n = 0 , the result holds. Now, suppose that n > 0 and that our assumption holds for n 1 . that is,
x 6 n 8 = x 2 i = 0 n 2 ( 1 + ( 6 i ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) , x 6 n 7 = x 1 i = 0 n 2 ( 1 ( 6 i + 1 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 2 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) , x 6 n 6 = x 0 i = 0 n 2 ( 1 + ( 6 i + 2 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) , x 6 n 5 = y 2 ( 1 + y 2 x 1 y 0 ) i = 0 n 2 ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 7 ) y 2 x 1 y 0 ) , x 6 n 4 = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) , x 6 n 3 = y 0 ( 1 2 y 2 x 1 y 0 ) ( 1 + 3 y 2 x 1 y 0 ) i = 0 n 2 ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 8 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 9 ) y 2 x 1 y 0 ) , y 6 n 8 = y 2 i = 0 n 2 ( 1 ( 6 i ) y 2 x 1 y 0 ) ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 1 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) , y 6 n 7 = y 1 i = 0 n 2 ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 2 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) , y 6 n 6 = y 0 i = 0 n 2 ( 1 ( 6 i + 2 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 3 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 6 ) y 2 x 1 y 0 ) , y 6 n 5 = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) , y 6 n 4 = x 1 ( 1 + y 2 x 1 y 0 ) ( 1 2 y 2 x 1 y 0 ) i = 0 n 2 ( 1 ( 6 i + 4 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 7 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 5 ) y 2 x 1 y 0 ) ( 1 ( 6 i + 8 ) y 2 x 1 y 0 ) , y 6 n 3 = x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 3 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) .
It follows from Equation (4) that
x 6 n 2 = y 6 n 5 1 + y 6 n 5 x 6 n 4 y 6 n 3 = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 + x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 3 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 + x 0 y 1 x 2 ( 1 3 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 x 2 y 1 x 0 ( 1 + ( 6 n 3 ) x 2 y 1 x 0 ) = x 2 ( 1 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 ( 6 n 3 ) x 2 y 1 x 0 x 2 y 1 x 0 ( 1 + ( 6 n 3 ) x 2 y 1 x 0 ) = x 2 ( 1 + x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 + ( 6 n 2 ) x 2 y 1 x 0 1 + ( 6 n 3 ) x 2 y 1 x 0 = x 2 ( 1 + x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) 1 + ( 6 n 3 ) x 2 y 1 x 0 1 + ( 6 n 2 ) x 2 y 1 x 0 = x 2 i = 0 n 1 ( 1 + ( 6 i ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) .
We also see from Equation (4) that
y 6 n 1 = x 6 n 4 1 x 6 n 4 y 6 n 3 x 6 n 2 = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) x 0 ( 1 + 2 x 2 y 1 x 0 ) ( 1 3 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) x 2 i = 0 n 1 ( 1 + ( 6 i ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) = y 1 ( 1 x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 x 2 x 0 y 1 ( 1 + x 2 y 1 x 0 ) ( 1 + 3 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 6 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 9 ) x 2 y 1 x 0 ) i = 0 n 1 ( 1 + ( 6 i ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 3 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 )
= y 1 ( 1 + x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 + x 2 x 0 y 1 i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) i = 0 n 1 1 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) = y 1 ( 1 + x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 + x 2 x 0 y 1 1 + ( 6 n 2 ) x 2 y 1 x 0 = y 1 ( 1 + x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 + ( 6 n 2 ) x 2 y 1 x 0 + x 2 x 0 y 1 1 + ( 6 n 2 ) x 2 y 1 x 0 = y 1 ( 1 + x 2 y 1 x 0 ) ( 1 + 2 x 2 y 1 x 0 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 7 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 8 ) x 2 y 1 x 0 ) 1 + ( 6 n 2 ) x 2 y 1 x 0 1 + ( 6 n 1 ) x 2 y 1 x 0 = y 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 4 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 2 ) x 2 y 1 x 0 ) ( 1 + ( 6 i + 5 ) x 2 y 1 x 0 ) .
We can prove the other relations similarly. This completes the proof. ☐
Corollary 1. 
If x 2 , x 1 , x 0 , y 2 , y 1 , and y 0 are arbitrary real numbers and let { x n , y n } are solutions of System (4), then the following statements are true:
(i) 
If x 2 = 0 , y 1 0 , x 0 0 , then we have x 6 n 2 = y 6 n + 1 = 0 and x 6 n = x 0 , x 6 n + 2 = y 1 , y 6 n 1 = y 1 , y 6 n + 3 = x 0 .
(ii) 
If x 1 = 0 , y 2 0 , y 0 0 , then we have x 6 n 1 = y 6 n + 2 = 0 and x 6 n + 1 = y 2 , x 6 n + 3 = y 0 , y 6 n 2 = y 2 , y 6 n = y 0 .
(iii) 
If x 0 = 0 , y 1 0 , x 2 0 , then we have x 6 n = y 6 n + 3 = 0 and x 6 n 2 = x 2 , x 6 n + 2 = y 1 , y 6 n 1 = y 1 , y 6 n + 1 = x 2 .
(iv) 
If y 2 = 0 , x 1 0 , y 0 0 , then we have y 6 n 2 = x 6 n + 1 = 0 and x 6 n 1 = x 1 , x 6 n + 3 = y 0 , y 6 n = y 0 , y 6 n + 2 = x 1 .
(v) 
If y 1 = 0 , x 0 0 , x 2 0 , then we have y 6 n 1 = x 6 n + 2 = 0 and x 6 n 2 = x 2 , x 6 n = x 0 , y 6 n + 1 = x 2 , y 6 n + 3 = x 0 .
(vi) 
If y 0 = 0 , y 2 0 , x 1 0 , then we have y 6 n = x 6 n + 3 = 0 and x 6 n 1 = x 1 , x 6 n + 1 = y 2 , y 6 n 2 = y 2 , y 6 n + 2 = x 1 .
Proof. 
The proof follows from the form of the solutions of System (4). ☐
Example 4. 
Figure 4 shows the behavior of the solution of the difference system (4) with the initial conditions x 2 = 0 . 15 , x 1 = 4 , x 0 = 0 . 5 , y 2 = 0 . 3 , y 1 = 0 . 28 , and y 0 = 2 .

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Camouzis, E.; Papaschinopoulos, G. Global asymptotic behavior of positive solutions on the system of rational difference equations xn+1 = 1 + 1/ynk, yn+1 = yn/xnmynmk. Appl. Math. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
  2. Cinar, C. On the positive solutions of the difference equation system xn+1 = 1/yn, yn+1 = yn/xn−1yn−1. Appl. Math. Comput. 2004, 158, 303–305. [Google Scholar] [CrossRef]
  3. Elabbasy, E.M.; El-Metwally, H.; Elsayed, E.M. On the Solutions of a Class of Difference Equations Systems. Demonstr. Math. 2008, 41, 109–122. [Google Scholar]
  4. Elsayed, E.M. On the solutions of a rational system of difference equations. Fasc. Math. 2010, 45, 25–36. [Google Scholar]
  5. Grove, E.A.; Ladas, G.; McGrath, L.C.; Teixeira, C.T. Existence and behavior of solutions of a rational system. Commun. Appl. Nonlinear Anal. 2001, 8, 1–25. [Google Scholar]
  6. Kurbanli, A.S.; Cinar, C.; Yalçinkaya, I. On the behavior of positive solutions of the system of rational difference equations xn+1 = xn−1/ynxn−1 + 1, yn+1 = yn−1/xnyn−1 + 1. Math. Comput. Model. 2011, 53, 1261–1267. [Google Scholar] [CrossRef]
  7. Kurbanli, A.S. On the behavior of solutions of the system of rational difference equations xn+1 = xn−1/ynxn−1 − 1, yn+1 = yn−1/xnyn−1 − 1, zn+1 = 1/ynzn. Adv. Differ. Equ. 2011, 2011, 40. [Google Scholar] [CrossRef]
  8. Ozban, A.Y. On the system of rational difference equations xn+1 = a/yn−3, yn+1 = byn−3/xnqynq. Appl. Math. Comput. 2007, 188, 833–837. [Google Scholar] [CrossRef]
  9. Papaschinopoulos, G.; Schinas, C.J. On a system of two nonlinear difference equations. J. Math. Anal. Appl. 1998, 219, 415–426. [Google Scholar] [CrossRef]
  10. Schinas, C.J. Invariants for difference equations and systems of difference equations of rational form. J. Math. Anal. Appl. 1997, 216, 164–179. [Google Scholar] [CrossRef]
  11. El-Dessoky, M.M.; Elsayed, E.M.; Alghamdi, M. Solutions and periodicity for some systems of fourth order rational difference equations. J. Comput. Anal. Appl. 2015, 18, 179–194. [Google Scholar]
  12. Touafek, N.; Elsayed, E.M. On the solutions of systems of rational difference equations. Math. Comput. Model. 2012, 55, 1987–1997. [Google Scholar] [CrossRef]
  13. Zhang, Y.; Yang, X.; Megson, G.M.; Evans, D.J. On the system of rational difference equations. Appl. Math. Comput. 2006, 176, 403–408. [Google Scholar] [CrossRef]
  14. Zhang, Y.; Yang, X.; Evans, D.J.; Zhu, C. On the nonlinear difference equation system. Comput. Math. Appl. 2007, 53, 1561–1566. [Google Scholar] [CrossRef]
  15. El-Dessoky, M.M. On the solutions and periodicity of some nonlinear systems of difference equations. J. Nonlinear Sci. Appl. 2016, 9, 2190–2207. [Google Scholar]
  16. Alzahrani, E.O.; El-Dessoky, M.M.; Elsayed, E.M.; Kuang, Y. Solutions and Properties of Some Degenerate Systems of Difference Equations. J. Comput. Anal. Appl. 2015, 18, 321–333. [Google Scholar]
  17. Agarwal, R.P. Difference Equations and Inequalities, 1st ed.; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
  18. Battaloglu, N.; Cinar, C.; Yalçinkaya, I. The dynamics of the difference equation. Ars Comb. 2010, 97, 281–288. [Google Scholar]
  19. Clark, D.; Kulenovic, M.R.S. A coupled system of rational difference equations. Comput. Math. Appl. 2002, 43, 849–867. [Google Scholar] [CrossRef]
  20. Özban, A.Y. On the positive solutions of the system of rational difference equations xn+1 = 1/ynk, yn+1 = yn/xnmynmk. J. Math. Anal. Appl. 2006, 323, 26–32. [Google Scholar] [CrossRef]
  21. El-Dessoky, M.M.; Mansour, M.; Elsayed, E.M. Solutions of some rational systems of difference equations. Util. Math. 2013, 92, 329–336. [Google Scholar]
  22. Qureshi, M.N.; Khan, A.Q.; Din, Q. Global behavior of third order system of rational difference equations. Int. J. Eng. Res. Technol. 2013, 2, 2182–2191. [Google Scholar]
  23. Denette, E.; Kulenović, M.R.S.; Pilav, E. Birkhoff Normal Forms, KAM Theory and Time Reversal Symmetry for Certain Rational Map. Mathematics 2016, 4, 20. [Google Scholar] [CrossRef]
  24. Hu, L.-X.; Jia, X.-M. Global Asymptotic Stability of a Rational System. Abstr. Appl. Anal. 2014, 2014, 286375. [Google Scholar] [CrossRef] [PubMed]
  25. El-Dessoky, M.M.; Elsayed, E.M. On the solutions and periodic nature of some systems of difference equations. J. Comput. Anal. Appl. 2015, 18, 206–218. [Google Scholar]
  26. Yalçinkaya, I.; Cinar, C.; Simsek, D. Global asymptotic stability of a system of difference equations. Appl. Anal. 2008, 87, 689–699. [Google Scholar] [CrossRef]
  27. El-Dessoky, M.M. On a solvable for some systems of rational difference equations. J. Nonlinear Sci. Appl. 2016, 9, 3744–3759. [Google Scholar]
  28. Yalçinkaya, I.; Cinar, C.; Atalay, M. On the solutions of systems of difference equations. Adv. Differ. Equ. 2008, 2008, 143943. [Google Scholar] [CrossRef]
  29. Yang, X.; Liu, Y.; Bai, S. On the system of high order rational difference equations xn = a/ynp, yn = bynp/xnqynq. Appl. Math. Comput. 2005, 171, 853–856. [Google Scholar] [CrossRef]
  30. Erdoğan, M.E.; Cinar, C.; Yalçınkaya, I. On the dynamics of the recursive sequence. Comput. Math. Appl. 2011, 61, 533–537. [Google Scholar] [CrossRef]
  31. Elsayed, E.M.; El-Dessoky, M.M.; Alotaibi, A. On the Solutions of a General System of Difference Equations. Discret. Dyn. Nat. Soc. 2012, 2012, 892571. [Google Scholar] [CrossRef]
  32. El-Dessoky, M.M. The form of solutions and periodicity for some systems of third—Order rational difference equations. Math. Methods Appl. Sci. 2016, 39, 1076–1092. [Google Scholar] [CrossRef]
  33. El-Dessoky, M.M.; Elsayed, E.M. On a solution of system of three fractional difference equations. J. Comput. Anal. Appl. 2015, 19, 760–769. [Google Scholar]
  34. Yalçinkaya, I. On the global asymptotic behavior of a system of two nonlinear difference equations. Ars Comb. 2010, 95, 151–159. [Google Scholar]
  35. Yalçinkaya, I. On the global asymptotic stability of a second-order system of difference equations. Discret. Dyn. Nat. Soc. 2008, 2008, 860152. [Google Scholar] [CrossRef]
  36. El-Dessoky, M.M. On a systems of rational difference equations of Order Two. Proc. Jangjeon Math. Soc. 2016, 19, 271–284. [Google Scholar]
  37. Elsayed, E.M.; Mansour, M.; El-Dessoky, M.M. Solutions of fractional systems of difference equations. Ars Comb. 2013, 110, 469–479. [Google Scholar]
  38. Mansour, M.; El-Dessoky, M.M.; Elsayed, E.M. On the solution of rational systems of difference equations. J. Comput. Anal. Appl. 2013, 15, 967–976. [Google Scholar]
  39. Bisci, G.M.; Repovs, D. On sequences of solutions for discrete anisotropic equations. Expos. Math. 2014, 32, 284–295. [Google Scholar] [CrossRef]
  40. Bisci, G.M.; Repovs, D. Nonlinear Algebraic Systems with discontinuous terms. J. Math. Anal. Appl. 2013, 398, 846–856. [Google Scholar] [CrossRef]
  41. Galewski, M.; Bisci, G.M.; Wieteska, R. Existence and multiplicity of solutions to discrete inclusions with the p(k)-Laplacian problem. J. Differ. Equ. Appl. 2015, 21, 887–903. [Google Scholar] [CrossRef]
  42. Bisci, G.M.; Repovs, D. Existence of solutions for p-Laplacian discrete equations. Appl. Math. Comput. 2014, 242, 454–461. [Google Scholar] [CrossRef]
  43. Candito, P.; Bisci, G.M. Existence of positive solutions for nonlinear algebraic systems with a parameter. Appl. Math. Comput. 2012, 218, 11700–11707. [Google Scholar] [CrossRef]
Figure 1. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n .
Figure 1. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n .
Mathematics 04 00053 g001
Figure 2. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n .
Figure 2. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n .
Mathematics 04 00053 g002
Figure 3. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n .
Figure 3. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 + x n 2 y n 1 x n .
Mathematics 04 00053 g003
Figure 4. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n .
Figure 4. Plot of system x n + 1 = y n 2 1 + y n 2 x n 1 y n , y n + 1 = x n 2 1 x n 2 y n 1 x n .
Mathematics 04 00053 g004

Share and Cite

MDPI and ACS Style

El-Dessoky, M.M. Solution for Rational Systems of Difference Equations of Order Three. Mathematics 2016, 4, 53. https://doi.org/10.3390/math4030053

AMA Style

El-Dessoky MM. Solution for Rational Systems of Difference Equations of Order Three. Mathematics. 2016; 4(3):53. https://doi.org/10.3390/math4030053

Chicago/Turabian Style

El-Dessoky, Mohamed M. 2016. "Solution for Rational Systems of Difference Equations of Order Three" Mathematics 4, no. 3: 53. https://doi.org/10.3390/math4030053

APA Style

El-Dessoky, M. M. (2016). Solution for Rational Systems of Difference Equations of Order Three. Mathematics, 4(3), 53. https://doi.org/10.3390/math4030053

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop