Iterative Methods for Computing Vibrational Spectra
Abstract
:1. Introduction
2. Direct Product Basis Sets
3. Using a Direct Product Basis Set to Solve the Schroedinger Equation
4. Using a DVR to Make a Contracted Basis
Evaluating Matrix-Vector Products without Storing a Vector as Large as the Direct Product DVR
5. Using Pruning to Reduce Both Basis and Grid Size
6. Using Rank Reduction to Avoid Storing Full Dimensional Vectors
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Tannor, D.J. Introduction to Quantum Mechanics: A Time- Dependent Perspective; University Science Books: Sausalito, CA, USA, 2007. [Google Scholar]
- Kosloff, R. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem. 1988, 92, 2087–2100. [Google Scholar] [CrossRef]
- Light, J.C.; Carrington, T., Jr. Discrete-variable representations and their utilization. Adv. Chem. Phys. 2000, 114, 263–310. [Google Scholar]
- Bowman, J.M.; Carrington, T.; Meyer, H.-D. Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol. Phys. 2008, 106, 2145–2182. [Google Scholar] [CrossRef]
- Wang, X.-G.; Carrington, T. New ideas for using contracted basis functions with a Lanczos eigensolver for computing vibrational spectra of molecules with four or more atoms. J. Chem. Phys. 2002, 117, 6923–6934. [Google Scholar] [CrossRef]
- Avila, G.; Carrington, T., Jr. Nonproduct quadrature grids for solving the vibrational Schrödinger equation. J. Chem. Phys. 2009, 131, 174103. [Google Scholar] [CrossRef] [PubMed]
- Dawes, R.; Wang, X.-G.; Jasper, A.; Carrington, T. Nitrous oxide dimer: a new potential energy surface and ro-vibrational spectrum of the non-polar isomer. J. Chem. Phys. 2010, 133, 134304:1–134304:14. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Poulin, N.; Carrington, T., Jr. Calculating rovibrational energy levels of a triatomic molecule with a simple Lanczos method. J. Chem. Phys. 1999, 110, 10269–10274. [Google Scholar] [CrossRef]
- Szidarovszky, T.; Fabri, C.; Csaszar, A.G. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions. J. Chem. Phys. 2012, 136, 174112. [Google Scholar] [CrossRef] [PubMed]
- Leforestier, C.; Braly, L.B.; Liu, K.; Elroy, M.J.; Saykally, R.J. Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with a split Wigner pseudo spectral approach. J. Chem. Phys. 1997, 106, 8527. [Google Scholar] [CrossRef]
- Brown, J.; Wang, X.-G.; Dawes, R.; Carrington, T. Computational study of the rovibrational spectrum of (OCS)2. J. Chem. Phys. 2012, 136, 134306:1–134306:12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T. Computing ro-vibrational levels of methane with internal vibrational coordinates and an Eckart frame. J. Chem. Phys. 2013, 138, 104106:1–104106:20. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T.; McKellar, A.R.W. Theoretical and experimental study of the rovibrational spectrum of He2-CO. J. Phys. Chem. A 2009, 113, 13331–13341, (Robert Field Festschrift). [Google Scholar] [CrossRef] [PubMed]
- Golub, G.H.; van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3. [Google Scholar]
- Carter, S.; Bowman, J.M.; Handy, N.C. Extensions and tests of “multimode”: A code to obtain accurate vibration/rotation energies of many-mode molecules. Theor. Chim. Acta 1998, 100, 191–198. [Google Scholar] [CrossRef]
- Carter, S.; Culik, S.J.; Bowman, J.M. Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu (100). J. Chem. Phys. 1997, 107, 10458–10469. [Google Scholar] [CrossRef]
- Benoit, D.M. Fast vibrational self-consistent field calculations through a reduced mode–mode coupling scheme. J. Chem. Phys. 2004, 120, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Meier, P.; Neff, M.; Rauhut, G. Accurate Vibrational Frequencies of Borane and Its Isotopologues. J. Chem. Theory Comput. 2011, 7, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Rauhut, G. Configuration selection as a route towards efficient vibrational configuration interaction calculations. J. Chem. Phys. 2007, 127, 184109. [Google Scholar] [CrossRef] [PubMed]
- Alis, O.; Rabitz, H. General Foundations of High Dimensional Model Representations. J. Math. Chem. 1999, 25, 197–233. [Google Scholar]
- Beck, M.H.; Jäckle, A.; Worth, G.A.; Meyer, H.D. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. [Google Scholar] [CrossRef]
- Manthe, U.; Meyer, H.-D.; Cederbaum, L. Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl. J. Chem. Phys. 1992, 97, 3199–3213. [Google Scholar] [CrossRef]
- Manthe, U. The state averaged multiconfigurational time-dependent Hartree approach: Vibrational state and reaction rate calculations. J. Chem. Phys. 2008, 128, 064108. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.-D.; le Quéré, F.; Léonard, C.; Gatti, F. Calculation and selective population of vibrational levels with the Multiconfiguration Time-Dependent Hartree (MCTDH) algorithm. Chem. Phys. 2006, 329, 179–192. [Google Scholar] [CrossRef]
- Richter, F.; Gatti, F.; Léonard, C.; le Quéré, F.; Meyer, H.-D. Time-dependent wave packet study on trans-cis isomerization of HONO driven by an external field. J. Chem. Phys. 2007, 127, 164315. [Google Scholar] [CrossRef] [PubMed]
- Doriol, L.J.; Gatti, F.; Iung, C.; Meyer, H.-D. Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 2008, 129, 224109. [Google Scholar] [CrossRef] [PubMed]
- Wodraszka, R.; Manthe, U. Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. J. Phys. Chem. A 2013, 117, 7246–7255. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, O.; Gatti, F.; Meyer, H.D. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J. Chem. Phys. 2007, 127, 184303. [Google Scholar] [CrossRef] [PubMed]
- Light, J.C.; Hamilton, I.P.; Lill, J.V. Generalized discrete variable approximation in quantum-mechanics. J. Chem. Phys. 1985, 82, 1400–1409. [Google Scholar] [CrossRef]
- Bac̆ić, Z.; Light, J.C. Theoretical Methods for Rovibrational States of Floppy Molecules. Annu. Rev. Phys. Chem. 1989, 40, 469–498. [Google Scholar] [CrossRef]
- Wei, H.; Carrington, T. Discrete variable representations of complicated kinetic energy operators. J. Chem. Phys. 1994, 101, 1343–1360. [Google Scholar] [CrossRef]
- Harris, D.O.; Engerholm, G.G.; Gwinn, W.D. Calculation of Matrix Elements for One-Dimensional Quantum-Mechanical Problems and the Application to Anharmonic Oscillators. J. Chem. Phys. 1965, 43, 1515–1517. [Google Scholar] [CrossRef]
- Echave, J.; Clary, D.C. Potential optimized discrete variable representation. Chem. Phys. Lett. 1992, 190, 225–230. [Google Scholar]
- Wei, H.; Carrington, T. The discrete variable representation for a triatomic Hamiltonian in bond length-bond angle coordinates. J. Chem. Phys. 1992, 97, 3029–3037. [Google Scholar] [CrossRef]
- Carrington, T. Methods for calculating vibrational energy levels. Can. J. Chem. 2004, 82, 900–914. [Google Scholar] [CrossRef]
- Csaszar, A.G.; Fabri, C.; Szidarovszky, T.; Matyus, E.; Furtenbacher, T.; Czako, G. The fourth age of quantum chemistry: molecules in motion. Phys. Chem. Chem. Phys. 2012, 14, 1085–1106. [Google Scholar] [CrossRef] [PubMed]
- Matyus, E.; Czako, G.; Sutcliffe, B.T.; Csaszar, A.G. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation. J. Chem. Phys. 2007, 127, 084102. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Muckerman, J.T. A General Variational Algorithm to Calculate Vibrational Energy Levels of Tetraatomic Molecules. J. Mol. Spectrosc. 2002, 214, 11–20. [Google Scholar] [CrossRef]
- Bramley, M.J.; Carrington, T. A general discrete variable method to calculate vibrational energy levels of three-and four-atom molecules. J. Chem. Phys. 1993, 99, 8519–8541. [Google Scholar] [CrossRef]
- Wall, M.R.; Neuhauser, D. Extraction, through filter-diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short-time segment of a signal. I. Theory and application to a quantum-dynamics model. J. Chem. Phys. 1995, 102, 8011–8022. [Google Scholar] [CrossRef]
- Mandelshtam, V.A.; Taylor, H.S. Harmonic inversion of time signals and its applications. J. Chem. Phys. 1997, 107, 6756–6769. [Google Scholar] [CrossRef]
- Iung, C.; Leforestier, C. Direct calculation of overtones: Application to the CD3H molecule. J. Chem. Phys. 1995, 102, 8453–8461. [Google Scholar] [CrossRef]
- Le Quéré, F.; Leforestier, C. Quantum exact three-dimensional study of the photodissociation of the ozone molecule. J. Chem. Phys. 1990, 92, 247–253. [Google Scholar] [CrossRef]
- McNichols, A.; Carrington, T. Vibrational energy levels of formaldehyde calculated from an internal coordinate Hamiltonian using the Lanczos algorithm. Chem. Phys. Lett. 1993, 202, 464–470. [Google Scholar] [CrossRef]
- Huang, S.-W.; Carrington, T. A comparison of filter diagonalisation methods with the Lanczos method for calculating vibrational energy levels. Chem. Phys. Lett. 1999, 312, 311–318. [Google Scholar] [CrossRef]
- Lee, S.; Chung, J.S.; Felker, P.M.; Cacheiro, J.L.; Fernández, B.; Bondo Pedersen, T.; Koch, H. Computational and experimental investigation of intermolecular states and forces in the benzene–helium van der Waals complex. J. Chem. Phys. 2003, 119, 12956. [Google Scholar] [CrossRef]
- Manthe, U.; Koeppel, H. New method for calculating wave packet dynamics: Strongly coupled surfaces and the adiabatic basis. J. Chem. Phys. 1990, 93, 345–356. [Google Scholar] [CrossRef]
- Bramley, M.J.; Tromp, J.W.; Carrington, T., Jr.; Corey, C.G. Efficient calculation of highly excited vibrational energy levels of floppy molecules: The band origins of H+ 3 up to 35,000 cm−1. J. Chem. Phys. 1994, 100, 6175–6194. [Google Scholar] [CrossRef]
- Sutcliffe, B.T. Coordinate Systems and Transformations. In Handbook of Molecular Physics and Quantum Chemistry; Wilson, S., Ed.; Wiley: Chichester, UK, 2003; Volume 1, Part 6, Chapter 31; pp. 485–500. [Google Scholar]
- Carter, S.; Handy, N.C. A variational method for the determination of the vibrational (J = 0) energy levels of acetylene, using a Hamiltonian in internal coordinates. Comput. Phys. Commun. 1988, 51, 49–58. [Google Scholar] [CrossRef]
- Bramley, M.J.; Handy, N.C. Efficient calculation of rovibrational eigenstates of sequentially bonded four-atom molecules. J. Chem. Phys. 1993, 98, 1378. [Google Scholar] [CrossRef]
- Yu, H.-G. An exact variational method to calculate vibrational energies of five atom molecules beyond the normal mode approach. J. Chem. Phys. 2002, 117, 2030. [Google Scholar] [CrossRef]
- Bramley, M.J.; Carrington, T., Jr. Calculation of triatomic vibrational eigenstates: Product or contracted basis sets, Lanczos or conventional eigensolvers? What is the most efficient combination? J. Chem. Phys. 1994, 101, 8494. [Google Scholar] [CrossRef]
- Gatti, F.; Iung, C.; Menou, M.; Justum, Y.; Nauts, A.; Chapuisat, X. Vector parametrization of the N-atom problem in quantum mechanics. I. Jacobi vectors. J. Chem. Phys. 1998, 108, 8804. [Google Scholar] [CrossRef]
- Mladenović, M. Rovibrational Hamiltonians for general polyatomic molecules in spherical polar parametrization. I. Orthogonal representations. J. Chem. Phys. 2000, 112, 1070–1081. [Google Scholar] [CrossRef]
- Chapuisat, X.; Belfhal, A.; Nauts, A. N-body quantum-mechanical Hamiltonians: Extrapotential terms. J. Chem. Phys. 1991, 149, 274–304. [Google Scholar] [CrossRef]
- Gatti, F.; Iung, C. Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach. Phys. Rep. 2009, 484, 1–69. [Google Scholar] [CrossRef]
- Wang, X.-G.; Carrington, T., Jr. A contracted basis-Lanczos calculation of vibrational levels of methane: Solving the Schrödinger equation in nine dimensions. J. Chem. Phys. 2003, 119, 101–117. [Google Scholar] [CrossRef]
- Tremblay, J.C.; Carrington, T., Jr. Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term Lanczos eigensolver. J. Chem. Phys. 2006, 125, 094311. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T., Jr. Vibrational energy levels of CH5+. J. Chem. Phys. 2008, 129, 234102. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Light, J.C. Molecular vibrations: Iterative solution with energy selected bases. J. Chem. Phys. 2003, 118, 3458. [Google Scholar] [CrossRef]
- Lee, H.-S.; Light, J.C. Iterative solutions with energy selected bases for highly excited vibrations of tetra-atomic molecules. J. Chem. Phys. 2004, 120, 4626. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T., Jr. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane. J. Chem. Phys. 2004, 121, 2937–2954. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality. J. Chem. Phys. 2017, 146, 104105:1–104105:15. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-G. Two-layer Lanczos iteration approach to molecular spectroscopic calculation. J. Chem. Phys. 2002, 117, 8190–8196. [Google Scholar] [CrossRef]
- Yu, H.-G. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results. J. Chem. Phys. 2004, 120, 2270–2284. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-G. Converged quantum dynamics calculations of vibrational energies of CH4 and CH3D using an ab initio potential. J. Chem. Phys. 2004, 121, 6334. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-G. A rigorous full-dimensional quantum dynamics calculation of the vibrational energies of H3O-2. J. Chem. Phys. 2006, 125, 204306. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.N.; Thiel, W.; Jensen, P. Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules. J. Mol. Spectrosc. 2007, 245, 126–140. [Google Scholar] [CrossRef]
- Dawes, R.; Carrington, T. How to choose 1-D basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the 1-D functions: Energy levels of coupled systems with as many as 16 coordinates. J. Chem. Phys. 2005, 122, 134101:1–134101:14. [Google Scholar] [CrossRef] [PubMed]
- Colbert, D.T.; Miller, W.H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 1992, 96, 1982. [Google Scholar] [CrossRef]
- Shimshovitz, A.; Tannor, D.J. Phase-Space Approach to Solving the Time-Independent Schrodinger Equation. Phys. Rev. Lett. 2012, 109, 070402. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Handy, N.C. The variational method for the calculation of ro-vibrational energy levels. Comput. Phys. Rep. 1986, 5, 117–171. [Google Scholar] [CrossRef]
- Halonen, L.; Noid, D.W.; Child, M.S. Local mode predictions for excited stretching vibrational states of HCCD and H12C 13CH. J. Chem. Phys. 1983, 78, 2803. [Google Scholar] [CrossRef]
- Halonen, L.; Child, M.S. Local mode theory for C3v molecules: CH3D, CHD3, SiH3D, and SiHD3. J. Chem. Phys. 1983, 79, 4355. [Google Scholar] [CrossRef]
- Maynard, A.; Wyatt, R.E.; Iung, C. A quantum dynamical study of CH overtones in fluoroform. II. Eigenstate analysis of the vCH=1 and vCH=2 regions. J. Chem. Phys. 1997, 106, 9483. [Google Scholar] [CrossRef]
- Maynard, A.T.; Wyatt, R.E.; Iung, C. A quantum dynamical study of CH overtones in fluoroform. I. A nine-dimensional ab initio surface, vibrational spectra and dynamics. J. Chem. Phys. 1995, 103, 8372. [Google Scholar] [CrossRef]
- Iung, C.; Leforestier, C.; Wyatt, R.E. Wave operator and artificial intelligence contraction algorithms in quantum dynamics: Application to CD3H and C6H6. J. Chem. Phys. 1993, 98, 6722. [Google Scholar] [CrossRef]
- Poirier, B. Using wavelets to extend quantum dynamics calculations to ten or more degrees of freedom. J. Theor. Comput. Chem. 2003, 2, 65. [Google Scholar] [CrossRef]
- Poirier, B.; Salam, A. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations. J. Chem. Phys. 2004, 121, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Poirier, B.; Salam, A. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. II. Construction and optimization. J. Chem. Phys. 2004, 121, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Carrington, T. The utility of constraining basis function indices when using the lanczos algorithm to calculate vibrational energy levels. J. Phys. Chem. A 2001, 105, 2575–2581. [Google Scholar] [CrossRef]
- Halverson, T.; Poirier, B. One Million Quantum States of Benzene. J. Phys. Chem. A 2015, 119, 12417–12433. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Carrington, T. Using an expanding nondirect product harmonic basis with an iterative eigensolver to compute vibrational energy levels with as many as seven atoms. J. Chem. Phys. 2016, 145, 144104:1–144104:10. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Carrington, T. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure. J. Chem. Phys. 2016, 144, 244115:1–244115:10. [Google Scholar] [CrossRef] [PubMed]
- Avila, G.; Carrington, T. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. J. Chem. Phys. 2012, 137, 174108. [Google Scholar] [CrossRef] [PubMed]
- Avila, G.; Carrington, T., Jr. Pruned bases that are compatible with iterative eigensolvers and general potentials: New results for CH3CN. Chem. Phys. 2017, 482, 3–8. [Google Scholar] [CrossRef]
- Petras, K. Fast calculation of coefficients in the Smolyak algorithm. Numer. Algorithms 2001, 26, 93–109. [Google Scholar] [CrossRef]
- Avila, G.; Carrington, T., Jr. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D. J. Chem. Phys. 2011, 134, 054126. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, A.; Carrington, T. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices. J. Chem. Phys. 2014, 140, 174111:1–174111:13. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.S.; Carrington, T., Jr. Using nested contractions and a hierarchical tensor format to compute vibrational spectra of molecules with seven atoms. J. Phys. Chem. A 2015, 119, 13074–13091. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.S.; Carrington, T., Jr. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms. J. Chem. Phys. 2017, 146, 204110:1–204110:15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Golub, G.H. Rank-One Approximation to High Order Tensors. Matrix Anal. Appl. 2001, 23, 534–550. [Google Scholar] [CrossRef]
- Beylkin, G.; Mohlenkamp, M.J. Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. USA 2002, 99, 10246–10251. [Google Scholar] [CrossRef] [PubMed]
- Beylkin, G.; Mohlenkamp, M.J. Algorithms for Numerical Analysis in High Dimensions. Sci. Comput. 2005, 26, 2133–2159. [Google Scholar] [CrossRef]
- Meyer, H.D.; Gatti, F.; Worth, G.A. (Eds.) Multidimensional Quantum Dynamics: MCTDH Theory and Applications; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Pelaez, D.; Meyer, H.-D. The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems. J. Chem. Phys. 2013, 138, 014108. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Carrington, T. Using neural networks to represent potential surfaces as sums of products. J. Chem. Phys. 2006, 125, 194105. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Carrington, T. Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. J. Chem. Phys. 2007, 127, 014103. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Carrington, T. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. J. Chem. Phys. 2008, 129, 224104. [Google Scholar] [CrossRef] [PubMed]
- Lehoucq, R.B.; Sorensen, D.C.; Yang, C. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods SIAM, Philadelphia, PA, 1998. Available online: http://www.caam.rice.edu/software/ARPACK (accessed on 21 December 2017).
- Watson, J.K.G. Simplification of the molecular vibration-rotation hamiltonian. Mol. Phys. 1968, 15, 479–490. [Google Scholar] [CrossRef]
- Jaeckle, A.; Meyer, H.-D. Product representation of potential energy surfaces. J. Chem. Phys. 1996, 104, 7974. [Google Scholar] [CrossRef]
- Chen, H.; Light, J.C. Vibrations of the carbon dioxide dimer. J. Chem. Phys. 2000, 112, 5070–5080. [Google Scholar] [CrossRef]
- Li, H.; Roy, P.-N.; Le Roy, R.J. Analytic Morse/long-range potential energy surfaces and predicted infrared spectra for CO2-H2. J. Chem. Phys. 2010, 132, 214309. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.S.; Carrington, T. Unpublished work. J. Chem. Phys. 2018.
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrington, T., Jr. Iterative Methods for Computing Vibrational Spectra. Mathematics 2018, 6, 13. https://doi.org/10.3390/math6010013
Carrington T Jr. Iterative Methods for Computing Vibrational Spectra. Mathematics. 2018; 6(1):13. https://doi.org/10.3390/math6010013
Chicago/Turabian StyleCarrington, Tucker, Jr. 2018. "Iterative Methods for Computing Vibrational Spectra" Mathematics 6, no. 1: 13. https://doi.org/10.3390/math6010013
APA StyleCarrington, T., Jr. (2018). Iterative Methods for Computing Vibrational Spectra. Mathematics, 6(1), 13. https://doi.org/10.3390/math6010013