On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation
Abstract
:1. Introduction
2. Problem Formulation and Auxiliary Results
2.1. Problem Formulation
2.2. Mellin-Barnes Representations of the Fundamental Solution
2.3. Special Functions of the Wright Type
3. New Integral Representations of the Fundamental Solution
4. New Closed-Form Formulas for Particular Cases of the Fundamental Solution
- (a)
- For and under the condition :
- (b)
- For and under the condition :
- (i)
- ;
- (ii)
- .
5. Discussion
Conflicts of Interest
References
- Kochubei, A.N. Fractional-order diffusion. Differ. Equ. 1990, 26, 485–492. [Google Scholar]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Hanyga, A. Multidimensional solutions of space-fractional diffusion equations. Proc. R. Soc. Lond. A 2001, 457, 2993–3005. [Google Scholar] [CrossRef]
- Hanyga, A. Multi-dimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. Lond. A 2002, 458, 429–450. [Google Scholar] [CrossRef]
- Hanyga, A. Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 2002, 458, 933–957. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional wave equation and damped waves. J. Math. Phys. 2013, 54, 031505. [Google Scholar] [CrossRef]
- Luchko, Y. Multi-dimensional fractional wave equation and some properties of its fundamental solution. Commun. Appl. Ind. Math. 2014, 6, e485. [Google Scholar] [CrossRef]
- Luchko, Y. Wave-diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 2015, 293, 40–52. [Google Scholar] [CrossRef]
- Boyadjiev, L.; Luchko, Y. Mellin integral transform approach to analyze the multidimensional diffusion-wave equations. Chaos Solitons Fractals 2017, 102, 127–134. [Google Scholar] [CrossRef]
- Boyadjiev, L.; Luchko, Y. Multi-dimensional α-fractional diffusion-wave equation and some properties of its fundamental solution. Comput. Math. Appl. 2017, 73, 2561–2572. [Google Scholar] [CrossRef]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Saichev, A.; Zaslavsky, G. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Ferreira, M.; Vieira, N. Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators. J. Math. Anal. Appl. 2016, 447, 329–353. [Google Scholar] [CrossRef]
- Kochubei, A.N. Cauchy problem for fractional diffusion-wave equations with variable coefficients. Appl. Anal. 2014, 93, 2211–2242. [Google Scholar] [CrossRef]
- Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [Google Scholar] [CrossRef]
- Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Differ. Equ. 2004, 199, 211–255. [Google Scholar] [CrossRef]
- Luchko, Y. Operational method in fractional calculus. Fract. Calc. Appl. Anal. 1999, 2, 463–489. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions, Volume 3; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions, Volume 2; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. [Google Scholar]
- Fox, C. The G- and H-functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Kilbas, A.A.; Saigo, M. H-Transform. Theory and Applications; Chapman and Hall: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK, 1994. [Google Scholar]
- Mainardi, F.; Pagnini, G. Salvatore Pincherle: The pioneer of the Mellin-Barnes integrals. J. Comput. Appl. Math. 2003, 153, 331–342. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K. The H-Functions with Applications in Statistics and Other Disciplines; John Wiley: New York, NY, USA, 1978. [Google Scholar]
- Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 2000, 118, 175–191. [Google Scholar] [CrossRef]
- Luchko, Y. Algorithms for evaluation of the Wright function for the real arguments’ values. Fract. Calc. Appl. Anal. 2008, 11, 57–75. [Google Scholar]
- Luchko, Y.; Mainardi, F. Cauchy and signaling problems for the time-fractional diffusion-wave equation. ASME J. Vib. Acoust. 2014, 135. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Pagnini, G. The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 2013, 16, 436–453. [Google Scholar] [CrossRef]
- Stanković, B. On the function of E.M. Wright. Publ. l’Inst. Math. Beogr. Nouv. Sèr. 1970, 10, 113–124. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. 1935, 38, 257–270. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings VIII International Colloquium on Differential Equations; Bainov, D., Ed.; VSP: Utrecht, The Netherlands, 1998; pp. 195–202. [Google Scholar]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus: some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Wien, Austria, 1997; pp. 291–348. [Google Scholar]
- Mainardi, F.; Tomirotti, M. On a special function arising in the time fractional diffusion-wave equation. In Transform Methods and Special Functions; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology: Singapore, 1995; pp. 171–183. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar] [CrossRef]
- Luchko, Y.; Gorenflo, R. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1998, 1, 63–78. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchko, Y. On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation. Mathematics 2017, 5, 76. https://doi.org/10.3390/math5040076
Luchko Y. On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation. Mathematics. 2017; 5(4):76. https://doi.org/10.3390/math5040076
Chicago/Turabian StyleLuchko, Yuri. 2017. "On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation" Mathematics 5, no. 4: 76. https://doi.org/10.3390/math5040076
APA StyleLuchko, Y. (2017). On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation. Mathematics, 5(4), 76. https://doi.org/10.3390/math5040076