Hypersurfaces with Generalized 1-Type Gauss Maps
Abstract
:1. Introduction
- (1)
- A plane in ,
- (2)
- A right circular cone in ,
- (3)
- A cylinder, up to a rigid motion, parameterized by
2. Preliminaries
3. Surfaces with Generalized 1-Type Gauss Maps
3.1. Conical Surfaces
- (1)
- A plane,
- (2)
- A right circular cone,
- (3)
- A conical surface parameterized by
3.2. Cylindrical Surfaces
3.3. Tangent Developable Surfaces
- (1)
- A cylindrical surface,
- (2)
- A circular right cone,
- (3)
- A conical surface parameterized by
4. Cylindrical Hypersurfaces with Generalized 1-Type Gauss Maps
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, B.-Y. On submanifolds of finite type. Soochow J. Math. 1983, 9, 65–81. [Google Scholar]
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific Publishing Company: Singapore, 1984. [Google Scholar]
- Baikoussis, C. Ruled submanifolds with finite type Gauss map. J. Geom. 1994, 49, 42–45. [Google Scholar] [CrossRef]
- Baikoussis, C.; Defever, F.; Koufogiorgos, T.; Verstraelen, L. Finite type immersions of flat tori into Euclidean spaces. Proc. Edinb. Math. Soc. 1995, 38, 413–420. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Piccinni, P. Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 1987, 35, 161–186. [Google Scholar] [CrossRef]
- Ki, U.-H.; Kim, D.-S.; Kim, Y.H.; Roh, Y.-M. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwan. J. Math. 2009, 13, 317–338. [Google Scholar] [CrossRef]
- Dillen, F.; Pas, J.; Vertraelen, L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990, 13, 10–21. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kim, Y.H. Some classification results on finite type ruled submanifolds in a Lorentz-Minkowski space. Taiwan. J. Math. 2012, 16, 1475–1488. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kim, Y.H.; Jung, S.M. Some classifications of ruled submanifolds in Minkowski space and their Gauss map. Taiwan. J. Math. 2014, 18, 1021–1040. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Characterization of generalized B-scrolls and cylinders over finite type curves. Indian J. Pure Appl. Math. 2003, 34, 1523–1532. [Google Scholar]
- Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Finite type ruled surfaces in Lorentz-Minkowski space. Taiwan. J. Math. 2007, 11, 1–13. [Google Scholar] [CrossRef]
- Yoon, D.W. Rotation surfaces with finite type Gauss map in . Indian J. Pure Appl. Math. 2001, 32, 1803–1808. [Google Scholar]
- Chen, B.-Y.; Morvan, J.M.; Nore, T. Energie, tension et ordre des applications a valeurs dans un espace eucliden. CRAS Paris 1985, 301, 123–126. [Google Scholar]
- Chen, B.-Y.; Morvan, J.M.; Nore, T. Energie, tension and finite type maps. Kodai Math. J. 1986, 9, 408–418. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.W. Ruled surfaces with pointwise 1-type Gauss map. J. Geom. Phys. 2000, 34, 191–205. [Google Scholar] [CrossRef]
- Aksoyak, F.K.; Yayli, Y. Boost invariant surfaces with pointwise 1-type Gauss map in Minkowski 4-space . Bull. Korean Math. Soc. 2014, 51, 1863–1874. [Google Scholar] [CrossRef]
- Arslan, K.; Bulca, B.; Milousheva, V. Meridian surfaces in with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2014, 51, 911–922. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Choi, M.; Kim, Y.H. Surfaces of revolution with pointwise 1-type Gauss map. J. Korean Math. Soc. 2005, 42, 447–455. [Google Scholar] [CrossRef]
- Choi, M.; Kim, D.-S.; Kim, Y.H.; Yoon, D.W. Circular cone and its Gauss map. Colloq. Math. 2012, 129, 203–210. [Google Scholar] [CrossRef]
- Choi, M.; Kim, Y.H.; Yoon, D.W. Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space. Taiwan. J. Math. 2011, 15, 1141–1161. [Google Scholar] [CrossRef]
- Dursun, U. Hypersurfaces with pointwise 1-type Gauss map. Taiwan. J. Math. 2007, 11, 1407–1416. [Google Scholar] [CrossRef]
- Dursun, U. Flat surfaces in the Euclidean space with pointwise 1-type Gauss map. Bull. Malays. Math. Sci. Soc. 2010, 33, 469–478. [Google Scholar]
- Dursun, U.; Bektas, B. Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski space with pointwise 1-type Gauss map. Math. Phys. Anal. Geom. 2014, 17, 247–263. [Google Scholar] [CrossRef]
- Dursun, U.; Turgay, N.C. General rotational surfaces in Euclidean space with pointwise 1-type Gauss map. Math. Commun. 2012, 17, 71–81. [Google Scholar]
- Kim, Y.H.; Yoon, D.W. On the Gauss map of ruled surfaces in Minkowski space. Rocky Mt. J. Math. 2005, 35, 1555–1581. [Google Scholar] [CrossRef]
- Turgay, N.C. On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map. Gen. Relativ. Gravit. 2014, 46, 1621. [Google Scholar] [CrossRef]
- Yoon, D.W. Surfaces of revolution in the three dimensional pseudo-Galilean space. Glas. Mat. 2013, 48, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Vaisman, I. A First Course in Differerential Geometry; Dekker: New York, NY, USA, 1984. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, D.W.; Kim, D.-S.; Kim, Y.H.; Lee, J.W. Hypersurfaces with Generalized 1-Type Gauss Maps. Mathematics 2018, 6, 130. https://doi.org/10.3390/math6080130
Yoon DW, Kim D-S, Kim YH, Lee JW. Hypersurfaces with Generalized 1-Type Gauss Maps. Mathematics. 2018; 6(8):130. https://doi.org/10.3390/math6080130
Chicago/Turabian StyleYoon, Dae Won, Dong-Soo Kim, Young Ho Kim, and Jae Won Lee. 2018. "Hypersurfaces with Generalized 1-Type Gauss Maps" Mathematics 6, no. 8: 130. https://doi.org/10.3390/math6080130
APA StyleYoon, D. W., Kim, D. -S., Kim, Y. H., & Lee, J. W. (2018). Hypersurfaces with Generalized 1-Type Gauss Maps. Mathematics, 6(8), 130. https://doi.org/10.3390/math6080130