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Abstract

:

The aim of this study is to view the role of Bézier curves in both the Euclidean plane E2 and Euclidean space E3 with the help of the fundamental algorithm which is commonly used in Computer Science and Applied Mathematics and without this algorithm. The Serret-Frenet elements of non-unit speed curves in the Euclidean plane E2 and Euclidean space E3 are given by Gray et al. in 2016. We used these formulas to find Serret-Frenet elements of planar Bézier curve at the end points and for every parameter t. Moreover, we reconstruct these elements for a planar Bézier curve, which is defined by the help of the algorithm based on intermediate points. Finally, in the literature, the spatial Bézier curve only mentioned at the end points, so we improve these elements for all parameters t. Additionally, we calculate these elements for all parameters t using algorithm above mentioned for spatial Bézier curve.
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1. Introduction


For ease of curve and surface design, mathematician Paul De Casteljau started research on a formula in 1959. With the same purpose, engineer Pierre Bézier developed a similar formula that was independent and unaware of his research. As a result of Bézier’s relevant studies published in 1968, the theory is known by his name. The Bézier’s formula, as a consequence of these studies, is based on the way of explaining an approximation to the original curve using the control points b0,b1,…,bn that pertain to the ordered set in [1]. Hence, it responds to the behavior of its control points by following a push-pull effect [2].



To descend to particulars in the formula, we need to give a brief definition of a Bézier curve: it is a parametric curve P(t) of degree n with n+1 control points and defined by


P(t)=∑i=0nBi,n(t)bi,0≤t≤1








where the bis represent the n+1 control points in Euclidean space En [3]. Namely, Bézier curves are given by a linear combination of basic functions named the Bernstein polynomials with vector-valued coefficients named poles or control points [2].



The theory of Bézier curves has a significant importance in Computer Aided Design (CAD), since they are numerically the most stable among all polynomial bases in CAD and give an ideal geometric representation for piecewise polynomial curves [4]. Piecewise polynomial curves or functions are often used to represent the approximate solution in the numerical solution of differential equations. The Bézier curves are used in solving partial differential equations, wave and heat equations, and dynamical systems [5].



Bézier curves are strong devices to build freeform curves in CAD/CAM. On the other hand, they have their own deficiency. Namely, when electing the basic functions, the shape of Bézier curve is well assigned by its control points. To counter this deficiency, many scientists built new curves similar to Bézier curves [6,7].



A Bézier curve that is parametric has a continuous curvature and is used in various executions such as medical and engineering fields. Building two pieces of a Bézier curve may be attractive regarding protecting continuity and satisfying a specific shape such as curvature and torsion [8]. The properties of differential invariants such asas the curvature and the torsion in Euclidean geometry are researched in articles [9,10,11]. We refer the reader interested in the curvature and torsion of a Bézier curve at only the end points and for their geometric meanings in the sense of differential geometry to references [4,12,13]. Additionally, in [14], there is a remarkable result related to the Serret-Frenet frame at the end points.



In our work, we investigate the Serret-Frenet elements of planar Bézier curves and examine those elements by using the definition of algorithmic planar Bézier curves. Finally, we give the Serret-Frenet elements of algorithmic spatial Bézier curves.




2. Preliminaries


In this section, some necessary definitions and essential theory related Serret-Frenet elements of the Bézier curve and the algorithmic Bézier curve in Euclidean plane E2 and in Euclidean space E3 are introduced.



2.1. Some Concepts for Bézier Curve


Definition 1.

The n-th degree Bézier curve P(t) with n+1 control points is a parametric function and it is defined by


P(t)=∑i=1nBi,n(t)bi,0≤t≤1



(1)




where coefficients bi’s are control points in Euclidean space En and Bi,n(t) symbolizes the Bernstein polynomial given by


Bi,n(t)=niti(1−t)n−i








with the binomial coefficient:


ni=n!i!(n−i)!,i=0,...,n.











See reference [1].





Definition 2.

Let b0,b1 and b2 be non-linear three points in En. A Bézier curve having the equation


P2(t)=∑i=02Bi,2(t)bi=B0,2(t)b0+B1,2(t)b1+B2,2(t)b2=(1−t)2b0+2(1−t)tb1+t2b2



(2)




is called non-unit speed quadratic Bézier curve in En with the control points b0,b1,b2 [13].





Definition 3.

Let b0,b1,b2 and b3 be non-linear four points in En. The Bézier curve P3(t) given by


P3(t)=∑i=03Bi,3(t)bi=B0,3(t)b0+B1,3(t)b1+B2,3(t)b2+B3,3(t)b3=(1−t)3b0+3(1−t)2tb1+3(1−t)t2b2+t3b3



(3)




is called non-unit speed cubic Bézier curve in En with the control points b0,b1,b2,b3 [13].





Theorem 1.

The first order derivative of the n-th degree Bézier curve is


P′(t)=n∑i=0n−1Bi,n−1(t)Δbi



(4)




where Δbi is the difference equation defined by Δbi=bi+1−bi [13].





Corollary 1.

The second order derivative of the n-th degree Bézier curve is given by


P″(t)=n(n−1)∑i=0n−2Bi,n−2(t)Δ2bi



(5)




where Δ2bi is difference equation described by Δ2bi=Δbi+1−Δbi=bi+2−2bi+1+bi [13].





Corollary 2.

The r-th order derivative of the n-th degree Bézier curve is given by


P(r)(t)=n!(n−r)!∑i=0n−rBi,n−r(t)Δrbi



(6)




where Δrbi is difference equation indicated by Δrbi=Δr−1bi+1−Δr−1bi=bi+2−2bi+1+bi [4,13].





Corollary 3.

The values of r-th order derivative of the n-th Bézier curve at the starting point and the ending point are given with the following equalities, respectively [4]:


P(r)(t)t=0=n!(n−r)!Δrb0



(7)




and


P(r)(t)t=1=n!(n−r)!Δrbn−r.



(8)










2.2. The Theory of Curves in E2 and E3


Definition 4.

Let J:E2→E2 be a linear transformation defined by


J(p1,p2)=(−p2,p1).











In other words, (−p2,p1) is obtained by rotating (p1,p2) counter clockwise 90 degree from origin. For each p,q∈E2, if we have the following properties:


Jp,Jq=p,q










Jp,p=0



(9)






Jp,q=−p,Jq.



(10)




then J is called as complex structure of E2 [15].





Definition 5.

Let p and q be two non-zero vectors in E2. We define


cosθ=p,qpq










sinθ=p,Jqpq.



(11)




where θ is a unique orientation angle from p to q such that 0≤θ≤2π [15].





Definition 6.

Let α:I→E2 be a non-unit speed planar curve. The Serret-Frenet frame {T,N} and curvature κ of α for ∀t∈I are defined by the following equations [15]:


T(t)=α′(t)∥α′(t)∥



(12)






N(t)=Jα′(t)∥α′(t)∥



(13)






κ(t)=⟨α″(t),Jα′(t)⟩∥α′(t)∥3.



(14)









Definition 7.

Let α:I→E3 be a non-unit speed curve. The Serret-Frenet frame {T,N,B}, curvature κ and torsion τ of α are defined by the following equations [15]:


T(t)=α′(t)∥α′(t)∥



(15)






N(t)=B(t)×T(t)



(16)






B(t)=α′(t)×α″(t)∥α′(t)×α″(t)∥



(17)






κ(t)=∥α′(t)×α″(t)∥∥α′(t)∥3



(18)






τ(t)=det(α′(t),α″(t),α‴(t))∥α′(t)×α″(t)∥2.



(19)











3. Serret-Frenet Elements of Bézier Curve in E2


Serret-Frenet Elements of Bézier Curve of Degree n in E2


Theorem 2.

The Serret-Frenet frame {T,N} and curvature κ of non-unit speed planar Bézier curve of degree n with control points b0,b1,…,bn defined by (1) for ∀t∈R are


T(t)=∑i=0n−1Bi,n−1(t)Δbi∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj1/2










N(t)=∑i=0n−1Bi,n−1(t)JΔbi∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj1/2










κ(t)=n−1n∑i=0n−2∑j=0n−1Bi,n−2(t)Bj,n−1(t)Δ2bi,JΔbj∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj3/2.













Proof of Theorem 2.

The Serret-Frenet frame {T,N} is obtained using (4), (12), (13) as follows:


T(t)=P′(t)P′(t)=n∑i=0n−1Bi,n−1(t)Δbin∑i=0n−1Bi,n−1(t)Δbi=∑i=0n−1Bi,n−1(t)Δbi∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj1/2,










N(t)=JP′(t)P′(t)=∑i=0n−1Bi,n−1(t)JΔbi∑i=0n−1Bi,n−1(t)Δbi=∑i=0n−1Bi,n−1(t)JΔbi∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj1/2.











The curvature κ is obtained using (4), (5), (14) as follows:


κ(t)=⟨P″(t),JP′(t)⟩(⟨P′(t),P′(t)⟩)3/2=n−1n∑i=0n−2∑j=0n−1Bi,n−2(t)Bj,n−1(t)Δ2bi,JΔbj∑i,j=0n−1Bi,n−1(t)Bj,n−1(t)Δbi,Δbj3/2.








□





Case 1.

The Serret-Frenet frame {T,N} and curvature κ of non-unit speed planar the n-th degree Bézier curve with the control points b0,b1,…,bn are


T(t)t=0=Δ1b0Δ1b0










N(t)t=0=JΔ1b0Δ1b0










κ(t)t=0=n−1n⟨Δ1b1,JΔ1b0⟩Δ1b03.








which is defined by (1) at t=0





Proof of Case 1.

The value of Serret-Frenet frame {T,N} at t=0 is obtained by considering t=0 in Theorem 2 and r=1 in (7). The curvature κ(t) is also calculated by disposing t=0 in Theorem 2 and r=1, r=2 in (7). We use the equalities Δ2b0=Δ1b1−Δ1b0 and (9) in above calculation.  □





After all, using (11) we get the formula for the curvature κ in the form of


κ(t)t=0=n−1nΔ1b1Δ1b02sinα








where α is the angle between Δ1b0 and Δ1b1.



Case 2.

The Serret-Frenet frame {T,N} and curvature κ of non-unit speed planar the n-th degree Bézier curve with control points b0,b1,…,bn are


T(t)t=1=Δ1bn−1Δ1bn−1










N(t)t=1=JΔ1bn−1Δ1bn−1










κ(t)t=1=n−1n⟨Δ1bn−1,JΔ1bn−2⟩Δ1bn−13.








which is defined by (1) at t=1.





Proof of Case 2.

The value of Serret-Frenet frame {T,N} at t=1 is obtained by considering t=1 in Theorem 2 and r=1 in (8). The curvature κ(t) is also calculated by disposing t=1 in Theorem 2 and r=1, r=2 in (8). We use the equalities Δ2bn−2=Δ1bn−1−Δ1bn−2, (9) and (10) in the above calculation. □





After all, using (11) we get the formula for the curvature κ in the form of


κ(t)t=1=n−1nΔ1bn−2Δ1bn−12sinβ








where β is the angle between Δ1bn−1 and Δ1bn−2.



Case 3.

The Serret-Frenet frame {T,N} and curvature κP2 of non-unit speed planar quadratic Bézier curve with control points b0, b1 and b2 defined by (2) for ∀t∈R are


T(t)=(1−t)Δ1b0+tΔ1b1(1−t)Δ1b0+tΔ1b1










N(t)=(1−t)JΔ1b0+tJΔ1b1(1−t)Δ1b0+tΔ1b1










κP2(t)=12⟨Δ1b1,JΔ1b0⟩(1−t)Δ1b0+tΔ1b13.













Proof of Case 3.

The first and second derivative of Bézier curve P2(t) given by (2), in terms of forward difference operators, are written as follows:


P2′(t)=2(1−t)(−1)b0+(−2tb1+2(1−t)b1)+2tb2=2(1−t)Δ1b0+2tΔ1b1,








and


P2″(t)=−2Δ1b0+2tΔ1b1=2(Δ1b1−Δ1b0)=2Δ2b0.











The Serret-Frenet frame {T,N} is obtained from (12) and (13) and the first derivative calculated above.



The curvature κP2 is derived using (9), (10), (14) and Δ2b0=Δ1b1−Δ1b0. □





Case 4.

The Serret-Frenet frame {T,N} and curvature κP3 of non-unit speed planar cubic Bézier curve with control points b0, b1, b2 and b3 defined by (3) for ∀t∈R are


T(t)=(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2










N(t)=(1−t)2JΔ1b0+2(1−t)tJΔ1b1+t2JΔ1b2(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2










κP3(t)=23(1−t)2⟨Δ1b1,JΔ1b0⟩+(1−t)t⟨Δ1b2,JΔ1b0⟩+t2⟨Δ1b2,JΔ1b1⟩(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b23.













Proof of Case 4.

The first and second derivative of Bézier curve P3(t) given by (3) in terms of forward difference operators are written as follows:


P3′(t)=3(1−t)2(−1)b0+6(1−t)(−1)tb1+3(1−t)2b1−3t2b2+6(1−t)tb2+3t2b3=3(1−t)2Δ1b0+6(1−t)tΔ1b1+3t2Δ1b2








and


P3″(t)=6(Δ1b1−Δ1b0)+6t(Δ1b0−2Δ1b1+Δ1b2)











The Serret-Frenet frame {T,N} is obtained from (12) and (13) and the first derivative which is calculated above.



Moreover, the curvature κP3 is derived using (9), (10), (14) and Δ2b0=Δ1b1−Δ1b0.□







4. Serret-Frenet Elements of Bézier Curve in E3


In this section, we give the Serret-Frenet elements of Bézier curve in E3 for all points, in the case of t=0 and t=1, we get the results given by [14].



Theorem 3.

The Serret-Frenet frame {T,N,B}, curvature κ and torsion τ of the non-unit spatial the n-th degree Bézier curve P(t) with control points b0,b1,…,bn defined by (1) for ∀t∈R are


T(t)=∑i=0n−1Bi,n−1(t)Δ1bi∥∑i=0n−1Bi,n−1(t)Δ1bi∥










B(t)=∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥










N(t)=∑i=0n−1∑j=0n−2∑k=0n−1Bi,n−1(t)Bj,n−2(t)Bk,n−1(t)(Δ1bi×Δ2bj)×Δbk∑i=0n−1∑j=0n−2∑k=0n−1Bi,n−1(t)Bj,n−2(t)Bk,n−1(t)(Δ1bi×Δ2bj)×Δbk










κ(t)=n−1n∥∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥∑i=0n−1Bi,n−1(t)Δ1bi3










τ(t)=n−2n∑i=0n−1∑j=0n−2∑k=0n−3Bi,n−1(t)Bj,n−2(t)Bk,n−3(t)⟨Δ1bi×Δ2bj,Δ3bk⟩∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)2.













Proof of Theorem 3.

Using (15)–(19), (4) for the first derivative, (5) for the second derivative, and (6) for the third derivative; the Serret-Frenet elements {T,N,B,κ,τ} are obtained as follows:


T(t)=P′(t)P′(t)=n∑i=0n−1Bi,n−1(t)Δbin∑i=0n−1Bi,n−1(t)Δbi










B(t)=P′(t)×P″(t)∥P′(t)×P″(t)∥=n∑i=0n−1Bi,n−1(t)Δ1bi×n(n−1)∑j=0n−2Bj,n−2(t)Δ2bjn∑i=0n−1Bi,n−1(t)Δ1bi×n(n−1)∑j=0n−2Bj,n−2(t)Δ2bj=∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥










N(t)=B(t)×T(t)=∑i=0n−1Bi,n−1(t)Δ1bi×∑j=0n−2Bj,n−2(t)Δ2bj∥∑i=0n−1Bi,n−1(t)Δ1bi×∑j=0n−2Bj,n−2(t)Δ2bj∥×∑i=0n−1Bi,n−1(t)Δbi∑i=0n−1Bi,n−1(t)Δbi=∑i=0n−1∑j=0n−2∑k=0n−1Bi,n−1(t)Bj,n−2(t)Bk,n−1(t)(Δ1bi×Δ2bj)×Δbk∑i=0n−1∑j=0n−2∑k=0n−1Bi,n−1(t)Bj,n−2(t)Bk,n−1(t)(Δ1bi×Δ2bj)×Δbk










κ(t)=∥P′(t)×P″(t)∥∥P′(t)∥3=∑i=0n−1Bi,n−1(t)Δ1bi×∑j=0n−2Bj,n−2(t)Δ2bj∑i=0n−1Bi,n−1(t)Δbi3=n−1n∥∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)∥∑i=0n−1Bi,n−1(t)Δ1bi3








and


τ(t)=⟨P′(t)×P″(t),P‴(t)⟩∥P′(t)×P″(t)∥2=n∑i=0n−1Bi,n−1(t)Δ1bi×n(n−1)∑j=0n−2Bj,n−2(t)Δ2bj,n(n−1)(n−2)∑j=0n−3Bj,n−3(t)Δ3bjn∑i=0n−1Bi,n−1(t)Δ1bi×n(n−1)∑j=0n−2Bj,n−2(t)Δ2bj2=n−2n∑i=0n−1∑j=0n−2∑k=0n−3Bi,n−1(t)Bj,n−2(t)Bk,n−3(t)⟨Δ1bi×Δ2bj,Δ3bk⟩∑i=0n−1∑j=0n−2Bi,n−1(t)Bj,n−2(t)(Δ1bi×Δ2bj)2.








□





Case 5.

The Serret-Frenet frame {T,N,B}, curvature κ and torsion τ of non-unit speed spatial the n-th degree Bézier curve with control points b0,b1,…,bn are


T(t)t=0=Δ1b0Δ1b0










N(t)|t=0=Δ1b1Δ1b1cscϕ−Δ1b0Δ1b0cotϕ










B(t)|t=0=Δ1b0×Δ1b1Δ1b0×Δ1b1








which is defined by (1) at t=0, where φ is the angle between Δb0 and Δb1, given by [14].





Case 6.

The Serret-Frenet frame {T,N,B}, curvature κ and torsion τ of non-unit speed spatial the n-th degree Bézier curve with control points b0,b1,…,bn are


T(t)t=1=Δ1bn−1Δ1bn−1










N(t)|t=1=Δ1bn−1Δ1bn−1cotψ−Δ1bn−2Δ1bn−2cscψ










B(t)|t=1=−Δ1bn−1×Δ1bn−2Δ1bn−1×Δ1bn−2








which is defined by (1) at t=1, where ψ is the angle between Δbn−1 and Δbn−2, given by [14].






5. Serret-Frenet Elements of Bézier Curve with the Algorithm in E2 and E3


For the intermediate points Pi,k(t) obtained by the control points b0,b1,...,bn (Figure 1) we have the following equation:


Pi,k(t)=∑j=0kBj,k(t)bi+j.



(20)







It is obvious that Pi,0(t)=bi and




P0,n(t)=P(t).



(21)





And so, using (20) we obtain n-th degree algorithmic Bézier curve Bézier curve with n+1 control points by (1). For the intermediate points Pi,k(t), we write below recursive formula:


Pi,k(t)=(1−t)Pi,k−1(t)+tPi+1,k−1(t).



(22)







Corollary 4.

The subtraction of two intermediate points Pi+1,k(t) and Pi,k(t) is


Pi+1,k(t)−Pi,k(t)=(1−t)Pi+1,k−1(t)−Pi,k−1(t)+tPi+2,k−1(t)−Pi+1,k−1(t).



(23)









Proof of Corollary 4.

If we consider (22) for the intermediate point Pi+1,k(t), we find


Pi+1,k(t)=(1−t)Pi+1,k−1(t)+tPi+2,k−1(t).











Moreover, by (22), we obtain


Pi+1,k(t)−Pi,k(t)=(1−t)Pi+1,k−1(t)+tPi+2,k−1(t)−{(1−t)Pi,k−1(t)+tPi+1,k−1(t)}=(1−t)Pi+1,k−1(t)−Pi,k−1(t)+tPi+2,k−1(t)−Pi+1,k−1(t).








□





Lemma 1.

The first derivative of n-th degree algorithmic Bézier curve with n+1 control points given by (21) is


P0,n′(t)=P′(t)=nP1,n−1(t)−P0,n−1(t).



(24)









Proof of Lemma 1.

We know that the first derivative of algorithmic Bézier curve P(t) is given by (4). If we use that equation, we can obtain the following equality:


P′(t)=n∑i=0n−1Bi,n−1(t)Δbi=n∑i=0n−1Bi,n−1(t)(bi+1−bi).











After making the necessary adjustments, we get the following equation:


P′(t)=n(∑i=0n−1Bi,n−1(t)bi+1−∑i=0n−1Bi,n−1(t)bi).











Finally, using (20), we obtain the desired equality. □





Corollary 5.

From (23) and (24), we have following two equivalent equalities for the first derivative P0,n′(t):


P0,n′(t)=n{(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)}



(25)






P0,n′(t)=n{(1−t)2P1,n−3(t)−P0,n−3(t)+2(1−t)t(P2,n−3(t)−P1,n−3(t))+t2(P3,n−3(t)−P2,n−3(t))}.



(26)









Corollary 6.

An equivalent formulation for the Bézier curve Pi,k′(t) with the control points bi,...,bi+k is


Pi,k′(t)=kPi+1,k−1(t)−Pi,k−1(t)



(27)




where k∈{1,...,n} and i∈{0,...,n−k}.





Lemma 2.

The second derivative of n-th degree algorithmic Bézier curve with n+1 control points described by (21) is


P0,n″(t)=n(n−1)[(P1,n−2(t)−P0,n−2(t))−(P1,n−2(t)−P0,n−2(t))].



(28)









Proof of Lemma 2.

The second derivative P0,n″(t) is calculated through (24) and (27) as follows:


(P0,n′(t))′=(nP1,n−1(t)−P0,n−1(t))′=n(P1,n−1′(t)−P0,n−1′(t))=n(n−1)P2,n−2(t)−P1,n−2(t)−(n−1)P1,n−2(t)−P0,n−2(t)=n(n−1)[(P1,n−2(t)−P0,n−2(t))−(P1,n−2(t)−P0,n−2(t))].








□





Corollary 7.

From (23) and (28), we have the following equality:


P0,n″(t)=n(n−1){(1−t)[(P2,n−3(t)−P1,n−3(t))−(P1,n−3(t)−P0,n−3(t))]+t[(P3,n−3(t)−P2,n−3(t))−(P2,n−3(t)−P1,n−3(t))]}.



(29)









Lemma 3.

The third derivative of n-th degree algorithmic Bézier curve with n+1 control points given by (21) is


P0,n‴(t)=P‴(t)=n(n−1)(n−2)[(P3,n−3(t)−P2,n−3(t))−2(P2,n−3(t)−P1,n−3(t))+(P1,n−3(t)−P0,n−3(t))].



(30)









Proof of Lemma 3.

We get considering (27) and (28)


P0,n‴(t)=P‴(t)={n(n−1)[(P1,n−2(t)−P0,n−2(t))−(P1,n−2(t)−P0,n−2(t))]}′=n(n−1)[(P1,n−2′(t)−P0,n−2′(t))−(P1,n−2′(t)−P0,n−2′(t))]=n(n−1)(n−2)[(P3,n−3(t)−P2,n−3(t))−2(P2,n−3(t)−P1,n−3(t))+(P1,n−3(t)−P0,n−3(t))].








□





Lemma 4.

The cross-product of the vectors P′(t) and P″(t) is


P′(t)×P″(t)=n2(n−1){(P1,n−2−P0,n−2)×(P2,n−2−P1,n−2)}.



(31)









Proof of Lemma 4.

By (25) and (28), we have


P′(t)×P″(t)=n{(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)}×{n(n−1)[(P1,n−2(t)−P0,n−2(t))−(P1,n−2(t)−P0,n−2(t))]}=n2(n−1){(P1,n−2−P0,n−2)×(P2,n−2−P1,n−2)}.








□





Corollary 8.

By considering the Corollary 4, the cross-product formula is rewritten as follows:


P′(t)×P″(t)=n2(n−1){(P1,n−2−P0,n−2)×(P2,n−2−P1,n−2)}=n2(n−1){(1−t)P1,n−3(t)−P0,n−3(t)+tP2,n−3(t)−P1,n−3(t)×(1−t)P2,n−3(t)−P1,n−3(t)+tP3,n−3(t)−P2,n−3(t)}=n2(n−1){(1−t)2[P1,n−3(t)−P0,n−3(t)×P2,n−3(t)−P1,n−3(t)]+(1−t)t[P1,n−3(t)−P0,n−3(t)×P3,n−3(t)−P2,n−3(t)]+t2[P2,n−3(t)−P1,n−3(t)×P3,n−3(t)−P2,n−3(t)]}.



(32)









Corollary 9.

Using Lemma 3 and Corollary 8 the following inner product holds:


P′t×P″t,P‴t=N⟨P1,n−3−P0,n−3×P2,n−3−P1,n−3,P3,n−3−P2,n−3⟩



(33)




where N=n3n−12n−2.





Considering the equations up to now, we recalculate Serret-Frenet elements of the Bézier curve in terms of intermediate points in further section.



5.1. Serret-Frenet Elements of Bézier Curve of Degree n with the Algorithm in E2


Theorem 4.

The Serret-Frenet frame {T,N} and curvature κ of non-unit speed planar n-th degree algorithmic Bézier curve P0,n(t)=P(t) with the control points b0,b1,…,bn are


T(t)=P1,n−1(t)−P0,n−1(t)P1,n−1(t)−P0,n−1(t)∀t∈R










N(t)=JP1,n−1(t)−P0,n−1(t)P1,n−1(t)−P0,n−1(t)










κ(t)=n−1n{P2,n−2(t)−P1,n−2(t),J(P1,n−1(t)−P0,n−1(t))P1,n−1(t)−P0,n−1(t)3−P1,n−2(t)−P0,n−2(t),J(P1,n−1(t)−P0,n−1(t))P1,n−1(t)−P0,n−1(t)3}








where Pi,k(t) are intermediate points given by (20).





Proof of Theorem 4.

The Serret-Frenet elements {T,N,κ} can be obtained using (12), (13), (14), (24) and (28). □





Remark 1.

Notice that the Serret-Frenet elements {T,N,κ} calculated in Theorem 2 and in Theorem 4 are the same.






5.2. Serret-Frenet Elements of Bézier Curve of Degree n with the Algorithm in E3


Theorem 5.

The Serret-Frenet frame {T,N,B}, curvature κ and torsion τ of non-unit speed spatial n-th degree algorithmic Bézier curve P0,n(t)=P(t) with control points b0,b1,…,bn are


T(t)=P1,n−1(t)−P0,n−1(t)P1,n−1(t)−P0,n−1(t)=(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)∥(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)∥∀t∈R










B(t)=(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))∥(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))∥










N(t)={(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))}×{P1,n−1(t)−P0,n−1(t)}∥{(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))}×{P1,n−1(t)−P0,n−1(t)}∥={(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))}×{(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)}∥{(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))}×{(1−t)P1,n−2(t)−P0,n−2(t)+tP2,n−2(t)−P1,n−2(t)}∥










κ(t)=n−1n∥(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))∥∥P1,n−1(t)−P0,n−1(t)∥3=n−1n∥(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))∥∥(1−t)(P1,n−2(t)−P0,n−2(t))+t(P2,n−2(t)−P1,n−2(t))∥3










τ(t)=n−2n⟨(P1,n−3(t)−P0,n−3(t))×(P2,n−3(t)−P1,n−3(t)),(P3,n−3(t)−P2,n−3(t))⟩∥(P1,n−2(t)−P0,n−2(t))×(P2,n−2(t)−P1,n−2(t))∥2=n−2n(P1,n−3(t)−P0,n−3(t))×(P2,n−3(t)−P1,n−3(t)),(P3,n−3(t)−P2,n−3(t))∥{(1−t)(P1,n−3(t)−P0,n−3(t))+t(P2,n−3(t)−P1,n−3(t))}×{(1−t)(P2,n−3(t)−P1,n−3(t))+t(P3,n−3(t)−P2,n−3(t))}∥2








where Pi,k(t)’s are intermediate points given by (20).





Proof of Theorem 5.

The desired equalities in Theorem 5 are procured through (15)–(19) and (20)–(33). □





Remark 2.

Notice that the Serret-Frenet elements {T,N,B,κ,τ} in Theorem 3 and in Theorem 5 are the same.







6. Examples in E2 and E3


Example 1.

Let consider control points b0=(1,0), b1=(2,3), b2=(5,4) and b3=(2,1) for cubic Bézier curve in Euclidean plane E2 (Figure 2). With these control points, the Serret-Frenet frame {T,N} and curvature κP3 of cubic Bézier curve are found as in the following steps, respectively, for each t∈R, t=0 and t=1.





By (3) and definition of Bernstein polynomial, cubic Bézier curve is written as follows:


P3(t)=B0,3(t)b0+B1,3(t)b1+B2,3(t)b2+B3,3(t)b3=(1−t)3b0+3(1−t)2tb1+3(1−t)t2b2+t3b3=((1−t)3+6t(1−t)2+15t2(1−t)+2t3,9t(1−t)2+12t2(1−t)+t3).











	
The Serret-Frenet frame {T,N} and curvature κP3 for ∀t∈R are


T(t)=(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2=−8t2+4t+1,−2t2−4t+3−8t2+4t+1,−2t2−4t+3










N(t)=(1−t)2JΔ1b0+2(1−t)tJΔ1b1+t2JΔ1b2(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b2=2t2+4t−3,−8t2+4t+1−8t2+4t+1,−2t2−4t+3










κP3(t)=23(1−t)2⟨Δ1b1,JΔ1b0⟩+(1−t)t⟨Δ1b2,JΔ1b0⟩+t2⟨Δ1b2,JΔ1b1⟩(1−t)2Δ1b0+2(1−t)tΔ1b1+t2Δ1b23=23−20t2+22t−8−8t2+4t+1,−2t2−4t+33.











	
The Serret-Frenet frame {T,N} and curvature κP3 for t=0 are


T(t)t=0=Δ1b0Δ1b0=110(1,3)










N(t)t=0=JΔ1b0Δ1b0=110(−3,1)










κP3(t)t=0=23⟨Δ1b1,JΔ1b0⟩Δ1b03=23⟨Δ1b1,JΔ1b0⟩⟨Δ1b0,Δ1b0⟩3/2=0.











	
The Serret-Frenet frame {T,N} and curvature κP3 for t=1 are


T(t)t=1=Δ1b2Δ1b2=132(−3,−3)










N(t)t=1=JΔ1b2Δ1b2=132(3,−3)










κP3(t)t=1=23⟨Δ1b2,JΔ1b1⟩Δ1b23=−2272.














Example 2.

Confirm that Theorem 4 holds for cubic Bézier curve given in Example 1.





By (20) and definition of Bernstein polynomial, cubic Bézier curve in Example 1 is given as follows:


P0,3(t)=(1−t)3+6t(1−t)2+15t2(1−t)+2t3,9t(1−t)2+12t2(1−t)+t3.











Writing n=3 in Theorem 4, we obtain Serret-Frenet elements {T,N,κ} for cubic Bézier curve as folllows:


T(t)=P1,2(t)−P0,2(t)P1,2(t)−P0,2(t)










N(t)=JP1,2(t)−P0,2(t)P1,2(t)−P0,2(t)










κ(t)=23{P2,1(t)−P1,1(t),JP1,2(t)−P0,2(t)P1,2(t)−P0,2(t)3−P1,1(t)−P0,1(t),JP1,2(t)−P0,2(t)P1,2(t)−P0,2(t)3}.











Using (20), we can write the following equations:


P0,2(t)=∑j=02Bj,2(t)bj=(1−t)2b0+2t(1−t)b1+t2b2,










P1,2(t)=∑j=02Bj,2(t)b1+j=(1−t)2b1+2t(1−t)b2+t2b3,










P0,1(t)=∑j=01Bj,1(t)bj=(1−t)b0+tb1,










P1,1(t)=∑j=01Bj,1(t)b1+j=(1−t)b1+tb2,










P2,1(t)=∑j=01Bj,1(t)b2+j=(1−t)b2+tb3








and


P1,2(t)−P0,2(t)=(1−t)2Δb0+2t(1−t)Δb1+t2Δb2,P1,1(t)−P0,1(t)=(1−t)Δb0+tΔb1,P2,1(t)−P1,1(t)=(1−t)Δb1+tΔb2.











Then, using the above equations, we can obtain the equations in Example 1.



Example 3.

Consider the control points b0=(1,0,1), b1=(2,3,2), b2=(5,4,2) and b3=(2,1,3) for cubic Bézier curve (Figure 3).



We check that the results of Theorem 3 and Theorem 5 are same by using above cubic Bézier curve.





By (20) and definition of Bernstein polynomial, the cubic Bézier curve for this example is


P0,3(t)=((1−t)3+6t(1−t)2+15t2(1−t)+2t3,9t(1−t)2+12t2(1−t)+t3,(1−t)3+6t(1−t)2+6t2(1−t)+3t3)











	
By taking n=3 in Theorem 5, we obtain Serret-Frenet elements {T,N,B,κ,τ} for cubic Bézier curve as follows:


T(t)=P1,2(t)−P0,2(t)P1,2(t)−P0,2(t)










B(t)=(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))∥(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))∥










N(t)={(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))}×{P1,2(t)−P0,2(t)}∥{(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))}×{P1,2(t)−P0,2(t)}∥










κ(t)=23∥(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))∥∥P1,2(t)−P0,2(t)∥3










τ(t)=13⟨(P1,0(t)−P0,0(t))×(P2,0(t)−P1,0(t)),(P3,0(t)−P2,0(t))⟩∥(P1,1(t)−P0,1(t))×(P2,1(t)−P1,1(t))∥2.














Using (20), we can write the following equations:


P1,2(t)−P0,2(t)=(1−t)2Δ1b0+2t(1−t)Δ1b1+t2Δ1b2P1,1(t)−P0,1(t)=(1−t)Δ1b0+tΔ1b1P2,1(t)−P1,1(t)=(1−t)Δ1b1+tΔ1b2P3,0(t)−P2,0(t)=b3−b2=Δ1b2P2,0(t)−P1,0(t)=b2−b1=Δ1b1P1,0(t)−P0,0(t)=b1−b0=Δ1b0








.



Therefore, we have


T(t)=(1−t)2Δ1b0+2t(1−t)Δ1b1+t2Δ1b2∥(1−t)2Δ1b0+2t(1−t)Δ1b1+t2Δ1b2∥=(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥










B(t)=(1−t)2(Δ1b0×Δ1b1)+t(1−t)(Δ1b0×Δ1b2)+t2(Δ1b1×Δ1b2)∥(1−t)2(Δ1b0×Δ1b1)+t(1−t)(Δ1b0×Δ1b2)+t2(Δ1b1×Δ1b2)∥=(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥










N(t)=B(t)×T(t)=(32t4+64t3−142t2+114t−27,172t4−284t3+156t2−20t−7,20t4−72t3+36t2−28t+6)∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥










κ(t)=23∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥3








and


τ(t)=13⟨Δ1b0×Δ1b1,Δ1b2⟩∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥2=13−14∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥2.











	
By taking n=3 in Theorem 3, we obtain Serret-Frenet elements {T,N,B,κ,τ} for cubic Bézier curve as follows:


T(t)=∑i=02Bi,2(t)Δ1bi∥∑i=02Bi,2(t)Δ1bi∥










B(t)=∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)∥∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)∥










N(t)=∑i=02∑j=01∑k=02Bi,2(t)Bj,1(t)Bk,2(t)(Δ1bi×Δ2bj)×Δbk∑i=02∑j=01∑k=02Bi,2(t)Bj,1(t)Bk,2(t)(Δ1bi×Δ2bj)×Δbk










κ(t)=23∥∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)∥∑i=02Bi,2(t)Δ1bi3










τ(t)=13∑i=02∑j=01∑k=00Bi,2(t)Bj,1(t)Bk,0(t)⟨Δ1bi×Δ2bj,Δ3bk⟩∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)2.














Using (1), we write the following two equalities:


∑i=02Bi,2(t)Δ1bi=(1−t)2Δ1b0+2t(1−t)Δ1b1+t2Δ1b2=(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)








and


∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)=(1−2t+t2)(Δ1b0×Δ1b1)+(t−t2)(Δ1b0×Δ1b2)+t2(Δ1b1×Δ1b2)=(−6t2+8t−1,4t2−10t+3,−20t2+22t−8).











After all, we have


T(t)=(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥










B(t)=(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥










N(t)=B(t)×T(t)










=(32t4+64t3−142t2+114t−27,172t4−284t3+156t2−20t−7,20t4−72t3+36t2−28t+6)∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥










κ(t)=23∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥∥(−8t2+4t+1,−2t2−4t+3,1−2t+2t2)∥3








and


τ(t)=13∑i=02∑j=01∑k=00Bi,2(t)Bj,1(t)Bk,0(t)⟨Δ1bi×Δ2bj,Δ3bk⟩∑i=02∑j=01Bi,2(t)Bj,1(t)(Δ1bi×Δ2bj)2=13−14∥(−6t2+8t−1,4t2−10t+3,−20t2+22t−8)∥2.












7. Conclusions


Bézier curves are mostly used in the field of Computer Aided Design and advantageous in terms of design. In this study, we have discussed these curves with regard to differential geometry. We examined the Serret-Frenet elements, which are the essential elements of the curve, for the Bézier curve in Euclidean plane E2 and Euclidean space E3. These elements have been studied in the literature only at end points for spatial Bézier curves. For these curves, we have calculated these elements at the end points and for each parameter t in Euclidean plane E2. Additionally, we have calculated these elements at the end points and for each parameter t in Euclidean space E3.



In addition, we have discussed these elements again, giving the definition of the algorithmic Bézier curve in Euclidean plane E2 and Euclidean space E3 for each parameter t. In the calculations made without the algorithm, the derivative calculation is less stable and more time-consuming. Stability and time are important in curve and surface designing. As a result, the calculations using algorithm have more advantageous.
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Figure 1. Intermediate points for i=0 and n=4. 
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Figure 2. Cubic Bézier curve in E2. 
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Figure 3. Cubic Bézier curve in E3. 
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