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Abstract:



In this paper, some nonlinear Gronwall–Bellman type inequalities are established. Then, the obtained results are applied to study the Hyers–Ulam stability of a fractional differential equation and the boundedness of solutions to an integral equation, respectively.
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1. Introduction


The study of Gronwall–Bellman inequalities has been paid much attention and developed at a high rate in the last three decades. These inequalities play an important role in many fields. They are applied to the investigation of the stability, boundedness, global existence, uniqueness, and continuous dependence on the initial or boundary value and parameters of solutions to differential equations, integral equations, as well as difference equations [1,2,3,4,5,6,7,8,9,10,11]. They are also used to study the regularized family of models for homogeneous incompressible two-phase flows [12], the state of the high nonlinear circuit [13], the Cousin problems and the emergence of the Sheaf Concept [14].



Recently, Willett [15] discussed the linear inequality:


u(t)≤w0(t)+∑i=1nwi(t)∫0tvi(s)u(s)ds(t∈I)



(1)




and Lin [16] extended the study to the linear inequality as follows:


[image: there is no content]



(2)







Several generalizations of the Gronwall inequality were established and then applied to prove the uniqueness of solutions for fractional differential equations with various derivatives.



In this paper, we are concerned with the following nonlinear Gronwall–Bellman-type inequality:


up(x)≤a(x)+∑i=1nωi(x)∫0xhi(t)gi(t,u(t))dt+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,u(t))dt



(3)







Some new results are obtained and then applied to investigate the qualitative properties of differential and integral equations.



This paper is organized as follows: In Section 2, we introduce some definitions and notations. Some nonlinear Gronwall–Bellman-type inequalities are presented in Section 3. In Section 4, the obtained results are applied to prove the Hyers–Ulam stability of a fractional differential equation and the boundedness of the solutions to a integral equation.




2. Preliminaries


In this section, we recall some standard definitions and notations.



Lemma 1.

(see [17]). Assume that [image: there is no content] with [image: there is no content] Then, for any [image: there is no content] we have:


[image: there is no content]



(4)









Lemma 2.

(see [15]) Suppose that:


u(t)≤w0(t)+∑i=1nwi(t)∫0tvi(s)u(s)ds(t∈I)



(5)




where [image: there is no content] and [image: there is no content] are locally integrable on I, all functions are assumed non-negative. Then:


[image: there is no content]



(6)




where [image: there is no content] is defined inductively as the composition of [image: there is no content] functional operators; i.e., Ei=DiDi−1⋯D0, where:


[image: there is no content]



(7)






Djw=w+(Ej−1wj)(exp∫0tvjEj−1wj)∫0tvjwds(j=1,2,⋯,n)



(8)










3. Main Results


In this section, we will establish some nonlinear Gronwall–Bellman-type inequalities. The first result is the following:



Theorem 1.

Suppose that [image: there is no content] are constants, [image: there is no content] with [image: there is no content] for [image: there is no content] where [image: there is no content] is the Lipschitz constants, and all the functions are nonnegative and continuous on [0,T), with [image: there is no content] are bounded and nondecreasing functions. If the following inequality is satisfied:


[image: there is no content]



(9)




then:


u(x)≤(a˜(x)+∑k=1∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′)·∫0x(x−t)∑i=1kβi′−1a˜(t)dt))1p



(10)




for any [image: there is no content] and [image: there is no content], where:


[image: there is no content]



(11)









Proof. 

Denote [image: there is no content] then we have [image: there is no content]


[image: there is no content]



(12)







According to Lemma 1:


v(x)≤a(x)+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,1pb1−ppv(t)+p−1pb1p)dt=a(x)+∑i=1nbi(x)∫0x(x−t)βi−1[fi(t,1pb1−ppv(t)+p−1pb1p)−fi(t,p−1pb1p)+fi(t,p−1pb1p)]dt≤a(x)+1pb1−pp∑i=1nlibi(x)∫0x(x−t)βi−1v(t)dt+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,p−1pb1p)dt=a˜(x)+1pb1−pp∑i=1nlibi(x)∫0x(x−t)βi−1v(t)dt



(13)







Now let:


[image: there is no content]



(14)




[image: there is no content] for locally integrable functions [image: there is no content] Then:


[image: there is no content]



(15)







By mathematical induction method, we have:


v(x)≤a˜(x)+B(a˜(x)+Bv(x))=a˜(x)+Ba˜(x)+B2v(x)≤a˜(x)+Ba˜(x)+B2(a˜(x)+Bv(x))=a˜(x)+Ba˜(x)+B2a˜(x)+B3v(x)≤⋯≤∑m=0k−1Bma˜(x)+Bkv(x).



(16)







Let [image: there is no content]. We assert that:


[image: there is no content]



(17)




for any [image: there is no content] and [image: there is no content] as [image: there is no content] for each x in [image: there is no content]



In fact, (i) If [image: there is no content], then:


Bv(x)≤∑1′=1nr[li′bi′(x)Γ(βi′)]Γ(βi′)∫0x(x−t)βi′−1v(t)dt=∑1′=1nrli′bi′(x)∫0x(x−t)βi′−1v(t)dt=Bv(x)



(18)







So we know the inequality (17) holds for [image: there is no content]



(ii) Assume that the inequality (17) holds for [image: there is no content]; that is:


[image: there is no content]



(19)







(iii) For [image: there is no content] we have:


Bj+1v(x)=B(Bjv(x))≤∑i=1nrlibi(x)∫0x(x−t)βi−1·(∑1′,2′,⋯j′=1nrj∏i=1j[li′bi′(t)Γ(βi′)]Γ(∑i=1jβi′)·∫0t(t−s)∑i=1jβi′−1v(s)ds)dt



(20)







Owing to the monotonicity of [image: there is no content] , we get:


Bj+1v(x)≤∑i=1nrlibi(x)·∑1′,2′,⋯j′=1nrj∏i=1j[li′bi′(t)Γ(βi′)]Γ(∑i=1jβi′)·∫0x(x−t)βi−1·∫0t(t−s)∑i=1jβi′−1v(s)dsdt



(21)







Interchanging the order of integration, we have:


Bj+1v(x)≤rj+1∑i=1nlibi(x)·∑1′,2′,⋯j′=1n∏i=1j[li′bi′(x)Γ(βi′)]Γ(∑i=1jβi′)·Γ(βi)Γ(∑i=1jβi′)Γ(βi+∑i=1jβi′)·∫0x(x−s)∑i=1jβi′+βi−1v(s)ds=rj+1∑i=1n∑1′,2′,⋯j′=1n[libi(x)Γ(βi)]·∏i=1j[li′bi′(x)Γ(βi′)]Γ(βi+∑i=1jβi′)·∫0x(x−s)∑i=1jβi′+βi−1v(s)ds



(22)







Let [image: there is no content] then:


Bj+1v(x)≤rj+1∑(j+1)′=1n∑1′,2′,⋯j′=1n[l(j+1)′b(j+1)′(x)Γ(β(j+1)′)]·∏i=1j[bi′(x)Γ(βi′)]Γ(β(j+1)′+∑i=1jβi′)·∫0x(x−s)∑i=1jβi′+β(j+1)′−1v(s)ds=rj+1∑1′,2′,⋯(j+1)′=1n∏i=1j+1[li′bi′(x)Γ(βi′)]Γ(∑i=1j+1βi′)∫0x(x−s)∑i=1j+1βi′−1v(s)ds



(23)







This implies that the inequality (17) holds for [image: there is no content]. Hence, it holds for any [image: there is no content].



Since [image: there is no content] are bounded, [image: there is no content]:


Bkv(x)≤∑1′,2′,⋯k′=1n[l1′b1′(t)Γ(β1′)][b2′(x)Γ(β2′)]⋯[bk′(x)Γ(βk′)]Γ(β1′+β2′+⋯+βk′)·∫0x(x−t)∑i=1kβi′−1v(t)dt≤∑1′,2′,⋯k′=1n(l1′l2′⋯lk′)(M1′M2′⋯Mk′)·(Γ(β1′)Γ(β2′)⋯Γ(βk′))Γ(β1′+β2′+⋯+βk′)·∫0x(x−t)∑i=1kβi′−1v(t)dt



(24)




and according to the property of the Gamma function, [image: there is no content] as [image: there is no content] for [image: there is no content] then:


v(x)≤a˜(x)+∑k=1∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′)·∫0x(x−t)∑i=1kβi′−1a˜(t)dt).



(25)







Hence:


u(x)≤(a˜(x)+∑k=1∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′)·∫0x(x−t)∑i=1kβi′−1a˜(t)dt))1p



(26)







This completes the proof. ☐





By Theorem 1, the main result in [16] is a special case of Theorem 1 for [image: there is no content].



Corollary 1.

(see [16]). For any t∈[0,T):


[image: there is no content]



(27)




where all the functions are non-negative and continuous. The constants [image: there is no content][image: there is no content] are the bounded and monotonic increasing functions on [0,T). Then:


[image: there is no content]



(28)









Corollary 2.

Under the hypothesis of Theorem 1, if [image: there is no content] is increasing on [image: there is no content], then:


u(x)≤(a˜(T)∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·T∑i=1kβi′))1p



(29)









Proof. 

Since [image: there is no content] is increasing, [image: there is no content] is also increasing:


u(x)≤(a˜(x)+∑k=1∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′)·∫0x(x−t)∑i=1kβi′−1a˜(t)dt))1p≤a˜1p(x)(1+∑k=1∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′)·∫0x(x−t)∑i=1kβi′−1dt))1p=(a˜(x)∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·t∑i=1kβi′))1p≤(a˜(T)∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·T∑i=1kβi′))1p



(30)







The proof is completed. ☐





Theorem 2.

Under the conditions of Corollary 2, if [image: there is no content] are bounded and monotonic increasing. [image: there is no content] with [image: there is no content] for [image: there is no content] where [image: there is no content] is the Lipschitz constant. If the following inequality is satisfied:


up(x)≤a(x)+∑i=1nωi(x)∫0xhi(t)gi(t,u(t))dt+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,u(t))dt



(31)




then:


u(x)≤(Ena˜(x)·∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·t∑i=1kβi′))1p



(32)




where [image: there is no content] is defined inductively as the composition of [image: there is no content] functional operators; i.e., Ei=DiDi−1⋯D0, where:


[image: there is no content]



(33)






Djw=w+(Ej−1wj)(exp∫0tvjEj−1wj)∫0tvjwds(j=1,2,⋯,n)



(34)









Proof. 

Denote [image: there is no content] Then:


v(x)≤a(x)+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,v1p(t))dt+∑i=1nωi(x)∫0xhi(t)gi(t,v1p(t))dt≤a(x)+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,1pb1−ppv(t)+p−1pb1p)dt+∑i=1nωi(x)∫0xhi(t)gi(t,1pb1−ppv(t)+p−1pb1p)dt≤a(x)+∑i=1nbi(x)∫0x(x−t)βi−1[fi(t,1pb1−ppv(t)+p−1pb1p)−fi(t,p−1pb1p)+fi(t,p−1pb1p)]dt+∑i=1nωi(x)∫0xhi(t)·[gi(t,1pb1−ppv(t)+p−1pb1p)−gi(t,p−1pb1p)+gi(t,p−1pb1p)]dt≤a(x)+1pb1−pp∑i=1nlibi(x)∫0x(x−t)βi−1v(t)dt+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,p−1pb1p)dt+1pb1−pp∑i=1nTiωi(x)∫0xhi(t)v(t)dt+∑i=1nωi(x)∫0xhi(t)gi(t,p−1pb1p)dt=a˜(x)+1pb1−pp∑i=1nlibi(x)∫0x(x−t)βi−1v(t)dt+1pb1−pp∑i=1nTiωi(x)∫0xhi(t)v(t)dt



(35)




where:


a˜(x)=a(x)+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,p−1pb1p)dt+∑i=1nωi(x)∫0xhi(t)gi(t,p−1pb1p)dt



(36)







Let:


[image: there is no content]



(37)







Then:


[image: there is no content]



(38)







By Inequality (37), we derive that [image: there is no content] is nonnegative and increasing. According to Corollary 1, we have:


v(x)≤z(x)∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·x∑i=1kβi′)



(39)







Combing (39) with (37):


z(x)≤a˜(x)+1pb1−pp∑i=1nTiωi(x)∫0xhi(t)·(z(t)∑k=0∞(∑1′,2′,⋯k′=1n(1pb1−pp)k·∏i=1k[li′bi′(t)Γ(βi′)]Γ(∑i=1kβi′+1)·t∑i=1kβi′))dt≤a˜(x)+1pb1−pp∑i=1nTiωi(x)∫0xh˜i(t)z(t)dt



(40)




where:


[image: there is no content]



(41)







By Lemma 2, we obtain:


[image: there is no content]



(42)




By inequalities (39) and (42), we obtain (32). The proof is completed. ☐





Corollary 3.

Under the hypothesis of Theorem 2, if [image: there is no content], then:


[image: there is no content]



(43)










4. Applications


In this section, we present two examples as applications of our results.



Example 1.

The following initial value problems of fractional differential equation was considered in [16]:


[image: there is no content]



(44)




where [image: there is no content] f satisfies [image: there is no content]; l is the Lipschitz constant. [image: there is no content] and [image: there is no content] denote the Riemann–Liouville fractional derivative and fractional integral operators, respectively. The uniqueness of solutions was proved by Gronwall–Bellman inequality.





In this section, we study the Hyers–Ulam stability of this initial value problem.



As we know, if [image: there is no content] is a solution of the differential Equation (44), then [image: there is no content] satisfies the following integral equation:


[image: there is no content]



(45)







Theorem 3.

If [image: there is no content] satisfies:


|∑i=1nDRβiuε(t)−fε(t,uε(t))|≤ε,








then there exists a solution of (44) such that [image: there is no content] for all [image: there is no content]. Where:


[image: there is no content]



(46)




[image: there is no content]





Proof. 

According to (45), we know that [image: there is no content] satisfies:


[image: there is no content]



(47)







Then:


|u(t)−uε(t)|≤|IRβnf(t,u(t))−∑i=1n−1IRβn−βiu(t)−IRβnfε(t,uε(t))+∑i=1n−1IRβn−βiuε(t)|≤IRβnε+∑i=1n−11Γ(βn−βi)∫0t(t−s)βn−βi−1|u(s)−uε(s)|ds



(48)







By Theorem 1, we have:


|u(t)−uε(t)|≤εtnβΓ(βn+1)+∑k=1∞∑1′,2′,⋯k′=1n∏i=1k[bi′(t)Γ(βi′)]Γ(∑i=1kβi′)·∫0t(t−s)∑i=1kβi′−1)·IRβnεds≤εΓ(βn)Γ(βn+1)(1+∑k=1∞∑1′,2′,⋯k′=1n∏i=1k[bi′(t)Γ(βi′)]Γ(∑i=1kβi′+1)·T∑i=1kβi′)



(49)




where [image: there is no content] This completes the proof. ☐





Example 2.

Consider the integral equation as follows:


u(x)=u(0)+∑i=1nωi(x)∫0xhi(t)gi(t,u(t))dt+∑i=1nbi(x)∫0x(x−t)βi−1fi(t,u(t))dt



(50)









This includes the integer and fractional integral parts.



We assert the solution of this integral equation is bounded on [image: there is no content], provided ωi,gi,fi(i=1,2,⋯,n) satisfy the assumptions of Corollary 3.



Theorem 4.

Let u be a solution of (50) on [image: there is no content]. If [image: there is no content] satisfy the assumptions of Corollary 7, then for [image: there is no content]:


[image: there is no content]



(51)









Proof. 

If u is a solution of (50), then by Corollary 3:


|u(x)|≤|u(0)|+∑i=1nωi(x)∫0xhi(t)|gi(t,u(t))|dt+∑i=1nbi(x)∫0x(x−t)βi−1|fi(t,u(t))|dt≤Enu(0)·∑k=0∞(∑1′,2′,⋯k′=1n∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·t∑i=1kβi′)≤Enu(0)·∑k=0∞(∑1′,2′,⋯k′=1n∏i=1k[li′bi′(x)Γ(βi′)]Γ(∑i=1kβi′+1)·T∑i=1kβi′)



(52)




 ☐





Remark 1.

The result of Corollary 3 also can be used to prove the uniqueness of solutions to fractional differential equations.
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