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Abstract:



In this manuscript, we implement Bohnenblust–Karlin’s fixed point theorem to demonstrate the existence of mild solutions for a class of impulsive fractional integro-differential inclusions (IFIDI) with state-dependent delay (SDD) in Banach spaces. An example is provided to illustrate the obtained abstract results.
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1. Introduction


The notion of fractional derivatives, as is long familiar, has its commencement in an inquiry postured amid a correspondence in the middle of Leibnitz and L’hospital. The five millennium extremely ancient inquiry has turned into a significant zone of exploration. As of late, it has been demonstrated that the differential designs including derivatives of fractional order emerge in numerous technological innovations and scientific disciplines as the statistical modeling of frameworks and procedures in numerous fields—case in point: physical science, chemical industry, aerodynamics, electrodynamics of complex medium, etc. For information, such as some uses and latest outcomes, think about the treatise of Abbas et al. [1], Baleanu et al. [2], Podlubny [3], Diethelm [4], Kilbas et al. [5], and Tarasov [6], and the papers [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21], and the references cited therein.



Fractional differential inclusions (FDI) are speculation of fractional differential equations (FDE). Along these lines, all models viewed regarding FDE that may be existence of solutions, continuous dependence and parameters are also available in the concept of FDI—considering the fact that FDI occur in the mathematical modelling of specific models in financial aspects, optimal control, etc. and are usually investigated by numerous writers (see, for instance, [22,23,24] and the references therein). Fractional equation with delay properties arise in several fields such as biological and physical with state-dependent delay (SDD) or non-constant delay. Nowadays, existence results of mild solutions for such problems became very attractive and several researchers are working on it. Recently, several papers have been written on the fractional order problems with SDD [23,25,26,27,28,29,30,31,32,33,34,35,36] and the sources therein.



On the flip side, the concept of impulsive differential framework has been a target consideration due to the fact of its extensive uses in physics, biology, engineering, medicinal fields, industry and technology. The purpose behind this pertinence emerges from the way that impulsive differential frameworks are a proper model for portraying procedures that, at specific moments, change their state quickly and which cannot depict utilization of the traditional differential models. For additional purposes of enthusiasm on this concept and on its uses (see, for example, the treatise by Lakshmikantham et al. [37], Ivanka M. Stamova [38], Graef et al. [39], Bainov et al. [40], Benchohra et al. [41], the papers [22,42,43,44,45,46,47,48,49,50], and the references cited therein).



The existence, controllability, and other qualitative and quantitative attributes of differential and FDEs are the most advancing area of interest (for instance, see [20,26,31,32,33,35,51,52,53,54]). In particular, in [20,53,54], the authors investigate the different types of impulsive fractional differential systems in Banach spaces under different fixed point theorems with weak conditions. In particular, in [20], the authors define more suitable [image: there is no content]-mild solutions for the impulsive FDI with non-local conditions. As of late, Carvalho dos Santos et al. [32] have analyzed the existence of solutions for FIDE with SDD in Banach spaces. Kavitha et al. [35] acknowledged the existence of mild solutions for FIDE with SDD by using an appropriate fixed point theorem. In [31,33], the authors offer adequate circumstances for the existence of solutions of FDE with SDD. Lately, Benchohra et al. [26] researched the existence of mild solutions on a compact interval for FIDE with SDD in Banach spaces. However, existence results for IFIDI with SDD in [image: there is no content] phase space adages have not yet been completely examined.



To think seriously about fractional frameworks in the infinite dimensional space, the essential imperative move is to focus on a latest technique of the mild solution. As of late, in Wang et al. [20], a proper thought of mild solutions was exhibited. Furthermore, they profoundly examined the current [image: there is no content]-mild solution characterized by a few scientists.



Motivated by the effort of the aforementioned papers [20,22,26,30], the primary inspiration driving this manuscript is to research the existence of mild solutions for an IFIDI with SDD of the model:


(1)CDtαx(t)−Ax(t)∈Ft,xϱ(t,xt)+∫0tet,s,xsds,a.e.onJ−{t1,t2,⋯,tm},(2)Δx(tk)=Ik(x(tk−)),k=1,2,⋯,m,(3)x(t)=ς(t),ς(t)∈Bh,








where [image: there is no content] with [image: there is no content] is settled, CDtα is the Caputo fractional derivative of the order [image: there is no content] with the lower limit zero, [image: there is no content] is a fractional sectorial operator similar to [55] described on a Banach space [image: there is no content] having its norm recognized as ∥·∥X,F:J×Bh→P(X) is a multivalued map, where ([image: there is no content] is the family of all non-empty subsets of [image: there is no content]), e:D×Bh→X,ϱ:J×Bh→(−∞,b] are apposite functions, and [image: there is no content] is a theoretical phase space adages outlined in Preliminaries. Here, [image: there is no content]. Here, [image: there is no content], [image: there is no content] are impulsive functions which portray the jump of the solutions at impulse points [image: there is no content], and [image: there is no content] are the right and left limits of x at the points [image: there is no content] separately.



For almost any continuous function x characterized on [image: there is no content] and any [image: there is no content], we designate by [image: there is no content] the part of [image: there is no content] characterized by [image: there is no content] for [image: there is no content]. Now, [image: there is no content] speaks to the historical backdrop of the state from every [image: there is no content], likely the current time t.



This manuscript is composed as the following. In Section 2, we show a few preliminaries and lemmas that are to be utilized subsequently to demonstrate our primary outcomes. In Section 3, the existence of mild solutions for the model (1)–(3) is discussed under a suitable fixed point theorem. Section 4 is saved for a case to delineate the conceptual results.



To the best of our insight, there is no work giving an account of the existence results for an IFIDI with SDD, which is communicated in the structure (1)–(3). To fill this gap, in this manuscript, we contemplate this fascinating model.




2. Preliminaries


In this part, we display a few documentations, definitions and preparatory facts from functional analysis, solution operator and fractional calculus theory that will be utilized throughout this manuscript.



Let [image: there is no content] symbolize the Banach space of all bounded linear operators from [image: there is no content] into [image: there is no content], having its norm recognized as [image: there is no content].



Let [image: there is no content] symbolize the space of all continuous functions from [image: there is no content] into [image: there is no content], having its norm recognized as [image: there is no content].



Let [image: there is no content] be the space of [image: there is no content]-valued Bochner integrable functions on [image: there is no content] with the norm:


[image: there is no content]











It needs to be outlined that, once the delay is infinite, we need to talk about the theoretical phase space [image: there is no content] in a beneficial way. In this manuscript, we deliberate phase spaces [image: there is no content] that are the same as described in [30]. Therefore, we bypass the details.



If [image: there is no content] is continuous on [image: there is no content] and [image: there is no content], then, for every [image: there is no content], the accompanying conditions hold:

	([image: there is no content])

	
[image: there is no content] is in [image: there is no content];




	([image: there is no content])

	
[image: there is no content]




	([image: there is no content])

	
[image: there is no content], where [image: there is no content] is a constant and [image: there is no content] is continuous, [image: there is no content] is locally bounded, and [image: there is no content] are independent of [image: there is no content].




	([image: there is no content])

	
The function [image: there is no content] is well described and continuous from the set:


[image: there is no content]








into [image: there is no content] and there is a continuous and bounded function [image: there is no content] to ensure that [image: there is no content] for every [image: there is no content].









Lemma 1.

Let [image: there is no content]be a function in a way that [image: there is no content]([56] Lemma 2.1), and, if [image: there is no content]hold, then:


∥xs∥Bh≤(D2*+Jς)∥ς∥Bh+D1*sup{∥x(θ)∥X:θ∈[0,max{0,s}]},s∈R(ϱ−)∪J,








where Jς=supt∈R(ϱ−)Jς(t),D1*=sups∈[0,b]D1(s),D2*=sups∈[0,b]D2(s).





Now, we show some known results from multivalued analysis that we will apply in the spin-off.



Denote:


Pcl(X)={Y∈P(X):Yclosed},Pb(X)={Y∈P(X):Ybounded},Pcp(X)={Y∈P(X):Ycompact},Pcp,c(X)={Y∈P(X):Ycompactandconvex}.











Remark 1.

In multi-valued analysis, the definitions of convex, upper semi-continuous, completely continuous, closed graph and measurable are classical. Hence, we omit it. For extra points of interest on this, we suggest the reader to [13,22].





Definition 1.

The multivalued map [image: there is no content]is said to be Carathéodory if:

	(i) 

	
[image: there is no content]is measurable for each [image: there is no content];




	(ii) 

	
[image: there is no content]is upper semicontinuous for almost all [image: there is no content].











Let [image: there is no content] be a set characterized by:


SF,x={v∈L1(J,X):v(t)∈F(t,xϱ(t,xt))a.e.t∈J}.











Presently, we speak about the subsequent lemmas which are essential to set up our primary outcome [57,58].



Lemma 2.

Let [image: there is no content]be a Banach space. Let [image: there is no content]be an [image: there is no content]-Carathéodory multivalued map and let Ψ be a linear continuous mapping from [image: there is no content]to [image: there is no content]. Then, the operator:


Ψ∘SF:C(J,X)→Pcp,c(C(J,X)),x↦(Ψ∘SF)(x):=Ψ(SF,x),








is a closed graph operator in [image: there is no content].





Lemma 3 (Bohnenblust–Karlin’s fixed point theorem).

Let [image: there is no content]be a Banach space and [image: there is no content]. Suppose that the operator [image: there is no content]is upper semicontinuous and the set [image: there is no content]is relatively compact in [image: there is no content]. Then, G has a fixed point in D.





For surplus points of benefit on multivalued maps, think about the monographs of Graef et al. [39] and Górniewicz et al. [59].



Currently, we offer some fundamental definitions and results of the fractional calculus [3,5] concept that are used further as an aspect of this manuscript.



Definition 2.

The fractional integral of order γ with the lower limit zero for a function f is determined as:


Itγf(t)=1Γ(γ)∫0tf(s)(t−s)1−γds,t>0,γ>0,








the right part offered is point-wise described on [image: there is no content], where [image: there is no content]is the gamma function.





Definition 3.

The Riemann–Liouville derivative of order γ with the lower limit zero for a function [image: there is no content]is characterized as:


Dtγf(t)=1Γ(n−γ)dndtn∫0tf(s)(t−s)1−n+γds,t>0,n−1<γ<n.













Definition 4.

The Caputo derivative of order γ for a function [image: there is no content]could be consisting as:


CDtγf(t)=Dtγ(f(t)−f(0)),t>0,0<γ<1.













Remark 2.


	(i) 

	
Generally, the definition of solution operator and its outcomes are too standard. Hence, we will not discuss it. For extra points of interest on this, we suggest the reader to [18,20,55].




	(ii) 

	
To be able to determine a mild solution of the model (1)–(3), we require providing the mild solution of the subsequent Cauchy problem:


DtαCx(t)=Ax(t)+f(t),t∈J,x(0)=x0∈X.








The mild solution [18,55] of the above Cauchy problem can be described by:


[image: there is no content]








where:


Sα(t)=12πi∫Γeλtλα−1R(λα,A)dλ,Tα(t)=12πi∫ΓeλtR(λα,A)dλ








for a suitable path Γ and [image: there is no content]is continuous.











Lemma 4.

If [image: there is no content], then:


∥Sα(t)∥L(X)≤Meωtand∥Tα(t)∥L(X)≤Ceωt(1+tα−1)








for every t>0,ω>ω0. Thus, using:


M˜S=sup0≤t≤b∥Sα(t)∥L(X),M˜T=sup0≤t≤bCeωt(1+t1−α),








we get:


∥Sα(t)∥L(X)≤M˜S,∥Tα(t)∥L(X)≤tα−1M˜T.













In accordance with the above discussion, we determine the mild solution of the model (1)–(3).



Definition 5.

A function [image: there is no content]is known as a mild solution of the model (1)–(3) if the accompanying retains: [image: there is no content]on (−∞,0];Δx|t=tk=Ik(x(tk−)),k=1,2,⋯,m, the constraint of [image: there is no content]to the interval Jk,k=0,1,2,⋯,m,is continuous and there exists [image: there is no content], such that [image: there is no content]a.e. [image: there is no content]and x fulfills the subsequent integral equation:


x(t)=ς(t),t∈(−∞,0],Sα(t)ς(0)+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,t∈[0,t1],Sα(t)ς(0)+Sα(t−t1)I1(x(t1−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,t∈(t1,t2],⋮Sα(t)ς(0)+∑k=1mSα(t−tk)Ik(x(tk−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,t∈(tm,b].



(4)









Now, we list the subsequent hypotheses:



Hypothesis 1.

The semigroup [image: there is no content]is compact for [image: there is no content].





Hypothesis 2.

The multivalued map [image: there is no content]is Carathéodory, with compact convex values.





Hypothesis 3.

There exists a function [image: there is no content]and a continuous non-decreasing function [image: there is no content]such that:


∥F(t,u)∥X≤p(t)Ω1(∥u∥Bh),(t,u)∈J×Bh.













Hypothesis 4.

For every [image: there is no content], the function [image: there is no content]is continuous and for every [image: there is no content], the function [image: there is no content]is strongly measurable. We can find an integrable function [image: there is no content]and a constant [image: there is no content]to ensure that:


[image: there is no content]








where [image: there is no content]is a continuous non-decreasing function.





Hypothesis 5.

[image: there is no content]and we can find [image: there is no content]such that:


∥Ik(x)∥X≤Lk(t)∥x∥X,x∈X,t∈J.














3. Existence Results


In this part, we show and demonstrate the existence results for the model (1)–(3).



Theorem 1.

Assume that the hypotheses (1)–(5) hold. Then, model (1)–(3) has a mild solution on [image: there is no content].





Proof. 

We will transmute the structure (1)–(3) into a fixed point problem. Recognize the multivalued operator [image: there is no content] specified by [image: there is no content] with:


h(t)=ς(t),t∈(−∞,0],Sα(t)ς(0)+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,t∈[0,t1],Sα(t)ς(0)+Sα(t−t1)I1(x(t1−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,t∈(t1,t2],⋮Sα(t)ς(0)+∑k=1mSα(t−tk)Ik(x(tk−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,xτdτds,v∈SF,x,t∈(tm,b].













It is evident that the fixed points of the operator Υ are mild solutions of the model (1)–(3). We express the function [image: there is no content] as:


y(t)=ς(t),t∈(−∞,0],Sα(t)ς(0),t∈J;








then, [image: there is no content]. For every function [image: there is no content] with [image: there is no content], we allocate that [image: there is no content] is characterized by:


z¯(t)=0,t∈(−∞,0],z(t),t∈J.











If [image: there is no content] fulfilled Equation (4), we are able to decompose it as [image: there is no content] as [image: there is no content] for [image: there is no content], which suggests that [image: there is no content] for [image: there is no content], and the function [image: there is no content] meets:


z(t)=∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈[0,t1],Sα(t−t1)I1(y(t1−)+z¯(t1−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(t1,t2],










z(t)=⋮∑k=1mSα(t−tk)Ik(y(tk−)+z¯(tk−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(tm,b],








where [image: there is no content].



Let [image: there is no content]: [image: there is no content]. Let [image: there is no content] be the seminorm in [image: there is no content] described by:


∥z∥Bh′′=supt∈J∥z(t)∥X+∥z0∥Bh=supt∈J∥z(t)∥X,z∈Bh′′.











As a result, [image: there is no content] is a Banach space. We delimit the operator [image: there is no content] by [image: there is no content] with:


h(t)=∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈[0,t1],Sα(t−t1)I1(y(t1−)+z¯(t1−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(t1,t2],⋮∑k=1mSα(t−tk)Ik(y(tk−)+z¯(tk−))+∫0tTα(t−s)v(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(tm,b],








where [image: there is no content]. It is vindicated that the operator Υ has a fixed point if and only if [image: there is no content] has a fixed point. Thus, let us demonstrate that [image: there is no content] has a fixed point.



Remark 3.

From Lemma 1 and above assumptions, we have the following estimates:

	(i) 

	


[image: there is no content]











If ∥z∥X<r,r>0, then:


[image: there is no content]








where [image: there is no content].




	(ii) 

	


[image: there is no content]



(5)













Since:


|Ik(y(tk−)+z¯(tk−))|≤Lk(t)|y(tk−)+z¯(tk−)|≤Lk(t)(supt∈J|y(t)+z¯(t)|)≤L0H∥yt+z¯t∥Bh,








where L0=max{Lk(t)|t∈J,k=1,2,3,⋯,m}.



Now:


∥yt+z¯t∥Bh≤∥yt∥Bh+∥z¯t∥Bh≤D1(t)sup0≤τ≤t∥y(τ)∥X+D2(t)∥y0∥Bh+D1(t)sup0≤τ≤t∥z(τ)∥X+D2(t)∥z0∥Bh≤D1(t)∥Sα(t)∥L(X)|ς(0)|+D2(t)∥ς∥Bh+D1(t)sup0≤τ≤t∥z(τ)∥X≤D1*r+(D1*M˜SH+D2*)∥ς∥Bh≤D1*r+cn˜,








where [image: there is no content]. Hence, Equation (5) becomes:


[image: there is no content]













Let:


Br={z∈Bh′′:z(0)=0;∥z∥Bh′′≤r},








where r is any fixed finite real number that fulfills the inequality:


[image: there is no content]



(6)







It is obvious that [image: there is no content] is a closed, convex, bounded set in [image: there is no content]. Now, we shall display that [image: there is no content] meets all the presumptions of Lemma 3. Now, we split the proof into grouping of subsequent steps:



Step 1:



[image: there is no content] is convex for every [image: there is no content]. In fact, if [image: there is no content] and [image: there is no content] belong to [image: there is no content], then we can find [image: there is no content] in a way that, for [image: there is no content] and [image: there is no content] we sustain:


hi(t)=∫0tTα(t−s)vi(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈[0,t1],Sα(t−t1)I1(y(t1−)+z¯(t1−))+∫0tTα(t−s)vi(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(t1,t2],⋮∑k=1mSα(t−tk)Ik(y(tk−)+z¯(tk−))+∫0tTα(t−s)vi(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds,t∈(tm,b].











Let [image: there is no content]. Then, for every [image: there is no content], we get:


[image: there is no content]











In the same way, for any t∈(tk,tk+1],k=1,2,⋯,m, we receive:


λh1(t)+(1−λ)h2(t)=∑k=1mSα(t−tk)Ik(y(tk−)+z¯(tk−))+∫0tTα(t−s)λv1(s)+(1−λ)v2(s)ds+∫0tTα(t−s)∫0ses,τ,z¯τ+yτdτds.











Since [image: there is no content] has convex values, [image: there is no content] is convex, and we realize that [image: there is no content].



Step 2:



[image: there is no content]. Let [image: there is no content] and [image: there is no content], for [image: there is no content]. Then, by Remark 3, we sustain:


∥h(t)∥X≤∫0t∥Tα(t−s)∥L(X)∥v(s)∥Xds+∫0t∥Tα(t−s)∥L(X)∫0s∥es,τ,z¯τ+yτ∥Xdτds≤M˜T∫0t(t−s)α−1p(s)Ω1(∥z¯ϱ(s,z¯s+ys)+yϱ(s,z¯s+ys)∥Bh)ds+M˜Ta∫0t(t−s)α−1m1(s)Ω2(∥z¯s+ys∥Bh)ds≤M˜TbααΩ1(D1*r+cn)∫0bp(s)ds+aM˜TbααΩ2(D1*r+cn˜)∫0bm1(s)ds<r.











Moreover, when t∈(tk,tk+1],k=1,2,⋯,m, from Remark 3, we have the estimate:


∥h(t)∥X≤∥∑k=1mSα(t−tk)Ik(y(tk−)+z¯(tk−))∥X+∫0t∥Tα(t−s)∥L(X)∥v(s)∥Xds+∫0t∥Tα(t−s)∥L(X)∫0s∥es,τ,z¯τ+yτ∥Xdτds≤mM˜SL0HD1*r+cn˜+M˜TbααΩ1(D1*r+cn)∫0bp(s)ds+aM˜TbααΩ2(D1*r+cn˜)∫0bm1(s)ds<r,








which proves that [image: there is no content].



Step 3:



We will confirm that [image: there is no content] is equicontinuous. Let [image: there is no content], with [image: there is no content], we get:


∥h(v)−h(u)∥X≤∫0u∥Tα(v−s)−Tα(u−s)∥L(X)∥v(s)∥Xds+∫uv∥Tα(v−s)∥L(X)∥v(s)∥Xds+∫0u∥Tα(v−s)−Tα(u−s)∥L(X)∫0s∥e(s,τ,z¯τ+yτ)∥Xdτds+∫uv∥Tα(v−s)∥L(X)∫0s∥e(s,τ,z¯τ+yτ)∥Xdτds≤Q1+Q2+Q3+Q4,








where:


[image: there is no content]










[image: there is no content]











Since [image: there is no content] for [image: there is no content], and [image: there is no content] as [image: there is no content] is strongly continuous. This infers that [image: there is no content],


Q2=∫uv∥Tα(v−s)∥L(X)∥v(s)∥Xds≤Ω1(D1*r+cn)M˜T(v−u)αα∫uvp(s)ds.











As a result, we deduce that [image: there is no content],


Q3=∫0u∥Tα(v−s)−Tα(u−s)∥L(X)∫0s∥e(s,τ,z¯τ+yτ)∥Xdτds≤aΩ2(D1*r+cn˜)∫0u∥Tα(v−s)−Tα(u−s)∥L(X)m1(s)ds.











This suggests that [image: there is no content],


Q4=∫uv∥Tα(v−s)∥L(X)∫0s∥e(s,τ,z¯τ+yτ)∥Xdτds≤aΩ2(D1*r+cn˜)M˜T(v−u)αα∫uvm1(s)ds.











Therefore, we deduce that [image: there is no content].



In the same way, for [image: there is no content], with u<v,k=1,2,⋯,m, we sustain:


∥h(v)−h(u)∥X≤∑k=1m∥Sα(v−tk)−Sα(u−tk)∥X∥Ik(y(tk−)+z¯(tk−))∥X+Q1+Q2+Q3+Q4≤L0HD1*r+cn˜∑k=1m∥Sα(v−tk)−Sα(u−tk)∥X+Q1+Q2+Q3+Q4.











Since [image: there is no content] is also strongly continuous, [image: there is no content] as [image: there is no content] Hence, from the aforementioned inequalities, we receive:


[image: there is no content]











Thus, [image: there is no content] is equicontinuous.



As an impact of actions 1, 2 and 3 with Arzela–Ascoli’s theorem ([60] (Chapter 2)), we understand that the operator [image: there is no content] is completely continuous.



Step 4:



[image: there is no content] has a closed graph. Expect that zn→z*,hn∈Υ¯(zn) with [image: there is no content]. We claim that [image: there is no content]. In fact, the assumption [image: there is no content] suggests that we can find [image: there is no content] in a way that, for each [image: there is no content]:


[image: there is no content]











We need to demonstrate that there exists [image: there is no content] such that, for each [image: there is no content]:


[image: there is no content]











Set:


[image: there is no content]











We now have, for every [image: there is no content]:


∥Θn(t)−Θ*(t)∥X→0,asn→∞.











Recognize the linear continuous operator [image: there is no content], specified by:


[image: there is no content]











From Lemma 2 and the definition of Ψ, it follows that [image: there is no content] is a closed graph operator, and for every t∈[0,t1],Θn(t)∈Ψ(SF,yn+z¯n).



Since [image: there is no content] and [image: there is no content] is a closed graph operator, then there exists [image: there is no content] such that, for every [image: there is no content]:


[image: there is no content]











In the same way, for any t∈(tk,tk+1],k=1,2,⋯,m, we get:


hn(t)=∑k=1mSα(t−tk)Ik(yn(tk−)+z¯n(tk−))+∫0tTα(t−s)vn(s)ds+∫0tTα(t−s)∫0se(s,τ,z¯nτ+yτ)dτds.











We need to demonstrate that there exists [image: there is no content] such that, for every [image: there is no content]:


h*(t)=∑k=1mSα(t−tk)Ik(y*(tk−)+z¯*(tk−))+∫0tTα(t−s)v*(s)ds+∫0tTα(t−s)∫0se(s,τ,z¯*τ+yτ)dτds.











For every t∈(tk,tk+1],k=1,2,⋯,m, we sustain:


∥Θn(t)−Θ*(t)∥X→0,asn→∞,








where:


Θn(t)=hn(t)−∑k=1mSα(t−tk)Ik(yn(tk−)+z¯n(tk−))−∫0tTα(t−s)vn(s)ds−∫0tTα(t−s)∫0se(s,τ,z¯nτ+yτ)dτds,










Θ*(t)=h*(t)−∑k=1mSα(t−tk)Ik(y*(tk−)+z¯*(tk−))−∫0tTα(t−s)v*(s)ds−∫0tTα(t−s)∫0se(s,τ,z¯*τ+yτ)dτds.











Now, for every t∈(tk,tk+1],k=1,2,⋯,m, we recognize the linear operator [image: there is no content], characterized by:


[image: there is no content]











From Lemma 2, it follows that [image: there is no content] is a closed graph operator, and, for every [image: there is no content].



Since [image: there is no content], and [image: there is no content] is a closed graph operator, then there exists [image: there is no content] such that, for every [image: there is no content]:


[image: there is no content]











Hence, [image: there is no content] has a closed graph. It follows that Lemma 3 that [image: there is no content] has a fixed point [image: there is no content]. Then, the operator Υ has a fixed point that offers ascent to a mild solution to the model (1)–(3). The proof is now completed.  ☐




4. Applications


To exemplify our theoretical results, we treat IFIDI with SDD of the model:


CDtqu(t,x)−∂2∂x2u(t,x)∈∫−∞tμ1(t,x,s−t)u(s−ϱ1(t)ϱ2(∥u(t)∥),x)ds+∫0t∫−∞sk(s−τ)P(u(τ,x))dτds,x∈[0,π],0≤t≤b,t≠tk,



(7)






(8)u(t,0)=0=u(t,π),t≥0,(9)u(t,x)=ς(t,x),t∈(−∞,0],x∈[0,π],(10)Δu(tk)(x)=∫−∞tkqk(tk−s)u(s,x)ds,x∈[0,π],k=1,2,⋯,m,








where CDtq is Caputo’s fractional derivative of order 0<q<1,0<t1<t2<⋯<tn<b are pre-fixed numbers and [image: there is no content]. We consider [image: there is no content] with the norm [image: there is no content] and delineate the operator [image: there is no content] by [image: there is no content] with the domain:


D(A)={w∈X:w,w′areabsolutelycontinuous,w′′∈X,w(0)=w(π)=0}.











Then:


Aw=∑n=1∞n2⟨w,wn⟩wn,w∈D(A),








where wn(s)=2πsin(ns),n=1,2,⋯,. is the orthogonal set of eigenvectors of [image: there is no content]. It is long familiar that [image: there is no content] is the infinitesimal generator of an analytic semigroup [image: there is no content] in [image: there is no content] and is given by:


T(t)w=∑n=1∞e−n2t⟨w,wn⟩wn,forallw∈X,andeveryt>0.











From these outflows, it follows that [image: there is no content] is a uniformly bounded compact semigroup, so that [image: there is no content] is a compact operator for all [image: there is no content]; that is, [image: there is no content]. In addition, the subordination principle of solution operator [image: there is no content] such that [image: there is no content] for [image: there is no content]. For phase space, we choose h=e2s,s<0, then [image: there is no content], for [image: there is no content], and determine:


[image: there is no content]











Therefore, [image: there is no content], where ς(θ)(x)=ς(θ,x),(θ,x)∈(−∞,0]×[0,π]. Set:


u(t)(x)=u(t,x),ϱ(t,ς)=ϱ1(t)ϱ2(∥ς(0)∥),








and we receive:


[image: there is no content]








and:


[image: there is no content]











Along these adjustments, the aforementioned model (7)–(10) can be written in the theoretical form as model (1)–(3).



Suppose further that:

	(i)

	
the functions ϱi:[0,∞)→[0,∞),i=1,2 are continuous;




	(ii)

	
the function [image: there is no content] is continuous in [image: there is no content]; and [image: there is no content]




	(iii)

	
the function [image: there is no content] is continuous in [image: there is no content] and k(t−s)≥0,∫0t∫−∞0k(s−θ)dθds=m1(t)<∞.




	(iv)

	
the functions qk:R→R,k=1,2,⋯,m are continuous and [image: there is no content] for [image: there is no content].




	(v)

	
The function [image: there is no content] is continuous and for each (θ,x)∈(−∞,0]×[0,π];0≤P(u(θ)(x))≤Φ∫−∞0e2s∥u(s,·)∥L2ds, where [image: there is no content] is a continuous non-decreasing function.



Now, consider:


∥Bς∥L2=∫0π∫0t∫−∞0k(s−θ)P(ς(θ)(x))dθds2dx12≤∫0π∫0t∫−∞0k(τ−θ)Φ∫−∞0e2s∥ς(s)(·)∥L2dsdθdτ2dx12≤∫0π∫0t∫−∞0k(s−θ)dθds2dx12Φ(∥ς∥Bh)≤∫0π(m1*(t))2dx12Φ(∥ς∥Bh)≤πm¯1(t)Φ(∥ς∥Bh).











Since [image: there is no content] is a continuous non-decreasing function, we will take [image: there is no content] with [image: there is no content] and [image: there is no content] in hypothesis (4). Observe that [image: there is no content] meets the hypothesis (3) with Ω1(r)=r,p(t)=p¯1(t), and, if the bounds in Equation (6) are fulfilled, then model (7)–(10) has a mild solution on [image: there is no content].










5. Conclusions


In this paper, we have studied the existence results for impulsive fractional integro-differential systems with SDD conditions in a Banach space. More precisely, by utilizing the fractional calculus, semigroup theory and the Bohnenblust–Karlin’s fixed point theorem, we investigate the IFIDI with SDD in a Banach space. To validate the obtained theoretical results, we analyze one example. The FDEs are very efficient to describe the real-life phenomena; thus, it is essential to extend the present study to establish the other qualitative and quantitative properties such as stability and controllability.



There are two direct issues that require further study. First, we will investigate the approximate controllability of fractional neutral integro-differential systems with SDD in the cases of a noncompact operator and a normal topological space. Second, we will study the approximate controllability of a new class of impulsive fractional integro-differential equations with SDD and non-instantaneous impulses, as discussed in [48].







Acknowledgments


The authors are grateful to the referee’s for the careful reading of the paper and for the helpful remarks.




Author Contributions


All authors have equal contributions. All authors read and approved the final manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]

	2. 
Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]

	3. 
Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]

	4. 
Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]

	5. 
Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]

	6. 
Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]

	7. 
Agarwal, R.P.; Lupulescu, V.; O’Regan, D.; Rahman, G. Fractional calculus and fractional differential equations in nonreflexive Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 59–73. [Google Scholar] [CrossRef]

	8. 
Ahmad, B.; Ntouyas, S.K.; Alsaed, A. Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions. Adv. Differ. Equ. 2014, 2014, 257. [Google Scholar] [CrossRef]

	9. 
Babiarz, A.; Niezabitowski, M. Controllability problem of fractional neutral systems-a survey. Math. Probl. Eng. 2016, 2016, 4715861. [Google Scholar] [CrossRef]

	10. 
Bonanno, G.; Rodriguez-Lopez, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 717–744. [Google Scholar] [CrossRef]

	11. 
Cao, J.; Huang, Z.; Zeng, C. Weighted pseudo almost automorphic classical solutions and optimal mild solutions for fractional differential equations and application in fractional reaction-diffusion equations. J. Math. Chem. 2014, 52, 1984–2012. [Google Scholar] [CrossRef]

	12. 
Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral fractional integrodifferential equation with infinite delay. Int. J. Differ. Equ. 2014, 2014, 780636. [Google Scholar] [CrossRef]

	13. 
Debbouche, A.; Torres, D.F.M. Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 2014, 243, 161–175. [Google Scholar] [CrossRef]

	14. 
Guendouzi, T.; Bousmaha, L. Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay. Qual. Theory Dyn. Syst. 2014, 13, 89–119. [Google Scholar] [CrossRef]

	15. 
Hernandez, E.; O’Regan, D.; Balachandran, K. On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. Real World Appl. 2010, 73, 3462–3471. [Google Scholar] [CrossRef]

	16. 
Lv, Z.W.; Chen, B. Existence and uniqueness of positive solutions for a fractional switched system. Abstr. Appl. Anal. 2014, 2014, 828721. [Google Scholar] [CrossRef]

	17. 
Rodriguez-Lopez, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1016–1038. [Google Scholar] [CrossRef]

	18. 
Shu, X.B.; Lai, Y.Z.; Chen, Y. The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2003–2011. [Google Scholar] [CrossRef]

	19. 
Vasundhara Devi, J.; Giribabu, N. On hybrid Caputo fractional differential equations with variable moments of impulse. Eur. J. Pure Appl. Math. 2014, 7, 115–128. [Google Scholar]

	20. 
Wang, J.R.; Ibrahim, A.G.; Feckan, M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 2015, 257, 103–118. [Google Scholar] [CrossRef]

	21. 
Wang, Y.; Liu, L.; Wu, Y. Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters. Adv. Differ. Equ. 2014, 2014, 268. [Google Scholar] [CrossRef]

	22. 
Aissani, K.; Benchohra, M. Impulsive fractional differential inclusions with infinite delay. Electron. J. Differ. Equ. 2013, 2013, 265. [Google Scholar]

	23. 
Benchohra, M.; Litimein, S.; Trujillo, J.J.; Velasco, M.P. Abstract fractional integro-differential equations with state-dependent delay. Int. J. Evol. Equ. 2012, 6, 25–38. [Google Scholar]

	24. 
Wang, J.R.; Ibrahim, A.G. Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces. J. Funct. Spaces 2013, 2013, 518306. [Google Scholar] [CrossRef]

	25. 
Agarwal, R.P.; Andrade, B.D. On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1143–1149. [Google Scholar] [CrossRef]

	26. 
Aissani, K.; Benchohra, M. Fractional integro-differential equations with state-dependent delay. Adv. Dyn. Syst. Appl. 2014, 9, 17–30. [Google Scholar]

	27. 
Benchohra, M.; Litimein, S.; Guerekata, G.N. On fractional integro-differential inclusions with state-dependent delay in Banach spaces. Appl. Anal. 2013, 92, 335–350. [Google Scholar] [CrossRef]

	28. 
Benchohra, M.; Berhoun, F. Impulsive fractional differential equations with state-dependent delay. Commun. Appl. Anal. 2010, 14, 213–224. [Google Scholar]

	29. 
Dabas, J.; Gautam, G.R. Impulsive neutral fractional integro-differential equation with state-dependent delay and integral boundary condition. Electron. J. Differ. Equ. 2013, 2013, 273. [Google Scholar]

	30. 
Dabas, J.; Chauhan, A.; Kumar, M. Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011, 2011, 793023. [Google Scholar] [CrossRef]

	31. 
Darwish, M.A.; Ntouyas, S.K. Semilinear functional differential equations of fractional order with state-dependent delay. Electron. J. Differ. Equ. 2009, 2009, 38. [Google Scholar]

	32. 
Dos Santos, J.P.C.; Arjunan, M.M.; Cuevas, C. Existence results for fractional neutral integrodifferential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1275–1283. [Google Scholar] [CrossRef]

	33. 
Dos Santos, J.P.C.; Cuevas, C.; de Andrade, B. Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011, 2011, 642013. [Google Scholar] [CrossRef]

	34. 
Guendouzi, T.; Benzatout, O. Existence of mild solutions for impulsive fractional stochastic differential inclusions with state-dependent delay. Chin. J. Math. 2014, 2014, 981714. [Google Scholar] [CrossRef]

	35. 
Kavitha, V.; Wang, P.Z.; Murugesu, R. Existence results for neutral functional fractional differential equations with state dependent-delay. Malaya J. Mat. 2012, 1, 50–61. [Google Scholar]

	36. 
Yan, Z.; Zhang, H. Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay. Electron. J. Differ. Equ. 2013, 2013, 1–21. [Google Scholar]

	37. 
Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]

	38. 
Stamova, I.M. Stability Analysis of Impulsive Functional Differential Equations; De Gruyter: Berlin, Germany, 2009. [Google Scholar]

	39. 
Graef, J.R.; Henderson, J.; Ouahab, A. Impulsive Differential Inclusions: A Fixed Point Approach; Walter de Gruyter GmbH: Berlin, Germany, 2013. [Google Scholar]

	40. 
Bainov, D.; Covachev, V. Impulsive Differential Equations with a Small Parameter; World Scientific Publishing Corporation: Singapore, 1995. [Google Scholar]

	41. 
Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive Differential Equations and Inclusions. In Contemporary Mathematics and Its Applications; Hindawi Publishing Corporation: New York, NY, USA, 2006; Volume 2. [Google Scholar]

	42. 
Balachandran, K.; Annapoorani, N. Existence results for impulsive neutral evolution integrodifferential equations with infinite delay. Nonlinear Anal. Hybrid Syst. 2009, 3, 674–684. [Google Scholar] [CrossRef]

	43. 
Chang, Y.K.; Anguraj, A.; Arjunan, M.M. Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear Anal. Hybrid Syst. 2008, 2, 209–218. [Google Scholar] [CrossRef]

	44. 
Hernandez, E.; Anguraj, A.; Arjunan, M.M. Existence results for an impulsive second order differential equation with state-dependent delay. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2010, 17, 287–301. [Google Scholar]

	45. 
Hernandez, E.; Pierri, M.; Goncalves, G. Existence results for an impulsive abstract partial differential equation with state-dependent delay. Comput. Math. Appl. 2006, 52, 411–420. [Google Scholar] [CrossRef]

	46. 
Liu, J.H. Nonlinear impulsive evolution equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 1999, 6, 77–85. [Google Scholar]

	47. 
Arjunan, M.M.; Kavitha, V. Existence results for impulsive neutral functional differential equations with state-dependent delay. Electron. J. Qual. Theory Differ. Equ. 2009, 26, 1–13. [Google Scholar] [CrossRef]

	48. 
Pandey, D.N.; Das, S.; Sukavanam, N. Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses. Int. J. Nonlinear Sci. 2014, 18, 145–155. [Google Scholar]

	49. 
Park, J.Y.; Jeong, J.U. Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Differ. Equ. 2014, 2014, 17. [Google Scholar] [CrossRef]

	50. 
Wang, J.R.; Feckan, M. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015, 46, 915–934. [Google Scholar] [CrossRef]

	51. 
Babiarz, A.; Klamka, J.; Niezabitowski, M. Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 2016, 26, 263–275. [Google Scholar] [CrossRef]

	52. 
Klamka, J.; Babiarz, A.; Niezabitowski, M. Banach fixed-point theorem in semilinear controllability problems—A survey. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 21–35. [Google Scholar] [CrossRef]

	53. 
Wang, J.R.; Zhang, Y. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 2015, 39, 85–90. [Google Scholar] [CrossRef]

	54. 
Wang, J.R.; Feckan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part. Differ. Equ. 2011, 8, 345–361. [Google Scholar]

	55. 
Bajlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, October 2001. [Google Scholar]

	56. 
Fu, X.; Huang, R. Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 2013, 224, 743–759. [Google Scholar] [CrossRef]

	57. 
Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]

	58. 
Bohnenblust, H.F.; Karlin, S. On a Theorem of Ville, Contribution to the Theory of Games, Annals of Mathematics Studies, No. 24; Princeton University Press: Princeton, NJ, USA, 1950; pp. 155–160. [Google Scholar]

	59. 
Górniewicz, L. Topological Fixed Point Theory of Multivalued Mappings; Mathematics and Its Applications, 495; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]

	60. 
Brown, R.F. A Topological Introduction to Nonlinear Analysis; Springer: Bosten, Switzerland, 2014. [Google Scholar]





© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  mathematics-05-00009


  
    		
      mathematics-05-00009
    


  




  





