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Abstract

:

In this paper we prove that if M is a simple   K 3  -group, then   M × M   is uniquely determined by its order and some information on irreducible character degrees and as a consequence of our results we show that   M × M   is uniquely determined by the structure of its complex group algebra.
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1. Introduction


Let G be a finite group,   Irr ( G )   be the set of irreducible characters of G, and denote by   cd ( G )  , the set of irreducible character degrees of G. A finite group G is called a   K 3  -group if   | G |   has exactly three distinct prime divisors. By [1], simple   K 3  -groups are   A 5  ,   A 6  ,    L 2   ( 7 )   ,    L 2   ( 8 )   ,    L 2   ( 17 )   ,    L 3   ( 3 )   ,    U 3   ( 3 )    and    U 4   ( 2 )   . Chen et al. in [2,3] proved that all simple   K 3  -groups and the Mathieu groups are uniquely determined by their orders and one or both of their largest and second largest irreducible character degrees. In [4], it is proved that    L 2   ( q )    is uniquely determined by its group order and its largest irreducible character degree when q is a prime or when   q =  2 a    for an integer   a ≥ 2   such that    2 a  − 1   or    2 a  + 1   is a prime.



Let p be an odd prime number. In [5,6,7,8], it is proved that the simple groups    L 2   ( q )    and some extensions of them, where   q ∣  p 3    are uniquely determined by their orders and some information on irreducible character degrees.



In ([9], Problem 2   *  )R. Brauer asked: Let G and H be two finite groups. If for all fields  F , two group algebras   F G   and   F H   are isomorphic can we get that G and H are isomorphic? This is false in general. In fact, E. C. Dade [10] constructed two nonisomorphic metabelian groups G and H such that   F G ≅ F H   for all fields  F . In [11], Tong-Viet posed the following question:



Question. 

Which groups can be uniquely determined by the structure of their complex group algebras?





In general, the complex group algebras do not uniquely determine the groups, for example,   C  D 8  ≅ C  Q 8   . It is proved that nonabelian simple groups, quasi-simple groups and symmetric groups are uniquely determined up to isomorphism by the structure of their complex group algebras (see [12,13,14,15,16,17,18]). Khosravi et al. proved that    L 2   ( p )  ×  L 2   ( p )    is uniquely determined by its complex group algebra, where   p ≥ 5   is a prime number (see [19]). In [20], Khosravi and Khademi proved that the characteristically simple group    A 5  ×  A 5    is uniquely determined by its order and its character degree graph (vertices are the prime divisors of the irreducible character degrees of G and two vertices p and q are joined by an edge if   p q   divides some irreducible character degree of G). In this paper, we prove that if M is a simple   K 3  -group, then   M × M   is uniquely determined by its order and some information about its irreducible character degrees. In particular, this result is the generalization of ([19], Theorem 2.4) for   p = 5 , 7   and 17. Also as a consequence of our results we show that   M × M   is uniquely determined by the structure of its complex group algebra.




2. Preliminaries


If   χ =  ∑  i = 1  k   e i   χ i   , where for each   1 ≤ i ≤ k  ,    χ i  ∈ Irr  ( G )    and   e i   is a natural number, then each   χ i   is called an irreducible constituent of  χ .



Lemma 1.

(Itô’s Theorem) ([21], Theorem 6.15) Let   A ⊴ G   be abelian. Then   χ ( 1 )   divides   | G : A |  , for all   χ ∈ Irr ( G )  .





Lemma 2.

([21], Corollary 11.29) Let   N ⊴ G   and   χ ∈ Irr ( G )  . If θ is an irreducible constituent of   χ N  , then   χ ( 1 ) / θ ( 1 )  |  | G : N |  .





Lemma 3.

([2], Lemma 1) Let G be a nonsolvable group. Then G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H   is a direct product of isomorphic nonabelian simple groups and   | G / K | ∣ | Out ( K / H ) |  .





Lemma 4.

(Itô-Michler Theorem) [22] Let   ρ ( G )   be the set of all prime divisors of the elements of   cd ( G )  . Then   p ∉ ρ ( G ) = { p : p  i s  a  p r i m e  n u m b e r , p ∣ χ ( 1 ) , χ ∈ I r r ( G ) }   if and only if G has a normal abelian Sylow p-subgroup.





Lemma 5.

([3], Lemma 2) Let G be a finite solvable group of order    p 1  α 1    p 2  α 2   ⋯  p n  α n    , where   p 1  ,   p 2  , ...,   p n   are distinct primes. If    ( k  p n  + 1 )  ∤  p i  α i    , for each   i ≤ n − 1   and   k > 0  , then the Sylow   p n  -subgroup is normal in G.





Lemma 6.

([19], Theorem 2.4) Let   p ≥ 5   be a prime number. If G is a finite group such that (i)    | G | = |   L 2     ( p )  |  2   , (ii)    p 2  ∈ cd  ( G )   , (iii) there does not exist any element   a ∈ cd ( G )   such that   2  p 2  ∣ a  , (iv) if p is a Mersenne prime or a Fermat prime, then     ( p ± 1 )  2  ∈ cd  ( G )   , then   G ≅  L 2   ( p )  ×  L 2   ( p )   .






3. The Main Results


Lemma 7.

Let S be a simple   K 3  -group and let G be an extension of S by S. Then   G ≅ S × S  .





Proof. 

There exists a normal subgroup of G which is isomorphic to S and we denote it by the same notation. By [23], we know that   | Out ( S ) | ≤ 4   and   G /  C G   ( S )  ↪ Aut  ( S )   , which implies that    C G   ( S )  ≠ 1  . As S is a nonabelian simple group,   S ∩  C G   ( S )  = 1   and it follows that   S  C G   ( S )  ≅ S ×  C G   ( S )   . Also    C G   ( S )  ≅ S  C G   ( S )  / S ⊴ G / S ≅ S   which implies that G is isomorphic to   S × S  . ☐





Theorem 1.

Let G be a finite group. Then   G ≅  A 5  ×  A 5    if and only if    | G | = |   A 5    |  2    and    5 2  ∈ cd  ( G )   .





Proof. 

Obviously by Itô’s theorem, we get that    O 5   ( G )  = 1  . First we show that G is not a solvable group. If G is a solvable group, then let H be a Hall subgroup of G of order    2 4   5 2   . Since   G /  H G  ↪  S 9   , we get that    5 ∣ |   H G   |   . If    5 2  ∣  |  H G  |   , then   25 ∈ cd (  H G  )  . On the other hand,    25 2  <  |  H G  |  ≤  2 4   5 2   , a contradiction. If    |   H G   | =   2 4  5  , then    | G /   H G   | = 45   . Let   L /  H G    be a Sylow 5-subgroup of   G /  H G   . Then   L /  H G  ⊴ G /  H G    and so   L ⊴ G   and    | L |  =  5 2   2 4   . Then   25 ∈ cd ( L )  , which is a contradiction. If    |   H G   | ∣   2 3  5  , then P, a Sylow 5-subgroup of   H G   is a normal subgroup of G, which is a contradiction by Lemma 4. Therefore G is a nonsolvable group.



Since G is nonsolvable, by Lemma 3, G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H   is a direct product of isomorphic nonabelian simple groups and   | G / K | ∣ | Out ( K / H ) |  . As    | G |  =  2 4   3 2   5 2   , we have   K / H ≅  A 5  ,  A 6    or    A 5  ×  A 5    by [23]. If   K / H ≅  A 6   , then   | H | = 5   or 10. Using Lemma 2,   5 ∈ cd ( H )  , a contradiction. If   K / H ≅  A 5   , then   | H | = 60   or   | H | = 30  . By Lemma 5,   5 ∈ cd ( H )  . If H is a solvable group, then by Lemma 5,   P ⊴ H  , where   P ∈  Syl 5   ( H )   , which is a contradiction. Therefore   | H | = 60   and so   H ≅  A 5   . Hence G is an extension of   A 5   by   A 5   and by Lemma 7,   G ≅  A 5  ×  A 5   . If   K / H ≅  A 5  ×  A 5   , then   | H | = 1   and   G ≅  A 5  ×  A 5   . ☐





Theorem 2.

Let G be a finite group. Then   G ≅  L 2   ( 17 )  ×  L 2   ( 17 )    if and only if    | G | = |   L 2     ( 17 )  |  2    and    17 2  ∈ cd  ( G )   .





Proof. 

Obviously    O 17   ( G )  = 1  . On the contrary let G be a solvable group. First we show that there exists no normal subgroup N of G such that



(a)    | N |  =  2 i   3 j   17 k   , where   k ≠ 0   and   i < 8  ; or (b)    | N |  =  2 8   17 2   ; or (c)    | N |  =  2 8  17  .



Let N be a normal subgroup of G. If    | N |  =  2 i   3 j   17 k   , where   k ≠ 0   and   i < 8  , then by Lemma 5,   P ⊴ G  , where   P ∈  Syl 17   ( G )   . Hence    O 17   ( G )  ≠ 1  , which is a contradiction. If    | N |  =  2 8   17 2   , then    17 2  ∈ cd  ( N )   , which is impossible. If    | N |  =  2 8  17  , then    | G / N |  =  3 4  17  . If   T / N ∈  Syl 17   ( G / N )   , then   T / N ⊴ G / N  . Therefore   T ⊴ G  , where    | T |  =  17 2   2 8    and this is a contradiction as we stated above.



Let M be a minimal normal subgroup of G, which is an elementary abelian p-group. Obviously   p ≠ 17  . Let   p = 2  . Then    | M |  =  2 i   , where   0 < i ≤ 8   and so    | G / M |  =  2  8 − i    3 4   17 2   . Then   T / M ⊴ G / M  , where   T / M ∈  Syl 17   ( G / M )   . Therefore   T ⊴ G   and    | T |  =  17 2   2 i   , which is a contradiction. Hence   p = 3   and    | M |  =  3 i   , where   1 ≤ i ≤ 4  .



If   i = 4  , then   G /   C G   ( M )   ↪ Aut  ( M )  ≅ GL  ( 4 , 3 )    and    | GL  ( 4 , 3 )  |  =  2 9  ×  3 6  × 5 × 13  . Hence    17 2  ∣  |  C G   ( M )  |   . Since M is an abelian subgroup of G, thus    3 4  ∣  |  C G   ( M )  |   . If    |   C G    ( M )  | =   17 2   3 4   2 j   , where   j ≠ 8  , then by the above discussion we get a contradiction. Otherwise,    C G   ( M )  = G   and so by Burnside normal p-complement theorem, G has a normal 3-complement of order    17 2   2 8   , which is a contradiction.



If   i = 3  , then    | G / M |  =  2 8   17 2  3  . Let   H / M   be a Hall subgroup of   G / M   of order    2 8   17 2   . Then    | H |  =  2 8   3 3   17 2   . Since   G /  H G  ↪  S 3   , thus    3 3   17 2  ∣  |  H G  |   . If    2 8  ∤  |  H G  |   , then by the above discussion we get a contradiction. Therefore    |   H G   | =   2 8   3 3   17 2   , i.e.,   H ⊴ G  . Let B be a Hall subgroup of H of order    | B |  =  2 8   17 2   . Then similarly to the above    2 8  17 ∣  |  B H  |   . If    |   B H   | =   2 8   17 2   , then we get a contradiction. If    |   B H   | =   2 8  17  , then   T /  B H  ⊴ B /  B H    where   T /  B H  ∈  Syl 17   ( B /  B H  )   . Therefore    | T |  =  2 8   17 2   , which is a contradiction.



If   i = 2  , then    | G / M |  =  2 8   3 2   17 2   . Let   H / M   be a Hall subgroup of   G / M   of order    2 8   17 2   . Then    | H |  =  2 8   3 2   17 2   . Thus similarly to the above,    17 2  ∣  |  H G  |    and    17 2  ∈ cd  (  H G  )   . Then by the same argument as above we get that   H G   has a normal subgroup of order    2 i   17 2   , which is a contradiction.



If   i = 1  , then    | G / M |  =  2 8   3 3   17 2   . Let   H / M   be a Hall subgroup of   G / M   of order    2 8   17 2   . Then    | H |  =  2 8   17 2  3  . Since   G /  H G  ↪  S 27    we get that    17 ∣ |   H G   |   . If    2 8  ∤  |  H G  |    or    |   H G   | =   2 8   17 k  ,   where   k ≠ 0  , then we get a contradiction. If    |   H G   | =   2 8   17 2  3  , then   H G   has a normal subgroup of order    2 i   17 2   , which is a contradiction. If    |   H G   | =   2 8  × 17 × 3  , then    | G /   H G   | =   3 3  17  . Therefore   T /  H G  ⊴ G /  H G   , where   T /  H G  ∈  Syl 17   ( G /  H G  )   . Hence   T ⊴ G   and    | T |  =  2 8   17 2  3  , which is a contradiction as we stated above.



Therefore G is nonsolvable and by Lemma 3, G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H ≅  L 2   ( 17 )    or    L 2   ( 17 )  ×  L 2   ( 17 )    and   | G / K | ∣ | Out ( K / H ) |  .



If   K / H ≅  L 2   ( 17 )   , then    | H |  =  2 3   3 2  17   or    2 4   3 2  17   and so   17 ∈ cd ( H )  . If H is a solvable group, then by Lemma 5,   P ⊴ H  , where   P ∈  Syl 17   ( H )   , which is a contradiction by Lemma 4. Otherwise by Lemma 3 and [23] we get that   H ≅  L 2   ( 17 )   . Therefore G is an extension of    L 2   ( 17 )    by    L 2   ( 17 )    and by Lemma 7,   G ≅  L 2   ( 17 )  ×  L 2   ( 17 )   .



Obviously if   K / H ≅  L 2   ( 17 )  ×  L 2   ( 17 )   , then   G ≅  L 2   ( 17 )  ×  L 2   ( 17 )   . ☐





In the sequel, we show that if G is a finite group of order    |   L 2   ( 7 )  ×  L 2    ( 7 )  |   , such that G has an irreducible character of order   7 2   or   2 6  , then we can not conclude that   G ≅  L 2   ( 7 )  ×  L 2   ( 7 )   . So we need more assumptions to characterize    L 2   ( 7 )  ×  L 2   ( 7 )   .



Remark 1.

Using the notations of GAP [24], if   A = SmallGroup ( 56 , 11 )   and   H = A × A ×  Z 9   , then    | H | = |   L 2   ( 7 )  ×  L 2    ( 7 )  |    and H has an irreducible character of degree   7 2  .



Similarly if   B = SmallGroup ( 784 , 160 )   and   K = B ×  S 3  ×  S 3   , then    | H | = |   L 2   ( 7 )  ×  L 2    ( 7 )  |    and H has an irreducible character of degree   2 6  .





Theorem 3.

Let G be a finite group. Then   G ≅  L 2   ( 7 )  ×  L 2   ( 7 )    if and only if    | G |  =  2 6   3 2   7 2    and    2 6  ,  7 2  ∈ cd  ( G )   .





Proof. 

If G is a solvable group, then let H be a Hall subgroup of G of order    2 6   7 2   . Since   G /  H G  ↪  S 9   , we have    |   H G   | =   2 i   7 j   , where   0 ≤ i ≤ 6   and   1 ≤ j ≤ 2  . Using Lemma 2,    2 i  ,  7 j  ∈ cd  (  H G  )   . If    O 2   (  H G  )  ≠ 1  , then by Lemma 2,    |   O 2   (  H G  )   | ∈ cd   (  O 2   (  H G  )  )   , which is a contradiction. Similarly    O 7   (  H G  )  = 1  , which shows that G is a nonsolvable group.



Therefore G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H ≅  L 2   ( 8 )  ,  L 2   ( 7 )    or    L 2   ( 7 )  ×  L 2   ( 7 )    and   | G / K | ∣ | Out ( K / H ) |  .



If   K / H ≅  L 2   ( 8 )   , then   | H | = 56  . Using Lemma 2,   8 ∈ cd ( H )   and since   64 > 56  , we get a contradiction.



If   K / H ≅  L 2   ( 7 )   , then    | H |  =  2 2  × 3 × 7   or    2 3  × 3 × 7  . If    | H |  =  2 2  × 3 × 7  , then by Lemma 2,   7 ∈ cd ( H )  . Since there exists no nonabelian simple group S such that   | S | ∣ | H |  , we get that H is a solvable group. then by Lemma 5,   P ⊴ H   where   P ∈  Syl 7   ( H )   , which is a contradiction by Lemma 4. So    | H |  =  2 3  × 3 × 7  , by the same argument for the proof of Theorem A in [2], we get that   H ≅  L 2   ( 7 )   . Therefore G is an extension of    L 2   ( 7 )    by    L 2   ( 7 )    and by Lemma 7,   G ≅  L 2   ( 7 )  ×  L 2   ( 7 )   .



If   K / H ≅  L 2   ( 7 )  ×  L 2   ( 7 )   , obviously we have   G ≅  L 2   ( 7 )  ×  L 2   ( 7 )   . ☐





Remark 2.

We note that Theorems 1, 2 and 3 are generalizations of Lemma 6 for special cases   p = 5 , 7 , 17  .





Lemma 8.

Let G be a finite group. If    | G |  =  2 i   3 j  5  , where   i ≥ 3   or   j ≥ 1  , and    2 i  ,  3 j  ∈ cd  ( G )   , then G is not solvable. If    | G |  =  2 i   3 j   5 2   , where   i ≥ 6   or   j ≥ 2  , and    2 i  ,  3 j  ∈ cd  ( G )   , then G is not solvable.





Proof. 

On the contrary let G be a solvable group.



Let    O 2   ( G )  ≠ 1   and    |   O 2    ( G )  | =   2 t   , where   1 ≤ t ≤ i  . By the assumption, there exists   χ ∈ Irr ( G )   such that   χ  ( 1 )  =  2 i   . If   σ ∈  Irr (  O 2   ( G )  )    such that   [  χ   O 2   ( G )    , σ ] ≠ 0  , then by Lemma 2,    2 i  / σ  ( 1 )    is a divisor of    | G :   O 2    ( G )  | =   2  i − t    . Since    σ  ( 1 )  ∣ |   O 2    ( G )  |   , we get that   σ  ( 1 )  =  2 t   , which is a contradiction. Similarly    O 3   ( G )  = 1  .



Therefore   Fit  ( G )  =  O 5   ( G )  ≠ 1  . We know that   G /  C G   ( Fit  ( G )  )  ↪ Aut  ( Fit  ( G )  )    and since G is a solvable group,    C G   ( Fit  ( G )  )  ⩽ Fit  ( G )   . Therefore   | G |   is a divisor of   | Fit ( G ) | · | Aut ( Fit ( G ) ) |   and easily we can see that in each case we get a contradiction. ☐





Similarly to the above we have the following result:



Lemma 9.

Let G be a finite group.




	(a) 

	
If    | G |  =  2 i   3 j  7  , where   i ≥ 2   or   j ≥ 2  , and    2 i  ,  3 j  ∈ cd  ( G )   , then G is not solvable.




	(b) 

	
If    | G |  =  2 i   3 j   7 2   , where   i ≥ 6   or   j ≥ 3  , and    2 i  ,  3 j  ∈ cd  ( G )   , then G is not solvable.











Theorem 4.

Let G be a finite group.




	(a) 

	
If    | G |  =  2 6   3 4   5 2    and    2 6  ,  3 4  ∈ cd  ( G )   , then   G ≅  A 6  ×  A 6    or   G ≅  Z 5  ×  U 4   ( 2 )   ;




	(b) 

	
If    | G |  =  2 12   3 8   5 2    and    2 12  ,  3 8  ∈ cd  ( G )   , then   G ≅  U 4   ( 2 )  ×  U 4   ( 2 )   .











Proof. 

Lemma 8 gives us that G is not solvable and so G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H   is a direct product of isomorphic nonabelian simple groups and   | G / K | ∣ | Out ( K / H ) |  .



(a) By assumptions   K / H   is isomorphic to    A 5  ,  A 6  ,  U 4   ( 2 )  ,  A 5  ×  A 5    or    A 6  ×  A 6   .



If   K / H ≅  A 5   , then    | H |  =  2 4   3 3  5   or    | H |  =  2 3   3 3  5  . By Lemma 8, H is not solvable and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a direct product of m copies of a nonabelian simple group S and   | H / B | ∣ | Out ( B / A ) |  . If    | H |  =  2 4   3 3  5  , we have   B / A ≅  A 5    or   A 6  . Then   | A | = 36  , 18, 6 or 3, which is a contradiction. If    | H |  =  2 3   3 3  5  , then similarly we get a contradiction.



If   K / H ≅  A 6   , then    | H |  =  2 i   3 2  5  , where   1 ≤ i ≤ 3  . By Lemma 2,    2 i  ,  3 2  ∈ cd  ( H )   . Using Lemma 8, H is not a solvable group and so   i ≠ 1  . Also H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a direct product of m copies of a nonabelian simple group S and   | H / B | ∣ | Out ( B / A ) |  . If    | H |  =  2 3   3 2  5  , by Theorem B in [2], we get that   H ≅  A 6   , and so by Lemma 7,   G ≅  A 6  ×  A 6   . If    | H |  =  2 2   3 2  5  , then   | A | = 3  , which is a contradiction.



If   K / H ≅  U 4   ( 2 )   , then   | H | = 5   and   G = K  . Therefore G is an extension of   Z 5   by    U 4   ( 2 )   . We know that   G /  C G   ( H )  ↪ Aut  ( H )    and    ( G / H )  /  (  C G   ( H )  / H )  ≅ G /  C G   ( H )   . So G is a central extension of H by    U 4   ( 2 )   . Since the Schur multiplier of    U 4   ( 2 )    is 2, we get that   G ≅  Z 5  ×  U 4   ( 2 )   .



Let   K / H ≅  A 5  ×  A 5   . We know that   Out  ( K / H )  ≅ Out  (  A 5  )  ≀  S 2   , and so   | G / K | ∣ 8  . Thus    | H |  =  2 i   3 2   , where   0 ≤ i ≤ 2  , which is a contradiction.



Finally, if   K / H ≅  A 6  ×  A 6   , then   G ≅  A 6  ×  A 6   .



(b) In this case, we have   K / H ≅  A 5  ,  A 6  ,  U 4   ( 2 )  ,  A 5  ×  A 5  ,  A 6  ×  A 6    or    U 4   ( 2 )  ×  U 4   ( 2 )   .



If   K / H ≅  A 5   , then    | H |  =  2 10   3 7  5   or    2 9   3 7  5  . By Lemma 8, H is not a solvable group and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a nonabelian simple group. Therefore A is a   { 2 , 3 }  -group such that    O 2   ( A )  =  O 3   ( A )  = 1   and this is a contradiction.



If   K / H ≅  A 6   , then similarly to the above we get a contradiction.



If   K / H ≅  U 4   ( 2 )   , then    | H |  =  2 i   3 4  5  , where   5 ≤ i ≤ 6  . By Lemma 2,    2 i  ,  3 4  ∈ cd  ( H )   . Therefore H is not a solvable group and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a nonabelian simple group. If    | H |  =  2 5   3 4  5  , then A is a   { 2 , 3 }  -group such that    O 2   ( A )  =  O 3   ( A )  = 1   and this is a contradiction. If    | H |  =  2 6   3 4  5  , by Theorem A in [2], we get that   H ≅  U 4   ( 2 )    and by Lemma 7,   G ≅  U 4   ( 2 )  ×  U 4   ( 2 )   .



Let   K / H ≅  A 5  ×  A 5   . We know that   Out  ( K / H )  ≅ Out  (  A 5  )  ≀  S 2   . Therefore   | G / K | ∣ 8   and thus    | H |  =  2 i   3 6   , where   5 ≤ i ≤ 8  , which is a contradiction.



If   K / H ≅  A 6  ×  A 6   , then    | Out  ( K / H )  |  =  2 5    and thus    | H |  =  2 i   3 4   , where   1 ≤ i ≤ 6  , which is a contradiction.



Therefore   K / H ≅  U 4   ( 2 )  ×  U 4   ( 2 )   , and so   G ≅  U 4   ( 2 )  ×  U 4   ( 2 )   . ☐





Corollary 1.

If    | G |  =  2 6   3 4   5 2    and    2 6  ,  3 4  ∈ cd  ( G )    and   6 ∉ cd ( G )  , then   G ≅  A 6  ×  A 6   .





Theorem 5.

If    | G |  =  2 10   3 6   7 2    and    2 10  ,  3 6  ∈ cd  ( G )   , then   G ≅  U 3   ( 3 )  ×  U 3   ( 3 )   .





Proof. 

By Lemma 9 it follows that G is not solvable and G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H ≅  L 2   ( 7 )  ,  L 2   ( 8 )  ,  U 3   ( 3 )  ,  L 2   ( 7 )  ×  L 2   ( 7 )  ,  L 2   ( 8 )  ×  L 2   ( 8 )    or    U 3   ( 3 )  ×  U 3   ( 3 )    and   | G / K | ∣ | Out ( K / H ) |  .



If   K / H ≅  L 2   ( 7 )   , then    | H |  =  2 7   3 5  7   or    2 6   3 5  7  . By Lemma 9, H is not solvable and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a nonabelian simple group. Therefore A is a   { 2 , 3 }  -group such that    O 2   ( A )  =  O 3   ( A )  = 1  , which is a contradiction. If   K / H ≅  L 2   ( 8 )   , then similarly to the above we get a contradiction.



If   K / H ≅  L 2   ( 7 )  ×  L 2   ( 7 )    or   K / H ≅  L 2   ( 8 )  ×  L 2   ( 8 )   , then H is a   { 2 , 3 }  -group, and we get a contradiction similarly.



If   K / H ≅  U 3   ( 3 )   , then    | H |  =  2 5   3 3  7   or    2 4   3 3  7  . By Lemma 9, H is not a solvable group and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a nonabelian simple group.



If    | H |  =  2 4   3 3  7  , then A is a   { 2 , 3 }  -group such that    O 2   ( A )  =  O 3   ( A )  = 1  , which is a contradiction. If    | H |  =  2 5   3 3  7  , by Theorem C in [2], we get that   H ≅  U 3   ( 3 )    and by Lemma 7,   G ≅  U 3   ( 3 )  ×  U 3   ( 3 )   .



Finally, if   K / H ≅  U 3   ( 3 )  ×  U 3   ( 3 )   , then obviously   G ≅  U 3   ( 3 )  ×  U 3   ( 3 )   . ☐





Theorem 6.

If G is a finite group such that




	(i) 

	
   | G |  =  2 6   3 4   7 2   ,




	(ii) 

	
   2 6  ,  3 4  ∈ cd  ( G )   ,




	(iii) 

	
  6 , 12 , 18 ∉ cd ( G )  ,









then   G ≅  L 2   ( 8 )  ×  L 2   ( 8 )   .





Proof. 

By Lemmas 3 and 9, we get that G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H ≅  L 2   ( 7 )  ,  L 2   ( 8 )  ,  U 3   ( 3 )  ,  L 2   ( 7 )  ×  L 2   ( 7 )    or    L 2   ( 8 )  ×  L 2   ( 8 )   , and   | G / K | ∣ | Out ( K / H ) |  .



If   K / H ≅  L 2   ( 7 )   , then    | H |  =  2 3   3 3  7   or    2 2   3 3  7  . By Lemma 9, H is not a solvable group and H has a normal series   1 ⊴ A ⊴ B ⊴ H   such that   B / A   is a nonabelian simple group and   | H / B | ∣ | Out ( B / A ) |  . If    | H |  =  2 3   3 3  7  , we have   B / A ≅  L 2   ( 7 )    or    L 2   ( 8 )   . If   B / A ≅  L 2   ( 7 )   , then    | A |  =  3 2   , a contradiction. If   B / A ≅  L 2   ( 8 )   , then by Itô’s theorem,   | A | = 1   and   1 ⊴ B ≅  L 2   ( 8 )  ⊴ H  , where   | H : B | = 3  . By the proof of Lemma 1 in [2] (Lemma 3 in the present paper),   H / B   is isomorphic to a subgroup of   Out ( B / A )   and by [23] we have   H ≅  L 2   ( 8 )  . 3  . Using GAP   cd ( H ) = { 1 , 7 , 8 , 21 , 27 }  ,   Z ( H ) = 1   and   Aut ( H ) ≅ H  . Now similarly to the proof of Lemma 7,   G ≅  (  L 2   ( 8 )  . 3 )  ×  L 2   ( 7 )   . Then   6 ∈ cd ( G )  , which is a contradiction by (iii). If    | H |  =  2 2   3 3  7  , then by Lemma 9, H is not a solvable group, and this is a contradiction by [23].



If   K / H ≅  L 2   ( 8 )   , then    | H |  =  2 3  ·  3 2  · 7   or    2 3  · 3 · 7  . Using Lemma 9, H is not a solvable group. If    | H |  =  2 3  ·  3 2  · 7  , by the same argument as Theorem C in [2], we get that   H ≅  L 2   ( 8 )    and by Lemma 7,   G ≅  L 2   ( 8 )  ×  L 2   ( 8 )   . If    | H |  =  2 3  · 3 · 7  , then by Theorem A in [2],   H ≅  L 2   ( 7 )   . Since   K / H ≅  L 2   ( 8 )   , similarly to the proof of Lemma 7, we get that   K ≅  L 2   ( 7 )  ×  L 2   ( 8 )   . So G is a an extension of   Z 3   by    L 2   ( 7 )  ×  L 2   ( 8 )   . Since   6 ∈ cd ( G )   or   18 ∈ cd ( G )  , we get a contradiction by (iii).



If   K / H ≅  U 3   ( 3 )   , then   | H | = 42   or   | H | = 21  .



If   | H | = 42  , then H is solvable and   H ′   is a cyclic group, since   | H |   is square-free. Therefore    |   H ′   | = 7    and    | H /   H ′   | = 6   . Now easily we see that the equation    ∑  φ ∈ Irr ( H )    φ 2   ( 1 )  =  | H |   , where   φ ( 1 ) ∣ | H |  , has no solution and so we get a contradiction.



If   | H | = 21  , then by Lemma 2, we get that   3 ∈ cd ( H )   and so H is a Frobenius group of order 21, which is denoted by   7 : 3  . Also   Z ( H ) = 1   and   Aut ( H ) ≅ H . 2  . Now similarly to the proof of Lemma 7, we get that   K ≅  ( 7 : 3 )  ×  U 3   ( 3 )   . Since   | G : K | = 2  , we have   G ≅  ( 7 : 3 )  ×  U 3    ( 3 )  ) . 2    and so   6 ∈ cd ( G )   or   12 ∈ cd ( G )  , which is a contradiction by (iii).



If   K / H ≅  L 2   ( 7 )  ×  L 2   ( 7 )   . We know that   Out  ( K / H )  ≅ Out  (  L 2   ( 7 )  )  ≀  S 2   . Then   | G / K | ∣ 8   and thus    | H |  =  3 2   , which is a contradiction.



Finally   K / H ≅  L 2   ( 8 )  ×  L 2   ( 8 )   , and so   G ≅  L 2   ( 8 )  ×  L 2   ( 8 )   . ☐





Theorem 7.

If    | G | = |   L 3     ( 3 )  |  2    and    2 8  ,  3 6  ∈ cd  ( G )   , then   G ≅  L 3   ( 3 )  ×  L 3   ( 3 )   .





Proof. 

First we show that G is not a solvable group. If G is a solvable group, then    O 2   ( G )  =  O 3   ( G )  = 1   and so   Fit  ( G )  =  O 13   ( G )  ≠ 1  . Since    | Aut   (  Z 13  )   | =   2 2  3  ,    | Aut   (  Z 169  )   | =   2 2  · 3 · 13   and    | Aut   (  Z 13  ×  Z 13  )   | =   2 5  ·  3 2  · 7 · 13  , therefore   | G | ∤ | Fit ( G ) | · | Aut ( Fit ( G ) ) |  , which is a contradiction. Therefore G is nonsolvable and G has a normal series   1 ⊴ H ⊴ K ⊴ G   such that   K / H ≅  L 3   ( 3 )    or    L 3   ( 3 )  ×  L 3   ( 3 )   , where   | G / K | ∣ | Out ( K / H ) |  . If   K / H ≅  L 3   ( 3 )  ×  L 3   ( 3 )   , then   G =  L 3   ( 3 )  ×  L 3   ( 3 )   . If   K / H ≅  L 3   ( 3 )   , then   | G / K | = 1   or 2, and thus    | H |  =  2 4   3 3  13   or    | H |  =  2 3   3 3  13  . If H is a solvable group, then   Fit  ( H )  ≅  Z 13    and   | H | ∤ | Fit ( H ) | · | Aut ( Fit ( H ) ) |  , which is a contradiction. Hence H is not a solvable group and so   H ≅  L 3   ( 3 )    and by Lemma 7,   G ≅  L 3   ( 3 )  ×  L 3   ( 3 )   . ☐





As a consequence of the above theorem, by ([25], Theorem 2.13), we have the following result which is a partial answer to the question arose in [11].



Corollary 2.

Let M be a simple   K 3  -group and   H = M × M  . If G is a group such that   C G ≅ C H  , then   G ≅ H  . Thus   M × M  , where M is a simple   K 3  -group, is uniquely determined by the structure of its complex group algebra.
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