
mathematics

Article

New Existence of Fixed Point Results in Generalized
Pseudodistance Functions with Its Application to
Differential Equations

Sujitra Sanhan , Winate Sanhan and Chirasak Mongkolkeha ∗

Department of Mathematics, Statistics and Computer Sciences, Faculty of Liberal Arts and Science,
Kasetsart University, Kamphaeng-Saen Campus, Nakhonpathom 73140, Thailand; sujitrah@hotmail.com (S.S.);
faaswns@ku.ac.th (W.S.)
* Correspondence: chirasak.m@ku.th

Received: 8 November 2018; Accepted: 5 December 2018; Published: 12 December 2018
����������
�������

Abstract: The purpose of this article is to prove some existences of fixed point theorems
for generalized F-contraction mapping in metric spaces by using the concept of generalized
pseudodistance. In addition, we give some examples to illustrate our main results. As the application,
the existence of the solution of the second order differential equation is given.
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1. Introduction

In recent years, several generalizations of standard metric spaces have appeared in connection
with generalizing a Banach contraction theorem. In 1996, Kada, Suzuki and Takahashi [1] defined the
notions of a w-distance which is a generalized metric and also provided a generalized Caristi’s
fixed point theorem. Later, Wlodarczyk and Plebaniak [2] defined the notion of generalized
pseudodistance which is generalized w-distance. In 2011, a fixed point results in uniform spaces
for the Subrahmanyam type is proven [3]. In 2013, by using the concept of Meir–Keeler, Suzuki,
Ćirić, Achymski, and Matkowski mappings, the fixed point results in uniform spaces were given [4].
Recently, Mongkolkeha and Kumam [5] used the notion of generalized weak contraction to prove
the existence results of fixed point in b-metric spaces. On the other hand, in 2012, Wardowski [6]
established a new contraction called F-contraction and acquired a fixed point result which generalized
a Banach contraction in many ways. In 2014, Pili and Kumam [7] revealed a large class of functions
by changing condition (F3) to (F3′) in the condition of F function. Afterwards, many authors used
this mapping for studying the existences of fixed points and applied it to several problems [8–11].
Hence, by using the notion of F-contraction, we prove some new existence theorems of fixed points
in generalized pseudodistances. Moreover, we also give some examples to support our main results.
As an application, we establish the existence solution of a second order differential equation by using
our fixed point results.

2. Preliminaries

In this section, we recall the notions, notations and basic knowledge for our consideration.
First, we denote the sets of positive integers, positive real numbers and real numbers by N, R+ and
R, respectively.

Definition 1. Let X be a nonempty set. A point x ∈ X is called a fixed point of a mapping T: X → X if
x = Tx. We note that Fix(T): = {x ∈ X | x = Tx}.
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2.1. w-Distance and Generalized Pseudodistance

Definition 2. Let (X, d) be a metric space [1]. The mapping p: X× X → [0, ∞) is said to be a w-distance on
X if it satisfies the following properties:

(a) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(b) for any x ∈ X, p(x, ·): X → [0, ∞) is lower semi-continuous. That is,

p(x, y) ≤ lim inf
n→∞

p(x, yn),

for any x ∈ X and sequence {yn} in X such that yn → y ∈ X.

(c) for each ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Obviously, every metric is a w-distance but not conversely (see [12]).

Definition 3. Let (X, d) be a metric space and let J: X × X → [0, ∞) be a mapping [2,13]. A mapping J is
called a generalized pseudodistance on X if it satisfies the following properties:

(J1) J(x, y) ≤ J(x, z) + J(z, y) for all x, y, z ∈ X,
(J2) for any sequences {xm} and {ym} in X such that

lim
n→∞

sup
m>n

J(xn, xm) = 0 (1)

and
lim

m→∞
J(xm, ym) = 0, (2)

we have
lim

m→∞
d(xm, ym) = 0. (3)

For the examples of generalized pseudodistance, see [2,13].

Remark 1. Let (X, d) be a metric space and J be a generalized pseudodistance on X:

(A) there exists a generalized pseudodistance J on X which is not a metric.
(B) Every metric d is a generalized pseudodistance on X.
(B) Let X0

J = {a ∈ X : J(a, a) = 0} and X+
J = {a ∈ X: J(a, a) > 0}; then, X = X0

J ∪ X+
J .

(C) For any a, b ∈ X with a 6= b, then J(a, b) > 0∨ J(b, a) > 0 (see ([13]).

Definition 4. Let (X, d) be a metric space equipped with a generalized pseudodistance J [14]. We say that X is
a J-complete if and only if for all a sequence {xn} in X such that

lim
n→∞

sup
m>n

J(xn, xm) = 0,

there exists an element x in X such that

lim
m→∞

J(xm, x) = lim
m→∞

J(x, xm) = 0.

Remark 2.

(A) If we take J = d, then the J-completeness reduces to the completeness.
(B) If J = p, when p is a w-distances, we call X a w-complete.
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2.2. F-Contraction Mapping

Definition 5. A function F: R+ → R is called F-function if it corresponds to the properties [6]:

(F1) s < t⇒ F(s) < F(t) f or all s, t ∈ R+, i.e., F is strictly increasing.
(F2) lim

n→∞
sn = 0 i f f lim

n→∞
F(sn) = −∞, for every sequence {sn} in R+.

(F3) there exists a number k ∈ (0, 1) such that lim
s→0+

skF(s) = 0.

We denote that F is the set of all functions F-functions.

The examples of functions F ∈ F (see [6] for more details).

Definition 6. Let (X, d) be a metric space [6]. A self mapping T on X is said to be an F-contraction if, for all
x, y ∈ X such that d(Tx, Ty) > 0, we have

τ + F(d(Tx, Ty)) ≤ F(d(x, y)) (4)

for some τ > 0 and F ∈ F .

Remark 3. Consider F: R+ → R defined by F(α) = ln α. Then, F satisfies (F1)–(F3) (F(3) for any k ∈ (0, 1)).
If T: X → X be a mapping satisfying (4), then

d(Tx, Ty) ≤ e−τd(x, y)

for all x, y ∈ X with Tx 6= Ty. It is obvious that for x, y ∈ X, such that Tx = Ty, the inequality (4) also holds.
That is, T is Banach contraction.

Remark 4. Consider F: R+ → R defined by F(α) = ln(α2 + α). Then, F satisfies (F1)–(F3) (F(3) for any
k ∈ (0, 1)). If T: X → X is a mapping satisfying (4), then

d(Tx, Ty)(d(Tx, Ty) + 1)
d(x, y)(d(x, y) + 1)

≤ e−τ (5)

for all x, y ∈ X with Tx 6= Ty.

Remark 5. Let F ∈ F . Then,

(a) By (F1) and (4) every F-contraction, T is a contractive mapping. That is,

d(Tx, Ty) < d(x, y)

for all x, y ∈ X with Tx 6= Ty.
(b) Every F-contraction is a continuous mapping.

In 2013, Secelean [10] showed that the condition (F2) in F-function can be by the equivalent
condition instead but a more simple as follows:

(F2′) inf F = −∞

or, instead, by

(F2′′) there exists a sequence {sn} in R+ such that lim
n→∞

F(sn) = −∞.

In 2014, Piri and Kumam [7] changed the property (F3) by (F3′) in the F-function as follows.
(F3′) F is continuous on (0, ∞). Thus, Piri and Kumam [7] generalized the result of Wordowski by
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using the conditions (F1), (F2′) and (F3′). Recently, Singk et al. [11] removed the condition (F2′) and
it is called relaxed F- contraction as follows.

Definition 7. A function F: R+ → R is called relaxed F- function if it satisfies:

(F1) F is strictly increasing,
(F3′) F is continuous on (0, ∞).

We denoted that4F is the set of all relaxed F- functions.

3. Main Results

In this section, we prove the existence of fixed point theorems for generalized F-contraction
mapping. In addition, we provide some examples to support our main results.

Theorem 1. Let (X, d) be a metric space equipped with a generalized pseudodistance J and let T: X → X be a
mapping. Assume that X is J−complete and there exists F ∈ F and τ ∈ R+ such that

τ + F(J(Tx, Ty)) ≤ F(mJ(x, y)) (6)

for all x, y ∈ X with J(Tx, Ty) > 0, where mJ(x, y) = min{J(x, y), J(y, x)}. If F is a continuous from the
right, then T has a unique fixed point. Furthermore, for any x0 ∈ X, define xn = Txn−1 for all n ∈ N,
the sequence {xn} converges to u ∈ Fix(T) and lim

n→∞
J(xn, u) = 0 = lim

n→∞
J(u, xn).

Proof. Let x0 ∈ X. We define the sequence xn by xn = Txn−1 for all n ∈ N. If xn0 = Txn0 , for some
n0 ∈ N, the proof is complete. Suppose that xn 6= Txn for all n ∈ N then we have d(Txn−1, Txn) > 0.
Consequently, J(Txn−1, Txn) > 0. By (F1) and Equation (6), we have

τ + F(J(xn, xn+1)) = τ + F(J(Txn−1, Txn) ≤ F(mJ(xn−1, xn)), (7)

putting Jn: = J(xn, xn+1) for all n ∈ N∪ {0}.
case I Let mJ(xn−1, xn) = J(xn−1, xn), by Equation (7),

F(Jn) ≤ F(mJ(xn−1, xn))− τ = F(Jn−1)− τ. (8)

Furthermore, by Equation (8) and (F1), we can see that

F(Jn) ≤ F(Jn−1)− τ ≤ F(Jn−2)− 2τ ≤ . . . ≤ F(J0)− nτ (9)

and thus lim
n→∞

F(Jn) = −∞. From (F2), we have lim
n→∞

Jn = 0. Now, using (F3), there exists k ∈ (0, 1)

such that
lim

n→∞
Jk
nF(Jn) = 0.

By Equation (9), for each n ∈ N, we get

Jk
nF(Jn)− Jk

nF(J0) ≤ Jk
n(F(J0)− nτ)− Jk

nF(J0) ≤ −nτ Jk
n ≤ 0 (10)

and hence
lim

n→∞
nJk

n = 0. (11)

Therefore, we can choose n0 ∈ N such that

nJk
n ≤ 1 for all n ≥ n0
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and hence
Jn ≤

1
n1/k for all n ≥ n0.

Letting m, n be positive integer such that m > n ≥ n0, then

J(xn, xm) ≤ J(xn, xn+1) + J(xn+1, xn+2) + . . . + J(xm−1, xm)

= Jn + Jn+1 + . . . + Jm−1

≤ ∑
n≥n0

1
n1/k ,

which is convergent as k ∈ (0, 1) and thus

lim
n→∞

sup
m>n

J(xn, xm) = 0. (12)

case II Let mJ(xn−1, xn) = J(xn, xn−1), then J(xn, xn−1) ≤ J(xn−1, xn).

By Equation (7) and (F1),

τ + F(J(xn, xn+1)) ≤ F(mj(xn−1, xn))

= F(J(xn, xn−1))

≤ F(J(xn−1, xn)).

That is,
F(Jn) ≤ F(Jn−1)− τ.

By the same argument as in case I, we also get that Equation (12) holds. From the J-completeness of J,
the sequence {xn} converges to some element x∗ ∈ X and hence

lim
n→∞

J(xn, x∗) = 0 = lim
n→∞

J(x∗, xn). (13)

Next, we will prove that x∗ ∈ Fix(T). If J(Txn, Tx∗) > 0, by (F1) and Equation (6), we have

F(J(xn+1, Tx∗)) = F(J(Txn, Tx∗)

≤ F(mJ(xn, x∗))− τ. (14)

If mJ(xn, x∗) = J(xn, x∗), then by Equation (14) and (F1), J(xn+1, Tx∗) ≤ J(xn, x∗). Hence, by
Equation (13), we have

lim
n→∞

J(xn+1, Tx∗) ≤ lim
n→∞

J(xn, x∗) = 0.

Then,
lim

n→∞
J(xn+1, Tx∗) = 0.

For any n ∈ N, define xm = xn+1 and ym = Tx∗ for all m ∈ N; then,

lim
m→∞

J(xm, ym) = 0. (15)

By Equations (12), (15) and (J2), imply that limm→∞ d(xm, ym) = 0. That is,

d(x∗, Tx∗) = lim
n→∞

d(xn+1, Tx∗) = lim
m→∞

d(xm, ym) = 0

and hence x∗ = Tx∗. Now, let mJ(xn, x∗) = J(x∗, xn); then, by Equation (14), (F1) and Equation (13),
we have

J(x∗, Tx∗) = lim
n→∞

J(xn+1, Tx∗) ≤ lim
n→∞

J(x∗, xn) = 0.
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This implies that x∗ = Tx∗. Therefore, by both cases, we obtain that x∗ ∈ Fix(T).
Finally, we will prove the uniqueness part. Supposing that there exists z∗ ∈ X such that z∗ = Tz∗

and z∗ 6= x∗, then d(x∗, z∗) > 0 which implies that J(Tx∗, Tz∗) > 0. Therefore, by Equation (6),

F(J(x∗, z∗)) = F(J(Tx∗, Tz∗)
≤ F(mJ(x∗, z∗))− τ.

(16)

If mJ(x∗, z∗) = J(x∗, z∗), then, by Equation (16), (F1) and τ > 0, we have J(x∗, z∗) < J(x∗, z∗), which is
impossible.
If mJ(x∗, z∗) = J(z∗, x∗), then, by definition of mJ , we get J(z∗, x∗) < J(x∗, z∗). Hence, from
Equation (16) and (F1),

τ + F(J(x∗, z∗)) ≤ F(mJ(x∗, z∗)) = F((z∗, x∗)) < F(J(x∗, z∗)),

which implies that J(x∗, z∗) < J(x∗, z∗) and it is impossible. Therefore, z∗ = x∗ and the proof
is complete.

Corollary 1. Let (X, d) be a metric space equipped with a generalized pseudodistance J and let T: X → X be a
mapping with τ ∈ R+. Assume that X is a J−complete and there exists k ∈ [0, e−τ) such that

J(Tx, Ty) ≤ kmJ J(x, y) (17)

for all x, y ∈ X. Then, T has a unique fixed point. Furthermore, for any x0 ∈ X, define xn = Txn−1 for all
n ∈ N, the sequence {xn} converges to u ∈ Fix(T) and lim

n→∞
J(xn, u) = 0 = lim

n→∞
J(u, xn).

Corollary 2. Let (X, d) be a metric space equipped with an w-distance p and let T: X → X be a mapping.
Assume that X is a w-complete and there exists F ∈ F with τ ∈ R+ such that

p(Tx, Ty) > 0⇒ τ + F(p(Tx, Ty)) ≤ F(mp(x, y)) (18)

for all x, y ∈ X, where mp(x, y) = min{p(x, y), p(y, x)}. If F is a continuous from the right, then T has
a unique fixed point. Furthermore, for any x0 ∈ X, define xn = Txn−1 for all n ∈ N; the sequence {xn}
converges to u ∈ Fix(T) and lim

n→∞
p(xn, u) = 0 = lim

n→∞
p(u, xn).

Corollary 3. Let (X, d) be a complete metric space and T: X → X be a mapping [6]. Assume that there exists
a continuous from the right function F ∈ F and τ ∈ R+ such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)) (19)

for all x, y ∈ X with Tx 6= Ty. Then, T has a unique fixed point. Furthermore, for any x0 ∈ X, define
xn = Txn−1 for all n ∈ N, the sequence {xn} converges to u ∈ Fix(T).

Next, we provide some illustrative example to support Theorem 1.

Example 1. Let X = [0, 2], E = [0, 1]. Define a metric d on X by d(x, y) = |x| + |y| for all x, y ∈ X.
Let J: X× X → [0, ∞) be a generalized pseudodistance on X defined by

J(x, y) =

{
d(x, y), E ∩ {x, y} = {x, y},
6, E ∩ {x, y} 6= {x, y}.
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Define a mapping T: X → X by

Tx =


x

x + 2
, x ∈ E;

x− 1, x /∈ E.

Now, we will show that the mapping T satisfies (6) with τ = 0.05 > 0 and F(α) = ln α. Then, F ∈ F (see [6]),
and we distinguish four cases.
Case I Let x, y ∈ E. Then, the L.H.S. of (6),

τ + F(J(Tx, Ty)) = 0.05 + ln
(

x
x + 2

+
y

y + 2

)
and the R.H.S. of (6),

F(mJ(x, y)) = ln(x + y).

Next, we compare L.H.S. and R.H.S. in the 3D view (see Figure 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1
−5

−4

−3

−2

−1

0

1  

 

L.H.S.
R.H.S.

Figure 1. The value of comparison of the L.H.S. and R.H.S. of Equation (6) in the 3D view.

Case II Let x ∈ E, y /∈ E. Then,

τ + F(J(Tx, Ty)) = 0.05 + ln
( x

x + 2
+ (y− 1)

)
< 0.05 + ln

( x
x + 2

+ 1
)

< 0.05 + ln(2)
= 0.7431
< 1.7917
= ln(6) = F(mJ(x, y)).

Case III Let x /∈ E, y ∈ E. Similarly to case II, we obtain

τ + F(J(Tx, Ty)) = 0.05 + ln
( y

y + 2
+ (x− 1)

)
≤ ln(6) = F(mJ(x, y)).

Case IV Let x /∈ E, y /∈ E. Then,
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τ + F(J(Tx, Ty)) = 0.05 + ln
(
x + y− 2

)
≤ 0.05 + ln(2)
< ln(6) = F(mJ(x, y)).

Therefore, all the hypotheses of Theorem 1 are satisfied. For this, x = 0 is only a fixed point of T and J(0, 0) = 0.

Theorem 2. Let (X, d) be a metric space equipped with a generalized pseudodistance J and let T: X → X be a
mapping. Assume that X is a J−complete and there exists F ∈ 4F and τ ∈ R+ such that

J(Tx, Ty) > 0⇒ τ + F(J(Tx, Ty)) ≤ F(α(J(x, Tx) + J(y, Ty))) (20)

for all x, y ∈ X, where α ∈ [0, 1
2 ). Then, T has a fixed point. Furthermore, for any x0 ∈ X, define xn = Txn−1

for all n ∈ N; the sequence {xn} converges to u ∈ Fix(T) and lim
n→∞

J(xn, u) = 0 = lim
n→∞

J(u, xn).

Proof. Let x0 ∈ X be arbitrary and define the sequence {xn} by xn = Txn−1 for all n ∈ N. If xn0 = Txn0 ,
for some n0 ∈ N, then the proof is complete. Suppose that xn 6= Txn for all n ∈ N. Then, d(xn.xn+1) > 0
implies that J(xn.xn+1) > 0. Letting Jn: = J(xn.xn+1) for n ∈ N∪ {0}. By Equation (20), we have

τ + F(Jn) = τ + F(J(Txn−1, Txn)

≤ F(α(J(xn−1, Txn−1)) + J(xn, Txn)))

= F(α(Jn−1 + Jn)).

By (F1), we get

Jn ≤ α(Jn−1 + Jn) (21)

and hence
Jn ≤

α

1− α
Jn−1 (22)

for all n ∈ N. Therefore,

Jn ≤
α

1− α
Jn−1 . . . ≤

(
α

1− α

)n
J0.

Furthermore, for any positive integer m, n such that m > n,

J(xn, xm) ≤ Jn + Jn+1 + . . . + Jm−1

≤
((

α
1−α

)n
+
(

α
1−α

)n+1
+ . . . +

(
α

1−α

)m−1
)

J0

≤ αn

(1−α)n−1(1−2α)
J0.

Taking m, n→ ∞ reduces to
lim

n→∞
sup
m>n

J(xn, xm) = 0. (23)

Since J is J-complete, then the sequence {xn} converges to some element x∗ ∈ X with

lim
n→∞

J(xn, x∗) = 0 = lim
n→∞

J(x∗, xn). (24)

Next, we will prove that x∗ ∈ Fix(T). If J(Txn, Tx∗) > 0, then by Equation (6),

F(J(xn+1, Tx∗)) = τ + F(J(Txn, Tx∗)
≤ F(α(J(xn, Txn) + J(x∗, Tx∗)))− τ

= F(α(J(xn, xn+1) + J(x∗, Tx∗)))− τ.
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By (F1), we get J(xn+1, Tx∗) ≤ α(J(xn, xn+1) + J(x∗, Tx∗)) and thus

J(x∗, Tx∗) = lim
n→∞

J(xn+1, Tx∗)

≤ lim
n→∞

α(J(xn, xn+1) + J(x∗, Tx∗))

≤ α(J(x∗, x∗) + J(x∗, Tx∗)).

Consequently,

J(x∗, Tx∗) ≤
α

1− α
J(x∗, x∗)

≤
α

1− α

(
J(x∗, xn) + J(xn, x∗)

)
.

(25)

Then, Equations (24) and (25) imply that J(x∗, Tx∗) = 0. Now, for each n ∈ N, define xm = xn+1 and
ym = Tx∗ for all m ∈ N; then,

lim
m→∞

J(xm, ym) = 0. (26)

Equations (23), (26) and (J2) imply that lim
n→∞

d(xm, ym) = 0. That is,

d(x∗, Tx∗) = lim
n→∞

d(xn+1, Tx∗) = lim
m→∞

d(xm, ym) = 0.

Thus, we obtain that x∗ = Tx∗ and the proof is complete.

Corollary 4. Let (X, d) be a metric space equipped with a generalized pseudodistance J and let T: X → X be a
mapping. Assume that X is a J−complete and there exists λ ∈ [0, αe−τ) such that

J(Tx, Ty) ≤ λ(J(x, Tx) + J(y, Ty)) (27)

for all x, y ∈ X. Then, T has a fixed point. Furthermore, for any x0 ∈ X define xn = Txn−1 for all n ∈ N, the
sequence {xn} converges to u ∈ Fix(T) and lim

n→∞
J(xn, u) = 0 = lim

n→∞
J(u, xn).

Corollary 5. Let (X, d) be a metric space equipped with a w-distance p and let T: X → X be a mapping.
Assume that X is a w-complete and there exists F ∈ 4F with τ ∈ R+ such that

p(Tx, Ty) > 0⇒ τ + F(pTx, Ty)) ≤ F(α(p(x, Tx) + p(y, Ty))) (28)

for all x, y ∈ X. Then, T has a fixed point. Furthermore, for any x0 ∈ X, define xn = Txn−1 for all n ∈ N,
the sequence {xn} converges to u ∈ Fix(T) and lim

n→∞
p(xn, u) = 0 = lim

n→∞
p(u, xn).

Corollary 6. Let (X, d) be a complete metric space and T: X → X be a mapping. Assume that there exists
F ∈ 4F with τ ∈ R+ such that

τ + F(d(Tx, Ty)) ≤ F(α(d(x, Tx) + d(y, Ty))) (29)

for all x, y ∈ X such that Tx 6= Ty, where α ∈ [0, 1
2 ). Then, T has a fixed point. Furthermore, for any x0 ∈ X,

define xn = Txn−1 for all n ∈ N; the sequence {xn} converges to u ∈ Fix(T).

Next, we provide some illustrative examples of Theorem 2.

Example 2. Let X = [0, 2] and E = { 1
n ; n ∈ N} ∪ {0} with the metric defined by d(x, y) = max{x, y} for

all x, y ∈ X. Let J : X× X → [0, ∞) be a generalized pseudodistance on X defined by

J(x, y) =

{
d(x, y), E ∩ {x, y} = {x, y},
6, E ∩ {x, y} 6= {x, y}.
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Let T : X → X be defined by

T(x) =


1

n2 , if x = 1
n ,

0, otherwise.

Now, we will show that the mapping T satisfies (20) for α = 0.8, τ = 0.75 > 0 and F(β) = 1
1−eβ . Obviously,

F ∈ 4F , we distinguish four cases.

Case I Let x, y ∈ E. If x = y = 0, then J(Tx, Ty) = 0 we will not consider because it does not satisfy the
assumption of F. If x = 0 and y ∈ E \ {0} (or y = 0 and x ∈ E \ {0} ), then the L.H.S. of (20),

τ + F(J(Tx, Ty)) = 0.75 + F
( 1

n2

)
= 0.75 +

1

1− e
1

n2
,

and the R.H.S. of (20),

F(α(J(x, Tx) + J(y, Ty))) =
1

1− e0.8· 1n
.

Next, we compare R.H.S. and L.H.S. in the 3D view (see Figure 2).

0 20 40 60 80 1000

50

100
−10000

−8000

−6000

−4000

−2000

0  

 

L.H.S.
R.H.S.

Figure 2. The value of comparison of the L.H.S. and R.H.S. of Equation (20) in the 3D view.

Next, let x = 1
n and y = 1

m for some m, n ∈ N such that m > n. Then, for the L.H.S. of Equation (20),

τ + F(J(Tx, Ty)) = 0.75 + F
( 1

n2

)
= 0.75 +

1

1− e
1

n2
,

and for the R.H.S. of (20),

F(α(J(x, Tx) + J(y, Ty))) =
1

1− e0.8·
(

1
n +

1
m

) .

In the following figures (Figure 3), we compare the L.H.S. and R.H.S. in the 3D view.
Case II Let x ∈ E, and let y /∈ E. If x = 0, then Tx = Ty = 0 and J(Tx, Ty) = 0 we will not consider because
it does not satisfy the assumption of F, so we are done. Suppose that x ∈ E \ {0}, then

0.75 + F
( 1

n2

)
= 0.75 +

1

1− e
1

n2

and for the R.H.S. of (20),
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F(α(J(x, Tx) + J(y, Ty))) =
1

1− e0.8·
(

1
n +6
) .
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−10000

−8000

−6000

−4000

−2000

0
 

 

L.H.S.
R.H.S.

Figure 3. The value of the comparison of L.H.S. and R.H.S. of Equation (20) in the 3D view.

In the following figures (Figure 4), we compare R.H.S. and L.H.S. in the 3D view.

0 20 40 60 80 100
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−10000

−8000

−6000

−4000

−2000
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L.H.S.
R.H.S.

Figure 4. The value of comparison of L.H.S. and R.H.S. of Equation (20) in the 3D view.

Case III Let x /∈ E, and let y ∈ E. This is similar to case II.

Case IV Let x, y /∈ E. Then, J(Tx, Ty) = 0. Thus, it does not satisfy the condition of F.

Thus, all the conditions of Theorem 2 are satisfied. For this, x = 0 and x = 1 are fixed points of T.
Moreover, J(0, 0) = 0 and J(1, 1) = 0.

4. Applications

In this section, we apply our result to prove the existence theorem for the solution of the second
order differential equation of the form:{

d2u
dt2 + c

m
du
dt = K(t, u(t)),

u(0) = 0, u′(0) = a,
(30)
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where I > 0 and K is a continuous function from [0, I]×R+ to R.
The above differential equation shows the engineering problem of activation of a spring that

is affected by an exterior force. It is well known that the Equation (30) is equivalent to the integral
equation as follows:

u(t) =
∫ t

0 G(t, s)K(s, u(s))ds, t ∈ [0, I], (31)

when G(t, s) is the green function defined by

G(t, s) =

{
(t− s)eτ(t−s), if 0 ≤ s ≤ t ≤ I,
0, if 0 ≤ t ≤ s ≤ I,

(32)

with τ > 0 is a constant, in terms of c and m in Equation (30).
Let X: = C([0, I],R+) and τ > 0, when C([0, I],R+) is the set of all continuous functions from

[0, I] in to R+. For u ∈ X, we define

‖u‖τ = sup
t∈[0,I]

{|u(t)|e−2τt}

and the w-distance p : X× X → [0, ∞) is defined by

p(x, y) = min{‖x‖τ , ‖y‖τ}

for all x, y ∈ X. Consider a function T : X → X defined as follows:

T(u(t)) =
∫ t

0
G(t, s)K(s, u(s))ds where t ∈ [0, I] (33)

for all x ∈ X.

Clearly, the existence of a fixed point under a mapping T is equivalent to the existence of a solution
of Equation (31).

Theorem 3. Consider the nonlinear integral Equation (31). Assume that the following three conditions hold:

(A) K is continuous and increasing function;
(B) there exists τ > 0 such that

|K(s, u)| ≤ τ2e−τu,

where s ∈ [0, 1] and u ∈ R+;
(C) T: X → X satisfies (33).

Then, the Equation (31) has a solution.

Proof. Now, we show that the function T defined as Equation (33) satisfies Equation (18). For this,
we consider

|T(u(s))| =
∫ t

0
G(t, s)|K(s, u(s))|ds

≤
∫ t

0
G(t, s)τ2e−τ |u(s)|ds (by using conditions (A) & (B))

=
∫ t

0
τ2e−τ(t− s)eτ(t−s)e2τs‖u‖τds

= τ2e−τ+τt‖u‖τ

∫ t

0
(t− s)eτsds

= e−τ‖u‖τe2τt[1− τte−τt − e−τt].
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Because
[
1− τte−τt − e−τt] ≤ 1, we have

‖T(u(s)‖τ ≤ e−τ‖u‖τ .

Similarly,

‖T(v(s))‖τ ≤ e−τ‖v‖τ .

Therefore,

p(Tu, Tv) = min{‖Tu‖τ , ‖Tv‖τ}
≤ e−τ min{‖u‖τ , ‖v‖τ}
= e−τ min

{
min{‖u‖τ , ‖v‖τ}, min{‖v‖τ , ‖u‖τ}

}
= e−τmp(u, v)

for all u, v ∈ X.
By taking the logarithm, from the above inequality, we can write

τ + ln(p(Tu, Tv)) ≤ ln(mp(u, v)).

By considering the function F defined in Remark 3, we obtain that

τ + F(p(Tx, Ty)) ≤ F(mp(x, y))

and hence T satisfies (18). Therefore, all the hypotheses of Corollary 2 are satisfied, and hence by
Corollary 2, Equation (31) has a solution. This means that the second order differential Equation (30)
has a solution.
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