Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme
Abstract
:1. Introduction
2. Reproducing Kernel Functions
2.1. Solutions in
2.2. The Main Results
- (i)
- (ii)
- is bounded;
- (iii)
- is dense in ;
- (iv)
- for any .
3. Group Preserving Scheme
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, O.P.; Pandey, R.; Singh, V.K. An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified homotopy analysis method. Comput. Phys. Commun. 2009, 180, 1116–1124. [Google Scholar] [CrossRef]
- Kaur, H.; Mittal, R.C.; Mishra, V. Haar wavelet approximate solutions for the generalized lane–emden equations arising in astrophysics. Comput. Phys. Commun. 2013, 184, 2169–2177. [Google Scholar] [CrossRef]
- Nasab, A.K.; Kılıçman, A.; Atabakan, Z.P.; Leong, W.J. A numerical approach for solving singular nonlinear lane-emden type equations arising in astrophysics. New Astron. 2015, 34, 178–186. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N. Solution of lane–emden type equations using bernstein operational matrix of differentiation. New Astron. 2012, 17, 303–308. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N.; Bhardwaj, A.; Dutta, G. Solution of lane–emden type equations using legendre operational matrix of differentiation. Appl. Math. Comput. 2012, 218, 7629–7637. [Google Scholar] [CrossRef]
- Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science Publishers Inc.: New York, NY, USA, 2009. [Google Scholar]
- Akgül, A. A new method for approximate solutions of fractional order boundary value problems. Neural Parallel Sci. Comput. 2014, 22, 223–237. [Google Scholar]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Chen, Z. The exact solution of system of linear operator equations in reproducing kernel spaces. Appl. Math. Comput. 2008, 203, 56–61. [Google Scholar] [CrossRef]
- Geng, F.; Cui, M.; Zhan, B. Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods. Nonlinear Anal. Real World Appl. 2010, 11, 637–644. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane-Emden-Fowler type. Appl. Math. Model. 2013, 37, 7539–7548. [Google Scholar] [CrossRef]
- Adem, A.; Khalique, C.; Biswas, A. Solutions of Kadomtsev-Petviashvili equation with power law nonlinearity in 1 + 3 dimensions. Math. Methods Appl. Sci. 2011, 34, 532–543. [Google Scholar] [CrossRef]
- Biswas, A.; Zerrad, E. Higher order Gabitov-Turitsyn equation for dispersion-managed solitons in multiple channels. Int. J. Math. Anal. 2007, 1, 565–582. [Google Scholar]
- Ebadi, G.; Biswas, A. The method and topological soliton solution of the K(m, n) equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2377–2382. [Google Scholar] [CrossRef]
- Ebadi, G.; Biswas, A. Application of G′/G-expansion method to Kuramoto-Sivashinsky equation. Acta Math. Appl. Sin. Engl. Ser. 2016, 32, 623–630. [Google Scholar] [CrossRef]
- Jafari, H.; Tajadodi, H.; Biswas, A. Homotopy analysis method for solving a couple of evolution equations and comparison with Adomian’s decomposition method. Waves Random Complex Media 2011, 21, 657–667. [Google Scholar] [CrossRef]
- Jafari, H.; Sooraki, A.; Talebi, Y.; Biswas, A. The first integral method and traveling wave solutions to Davey-Stewartson equation. Nonlinear Anal. Model. Control 2012, 17, 182–193. [Google Scholar]
- Johnpillai, A.G.; Kara, A.H.; Biswas, A. Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation. Appl. Math. Lett. 2013, 26, 376–381. [Google Scholar] [CrossRef]
- Khalique, C.M.; Biswas, A. A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 4033–4040. [Google Scholar] [CrossRef]
- Kumar, S.; Hama, A.; Biswas, A. Solutions of Konopelchenko-Dubrovsky equation by traveling wave hypothesis and Lie symmetry approach. Appl. Math. Inf. Sci. 2014, 8, 1533–1539. [Google Scholar] [CrossRef]
- Milovic, D.; Biswas, A. Doubly periodic solution for nonlinear Schrödinger’s equation with triple power law nonlinearity. Int. J. Nonlinear Sci. 2009, 7, 420–425. [Google Scholar]
- Morris, R.M.; Kara, A.H.; Biswas, A. An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 2016, 67, 55–62. [Google Scholar] [CrossRef]
- Liu, C.-S. Cone of nonlinear dynamical system and group preserving schemes. Int. J. Non-Linear Mech. 2001, 36, 1047–1068. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Hashemi, M.S. Group preserving scheme for the cauchy problem of the laplace equation. Eng. Anal. Bound. Elem. 2011, 35, 1003–1009. [Google Scholar] [CrossRef]
- Akgül, A.; Hashemi, M.S.; Raheem, S.A. Constructing two powerful methods to solve the thomas—Fermi equation. Nonlinear Dyn. 2016, 87, 1435–1444. [Google Scholar] [CrossRef]
- Akgül, A.; Hashemi, M.; Inc, M. Group preserving scheme and reproducing kernel method for the poisson–boltzmann equation for semiconductor devices. Nonlinear Dyn. 2017, 88, 2817–2829. [Google Scholar] [CrossRef]
- Hashemi, M.S. Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 990–1001. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Abbasband, S. A geometric approach for solving troesch’s problem. Bull. Malays. Math. Sci. Soc. 2017, 40, 97–116. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Baleanu, D.; Parto-Haghigh, M. A lie group approach to solve the fractional poisson equation. Rom. J. Phys. 2015, 60, 289–1297. [Google Scholar]
- Hashemi, M.S.; Darvishi, E.; Baleanu, D. A geometric approach for solving the density dependent diffusion nagumo equation. Adv. Differ. Equ. 2016, 2016. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Inc, M.; Karatas, E.; Akgül, A. A numerical investigation on burgers equation by mol-gps method. J. Adv. Phys. 2017, 6, 413–417. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Nucci, M.C.; Abbasbandy, S. Group analysis of the modified generalized vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 867–877. [Google Scholar] [CrossRef]
- Liu, C.-S. Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transf. 2004, 47, 2567–2576. [Google Scholar] [CrossRef]
- Baker, A. Matrix Groups: An Introduction to Lie Group Theory; Springer: London, UK, 2002. [Google Scholar]
η | RKM | GPS |
---|---|---|
0.1 | 0.9983360948 | 0.998335829543602 |
0.5 | 0.9598395393 | 0.959839062543164 |
1.0 | 0.8550592570 | 0.855057541543122 |
2.0 | 0.5829639252 | 0.582850462212463 |
3.0 | 0.3592354020 | 0.359226444051538 |
4.0 | 0.2091578370 | 0.209281565659890 |
5.0 | 0.1106289100 | 0.110819798197543 |
6.0 | 0.0435212480 | 0.043737947433237 |
7.0 | −0.004536310 | −0.00431221951973 |
8.0 | −0.040571182 | −0.04034773735436 |
9.0 | −0.068517970 | −0.06829954400156 |
10.0 | −0.090565560 | −0.09035595601487 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, M.S.; Akgül, A.; Inc, M.; Mustafa, I.S.; Baleanu, D. Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme. Mathematics 2017, 5, 77. https://doi.org/10.3390/math5040077
Hashemi MS, Akgül A, Inc M, Mustafa IS, Baleanu D. Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme. Mathematics. 2017; 5(4):77. https://doi.org/10.3390/math5040077
Chicago/Turabian StyleHashemi, Mir Sajjad, Ali Akgül, Mustafa Inc, Idrees Sedeeq Mustafa, and Dumitru Baleanu. 2017. "Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme" Mathematics 5, no. 4: 77. https://doi.org/10.3390/math5040077
APA StyleHashemi, M. S., Akgül, A., Inc, M., Mustafa, I. S., & Baleanu, D. (2017). Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme. Mathematics, 5(4), 77. https://doi.org/10.3390/math5040077