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Abstract: Short-term animal movements play an integral role in the transmission and control of
zoonotic infections such as brucellosis, in communal farming zones where animal movements are
highly uncontrolled. Such movements need to be incorporated in models that aim at informing animal
managers effective ways to control the spread of zoonotic diseases. We developed, analyzed and
simulated a two-patch mathematical model for brucellosis transmission that incorporates short-term
animal mobility. We computed the basic reproduction number and demonstrated that it is a sharp
threshold for disease dynamics. In particular, we demonstrated that, when the basic reproduction
number is less than unity, then the disease dies out. However, if the basic reproduction number is
greater than unity, the disease persists. Meanwhile, we applied optimal control theory to the proposed
model with the aim of exploring the cost-effectiveness of different culling strategies. The results
demonstrate that animal mobility plays an important role in shaping optimal control strategy.
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1. Introduction

Brucellosis, a highly contagious zoonotic disease, remains a significant public health threat
worldwide. It is estimated that more than 500,000 new cases of the disease are reported annually [1],
with incidence as high as 200 cases per 100,000 in most endemic countries [2]. Majority of brucellosis
infections occur in: Sub-Sahara Africa in countries such as Ethiopia, Chad, Tanzania, Nigeria, Uganda,
Kenya, Zimbabwe and Somalia due to high level of pastoralism; and the Middle East, Spain, Latin
America and Asia—in particular Southeast Asia—where factors such as pastoral farming practices,
beliefs and lack of bio-security have been attributed to persistence of the disease [3]. Since human
transmission of brucellosis is considered to be negligible [4], measures to effectively control brucellosis
in humans ultimately require a thorough control of the disease among domestic cattle, camels, goats
and sheep.

Transmission and control of brucellosis in both human and animal population remains a complex
phenomenon that possibly involves the type of farming practiced in the area; economic, geographic
and environmental structures; and the intrinsic disease biology and ecology. In particular, animal
movement plays crucial role on transmission and control of the disease. For example, in communal
farming zones, animal movements are highly uncontrolled compared to private farming. Prior studies
have demonstrated that, on a daily basis, a single cattle herd in a communal farming zone has the
potential to mix with at least five heterogeneous herds at both the communal grazing and watering
points. Since livestock management varies from one farmer to another, it is evident that understanding
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the volume of these movements and the risks associated with them is fundamental in elucidating the
epidemiology and control of animal diseases.

Mathematical models have proven to be important tools that can aid our understanding as
well as provide solutions to phenomena which are complex to measure in the field. Recently,
mathematical models have been proposed to explore brucellosis transmission and control (see,
e.g., [5–11]). For example, Dobson and Meagherin [6] used nonlinear ordinary differential equations
to describe brucellosis transmission among the bison population in the Yellowstone National
Park (YNP). Abatih et al. [7] mathematically analyzed the brucellosis model proposed in [6].
Lolika et al. [9] applied a non-autonomous model to discuss the effects of optimal vaccination
and environmental decontamination on long-term brucellosis dynamics among cattle in periodic
environments. Yang et al. [5] developed a two-patch model with risk heterogeneity in which animals
immigrated between two different risk environments. Their work utilized a Eulerian approach for
mobility. However, the Eulerian approach has some limitations, for instance it neither incorporates the
concept of residence times nor the effective population size. Here, the term residence times refers to
the average proportion of daily time an animal spends in a given patch. Therefore, to gain a better
and more comprehensive understanding of effects of animals movements on brucellosis dynamics,
a model should incorporate a Lagrangian approach that can account for the effects of residence time
and the effective population size per patch.

In this paper, we consider a dynamical model to describe the role of short-term animal movements
on the persistence of brucellosis. The proposed two-patch model incorporates all the relevant
biological and ecological factors as well as short-term animal movements which are modeled using
the Lagrangian approach. For the purpose of distinction between the hosts, we assumed that Patch
1 is a high risk environment, that is, brucellosis control measures in this patch are poorly managed.
The reverse is assumed for Patch 2. Thus, disease transmission in Patch 1 is assumed to be higher
relative to Patch 2. Further, disease transmission is assumed to occur through direct contact and
vertical transmission. In addition, since vaccines are often unavailable or expensive to farmers in
communal farming zones, we assumed that a more sensible approach to control the spread of the
disease is culling of infected animals.

2. Materials and Methods

Modeling Framework

We developed a mathematical model to study the transmission and control of brucellosis within
an environment defined by two patches of heterogeneous risk. Our model is a modification of the one
developed in [7]. Precisely, the model in [7] is a single-patch framework.

Let Ni(t) represent the total population of animals in Patch i at time t, i = 1, 2. We assume that
animals of Patch i spend pij ∈ [0, 1] time in Patch j, with ∑2

j=1 pij = 1, for each i. Thus, animals
of Patch 1 spends, on the average, the proportion p11 of their time in residency in Patch 1 and the
proportion p12 of their time in Patch 2 such that p11 + p12 = 1.

Similarly, animals of Patch 2 spend the proportion p22 of their time in Patch 2 and p21 = 1− p22

in Patch 1. Therefore, at time t, the effective population in Patch 1 is p11N1 + p21N2 while the effective
population of Patch 2, at time t is p12N1 + p22N2. Susceptible animals of Patch 1 (S1) could be infected
contagiously, in Patch 1 (if currently in Patch 1, that is, p11S1) or in Patch 2 (if currently in Patch 2, that
is, p12S1). It follows from the above discussion that the effective proportion of infectious individual in
Patch 1 is

p11 I1 + p21 I2

p11N1 + p21N2
.
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Consequently, the effective proportion of infectious individual in Patch 2 is

p12 I1 + p22 I2

p12N1 + p22N2
.

The following system of ordinary differential equations (ODES) account for the brucellosis
dynamics in two patches:

dSi
dt = µi(Ni − ei Ii)−∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− µiSi + δiRi,

dIi
dt = µiei Ii + ∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− (µi + αi)Ii,
dRi
dt = αi Ii − (µi + δi)Ri.

(1)

where the variables Si(t), Ii(t) and Ri(t) represent the susceptible, infectious and recovered population,
respectively; µi is recruitment rate of animals and it is assumed to be equal to natural death rate of
animals, thus µ−1

i represents the animal’s commercial lifespan; ei (0 ≤ ei ≤ 1) denotes a proportion of
new recruits that are infected with brucellosis and the complementary proportion (1− ei) represents
those that are susceptible to infection; βi denotes the disease transmission; αi is the recovery rate; and
δi denotes immunity waning rate. Disease related mortality is considered negligible. Thus, the total
population is constant and is given by Ni(t) = Si(t) + Ii(t) + Ri(t). The Parameters and values are
shown in Table 1.

Table 1. Parameters and values.

Symbol Definition Units Value Source

pij Proportion of time that animals of Patch i spend in Patch j unit-less varies
β1 Susceptibility to brucellosis invasion in Patch 1 year−1 1.63 [7]
β2 Susceptibility to brucellosis invasion in Patch 2 year−1 0.75 [7]
e1 Proportion of vertical transmission in Patch 1 unit-less 0.9 [7]
e2 Proportion of vertical transmission in Patch 2 unit-less 0.4 [7]
µi Recruitment rate in Patch i (i = 1, 2) year−1 0.04 [7]
δi Rate of loss of resistance in Patch i (i = 1, 2) year−1 0.2 [7]
αi Recovery rate in Patch i (i = 1, 2) year−1 0.5 [7]
Si(0) Initial number of susceptible in Patch i (i = 1, 2) animals 4050 [7]
Ii(0) Initial infected animals in Patch i (i = 1, 2) animals 450 [7]
Ri(0) Initial recovered animals in Patch i (i = 1, 2) animals 0 [7]

3. Results

3.1. Positivity and Boundedness of Solutions

It can easily be verified that the domain of biological interest

Ω =

{
(Si, Ii, Ri) ∈ R6

+|Si + Ii + Ri ≤ Ni

}
(2)

is positively invariant and attracting with respect to the model in Equation (1).

3.2. Disease Dynamics for a Single Patch

If only a single patch, that is, i = 1, is considered, then the system in Equation (1) reduces to
dS1
dt = µ1(N1 − e1 I1)− β1 I1S1

N1
− µ1S1 + δ1R1,

dI1
dt = β1 I1S1

N1
+ e1µ1 I1 − (µ1 + α1)I1,

dR1
dt = α1 I1 − (µ1 + δ1)R1.

(3)
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The system in Equation (3) is isomorphic to the model proposed by Dobson and Meagherin [6]
and analyzed by Abatih et al. [7]. As highlighted in [7], the model in Equation (1) is well defined,
supporting a sharp threshold property, namely, the disease dies out if the basic reproduction number

R01 is less than unity, persisting wheneverR01 > 1 whereR01 =
(β1 + e1µ1)

(α1 + µ1)
.

3.3. The Reproduction Number

The disease-free equilibrium E0 of the system in Equation (1) is E0 : (S0
1, S0

2, I0
1 , I0

2 , R0
1, R0

2) =

(N1, N2, 0, 0, 0, 0). The basic reproduction number, denoted by R0, is integral quantity in
epidemiological model. It accounts for the average number of secondary infections generated by a
single infectious animal introduced in a fully susceptible population during its average infectious
period [12]. We utilized the next generation matrix approach [12] to determineR0. See Appendix A
for the derivation. The basic reproduction number for the system in Equation (1) is

R0 =
1
2

(m11

h̄1
+

m22

h̄2

)
+

√(
m11

h̄1
+

m22

h̄2

)2

+
4m12m21

h̄1h̄2

 , (4)

with

m11 = e1µ1 +
p2

11β1N1

p11N1 + p21N2
+

p2
12β2N1

p12N1 + p22N2
, m12 =

p11 p21β1N1

p11N1 + p21N2
+

p12 p22β2N1

p12N1 + p22N2
,

m21 =
p11 p21β1N2

p11N1 + p21N2
+

p12 p22β2N2

p12N1 + p22N2
, m22 = e2µ2 +

p2
21β1N2

p11N1 + p21N2
+

p2
22β2N2

p12N1 + p22N2
,

h̄1 = (µ1 + α1), h̄2 = (µ2 + α2).

We can write Equation (4) as follows

R0 =
1
2

(R01 +R02

)
+

√(
R01 −R02

)2

+
4m12m21

h̄1h̄2


whereR0i (i = 1, 2) represents the disease risks for Patches 1 and 2 in the absence of animal mobility.
From Equation (4), we can observe that the basic reproduction number is influenced by short-term
animal dispersal.

To investigate the effects of short-term animal dispersal on the generation of new infections,
we compute the values of the basic reproduction number using a residence-time matrix in Table 2.

Table 2. Association between the basic reproduction number and the residence-time matrix.

Description R0

1 Weak symmetric coupling p11 = 0.99, p12 = 0.01, p21 = 0.01, p22 = 0.99 3.03
2 Strong symmetric coupling p11 = 0.7, p12 = 0.3, p21 = 0.3, p22 = 0.7 2.31
3 Weak asymmetric coupling p11 = 0.9, p12 = 0.1, p21 = 0.001, p22 = 0.999 2.80
4 Strong asymmetric coupling p11 = 0.7, p12 = 0.3, p21 = 0.001, p22 = 0.999 2.36

More precisely, the residence-time matrix configuration incorporates the coupling intensity and
mobility patterns. For instance, weak coupling implies that most animals stay in their own patch while
strong coupling implies that certain proportions of animals move to the other patch. Mobility patterns
represent the symmetry of animal movement between the two patches. For example, symmetric
mobility represents a scenario when an equal ratio of animals move from Patch 1 to Patch 2 and vice
versa. However, if the ratio of animals that move between the two patches is not equal, then the
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mobility pattern is asymmetric. Note that the total population of animals in the two patches is assumed
to be the same.

Results in Table 2 demonstrate that the basic reproduction number will always be high when
coupling intensity is weak, that is, when most animals stay in their patch. Further, the highest value
of the basic reproduction number occurs when the mobility pattern is symmetric. Using parameters
and values in defined in Tables 1 and 2, we calculated the reproduction numbers for Patches 1 and 2
in the absence of animal dispersal and we obtainedR01 = 1.4 andR02 = 0.05. We can observe that,
based on our assumption that Patch 1 is high risk, the highest reproductive number came from this
patch. In addition, we can observe that, whenever there is animal mobility, the disease transmission
risk increases globally compared to locally; for instance, in the absence of animal mobility, we expect
brucellosis to die off in Patch 2. It is worth noting that the results in Table 2 shows that, when animal
mobility increases, the basic reproduction number decreases; however, for all cases demonstrated
in Table 2, it will never drop below 1. Hence, under our assumption, we can conclude that effective
brucellosis control will always be difficult to attain whenever there is animal mobility.

3.4. Disease Invasion and Persistence

From the work in [12], we know that the DFE is locally asymptotically stable when R0 < 1,
and unstable whenR0 > 1. Indeed, we can establish a stronger result regarding the global dynamics
of the DFE.

Theorem 1. If R0 ≤ 1, the DFE is globally asymptotically stable in Ω. If R0 > 1, the system is
uniformly persistent.

The system in Equation (1) is said to be uniformly persistent in the interior Ω̊ if there exists a
constant η0 > 0 such that

lim inf
t→∞

Si(t) ≥ η0, lim inf
t→∞

Ii(t) ≥ η0, lim inf
t→∞

Ri(t) ≥ η0

provided that (S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)) ∈ Ω̊. Biologically, a uniform persistent system
indicates that the infection persists for a long period of time. Thus, we have the following result.

Theorem 2. IfR0 > 1, then the DFE is unstable and the system in Equation (1) is uniformly persistent in Ω̊.

Theorem 3. IfR0 > 1, the system in Equation (1) has a unique equilibrium E∗, which is globally asymptotically stable.

The proof of Theorems 2 and 3 in Appendixes C and D, respectively.
In addition, due to the complexity of the non-trivial solutions of the system in Equation (1), we

utilized numerical simulations to demonstrate that the the model in Equation (1) has a globally stable
endemic equilibrium point (see Figure A1).

3.5. Optimal Culling

Vaccination and culling of infected animals are the only feasible ways to control brucellosis
transmission. Vaccinating animals prevents susceptibility to the disease and culling of infectious
animals reduces the density of infected animals thereby reducing the contact between susceptible
and infected animals. However, in many brucellosis endemic countries, farmers cannot afford the
cost of vaccines, and this leaves culling as the only disease intervention strategy. In this section, we
explore the impact of culling on controlling the spread of the disease. Thus, we modify the model in
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Equation (1) to include culling control ui(t), i = 1, 2. The controls, ui(t), are represented as functions
of time and assigned reasonable upper and lower bounds. The modified model is given by

dSi
dt = µi(Ni − ei Ii)−∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− µiSi + δiRi,

dIi
dt = µiei Ii + ∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− (µi + ui(t) + αi)Ii,

dRi
dt = αi Ii − (µi + δi)Ri.

(5)

The control set is defined as

Θ = {ui
∣∣ 0 ≤ ui(t) ≤ Ui, }, i = 1, 2,

where Ui denotes the upper bound for the culling effort in Patch i.
In the following, we introduce an objective functional J to formulate the optimization problem of

interest, namely, that of identifying the most effective strategies over the admissible set of (u1(t), u2(t)).
The overall objective is to minimize the numbers of infectious animals over a finite time interval [0, T]
at minimal costs. The objective functional J is thus defined as

J(u1, u2) = J1(u1) + J2(u2)

=
∫ T

0

[
A1 I1 + B1u1 I1 +

C1

2
u2

1

]
dt +

∫ T

0

[
A2 I2 + B2u2 I2 +

C2

2
u2

2

]
dt

=
∫ T

0

[
A1 I1 + A2 I2 + B1u1 I1 + B2u2 I2 +

C1

2
u2

1 +
C2

2
u2

2

]
dt, (6)

where J1 and J2 represent objective functions for Patches 1 and 2, respectively. Ai, Bi and Ci are positive
balancing coefficients transferring the integrals into monetary quantity over a finite period of T years.
Precisely, Ai represents the cost (due to the loss of animals) associated with the number of infected
animals in Patch i and Bi represents the cost associated with the number of infected animals culled
in Patch i. The objective function in Equation (6) also includes quadratic terms with coefficients Ci to
indicate potential non-linearities in the costs.

The existence and uniqueness of optimal control can be proven by applying a standard results in
optimal control theory [13,14]. The necessary conditions that optimal controls must satisfy are derived
using Pontryagin’s Maximum Principle [15]. Thus, the system in Equation (5) is converted into an
equivalent problem, namely the problem of minimizing the Hamiltonian H given by:

H(t) =
2

∑
i=1

(
Ai Ii + Biui Ii +

Ci
2

u2
i + λSi

dSi
dt

+ λIi

dIi
dt

+ λRi

dRi
dt

)
,

where λgi (t), g = S, I, R, i = 1, 2, are the adjoint functions to be determined. Thus, given an optimal
control pair (u∗1 , u∗2) and corresponding states (Si, Ii, Ri), there exist adjoint functions [13] satisfying

dλSi (t)
dt

= −∂H
∂Si

,
dλIi (t)

dt
= −∂H

∂Ii
, and

dλRi (t)
dt

= − ∂H
∂Ri

. (7)
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From Equation (7), we have

dλSi
dt = µiλSi + (λSi − λIi )∑2

j=1 β j pij
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

, i = 1, 2,

dλI1
dt = (λS1 − λI1)

(
β1 p2

11S1
p11 N1+p21 N2

+
β2 p2

12S1
p12 N1+p22 N2

)
+ (λS2 − λI2)

(
β1S2 p11 p21

p11 N1+p21 N2
+ β2S2 p12 p22

p12 N1+p22 N2

)
−A1 − B1u1 + α1(λI1 − λR1) + µ1e1(λS1 − λI1) + (µ1 + u1)λI1

dλI2
dt = (λS1 − λI1)

(
β1S1 p11 p21

p11 N1+p21 N2
+ β2S1 p12 p22

p12 N1+p22 N2

)
+ (λS2 − λI2)

(
β1 p2

21S2
p11 N1+p21 N2

+
β2 p2

22S2
p12 N1+p22 N2

)
,

−A2 − B2u2 + α2(λI2 − λR2) + µ2e2(λS2 − λI2) + (µ2 + u2)λI2

dλRi
dt = µiλRi + δi(λRi − λSi ), i = 1, 2,

(8)

with transversality conditions λgi (T) = 0. Furthermore, the optimal controls are characterized by the
optimality conditions:

u∗i (t) = min
{

Ui, max
(
(λIi − Bi)Ii

Ci
, 0
)}

, i = 1, 2 (9)

In the following, we utilize the forward–backward sweep method [13] together with parameter
values in Table 1 and the residence-matrix defined in Table 2 to determine numerical solutions of our
optimality system. Our main goal is to explore the effects of optimal culling on the transmission and
control of brucellosis under the following cases:

(a) Scenario 1: No culling in high risk population (Patch 1), that is, u1 = 0.
(b) Scenario 2: Low intensity culling in high risk population, u1 = 0.45.

In the above scenarios, we assumed that culling intensity in low risk population is always above
average and we fixed it at u2 = 0.8. Scenario 1 is assumed to apply to farmers who rear livestock near
game reserves. Prior studies highlighted that livestocks reared in proximity to game reserves mix
with wildlife on almost daily basis [16], even though, in many countries where brucellosis is endemic,
intervention measures to control the spread of zoonotic infections among wildlife are not available.
Scenario 2 represents heterogeneity on culling intensity. This scenario may exist in communal farming
zones where one farmer, X, may have resources (knowledge and financial capacity) to perform culling
at the high intensity while another farmer, Y, does not have enough resources to perform culling at an
intensity that does not exceed the average.

In all simulation results presented in this section, we used parameter and initial values in Table 1 as
well as the residence matrix in Table 2. For simplicity, in our numerical simulation, we set A1 = A2 = 1
so that the minimization of the infectious animal population has the same importance/weight in all
patches. Further, we set B1 = B2 = 0.2 and C1 = C2 = 2× 10−5. The values of the weight constants Bi
and Ci were determined through numerical simulations, precisely for these values the cost are low
and the control efforts can be applied at maximum intensity in all scenarios suggested above.

For each strategy and coupling intensity described in Table 2, we found the total number of new
infections given by the following formula

Γ = Γ1 + Γ2

=
∫ T

0

[
µ1e1 I1 +

2

∑
j=1

β j p1jS1
∑2

k=1 pkj Ik

∑2
k=1 pkjNk

]
dt +

∫ T

0

[
µ2e2 I2 +

2

∑
j=1

β j p2jS2
∑2

k=1 pkj Ik

∑2
k=1 pkjNk

]
dt, (10)

where Γi represent the total number of new infections for path i and the total cost associated with
infected animals and the controls J, which is given by Equation (6). In the following, we determine the
effects of optimal culling under different coupling intensity and mobility patterns (see Table 2).

In Table 3, we present the values of the total number of new infections and J for Scenario 1.
We can clearly observe that the highest total number of new infections recorded in Patch 1 over a
ten-year period under all possible coupling cases is Γ1 = 7.12× 103 and this occurs when the coupling
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intensity is weak and the mobility pattern is symmetric. Moreover, when the coupling intensity is
weak and the mobility pattern is symmetric, Patch 2 records the lowest total number of new infections
as Γ2 = 950.321 under all possible coupling cases over the same period. However, this coupling case
(weak and symmetric) is associated with the lowest total number of new infections Γ = 8.06× 103

as well as the total cost J = 162.15. We surmise that, due to weak animal mobility, the spread of the
disease will be highly confined in independent patches, with more infections being observed in the
high risk patch (Patch 1).

Table 3. The total number of newly infected animals over a ten-year period and the total cost J with
respect to the control strategy under Scenario 1.

Γ1 Γ2 Γ J1 J2 J R0

1 7.12× 103 950.321 8.06× 103 0 162.15 162.15 3.03
2 5.81× 103 3.95× 103 9.76× 103 0 499.38 499.38 2.31
3 6.835× 103 1.665× 103 8.5× 103 0 239.95 239.95 2.80
4 6.13× 103 2.50× 103 8.63× 103 0 331.68 331.68 2.36

In Table 3, we can also observe that strong symmetric coupling gives the lowest total number
of new infections for Patch 1 only, Γ = 5.81× 103, while Patch 2 will record the highest total of new
infections, Γ2 = 3.95× 103, and overall this will yield the highest total of new infections, Γ = 9.76× 103,
in the community. This clearly demonstrates that increased short-term dispersal of animals strongly
influences the transmission and control of brucellosis.

Next, we compare the impact of presence and absence of time dependent culling on brucellosis
transmission dynamics under Scenario 1 (Figures 1–4) over a ten-year period. Figures 1–4 show
the number of infected animals per patch, with and without optimal culling under weak symmetric
coupling, strong symmetric coupling, weak asymmetric coupling and strong asymmetric coupling,
respectively. As we can observe, whenever the coupling is weak, despite its skewness, the optimal
control policy will not have a significant impact in Patch 1 compared to Patch 2 where the number
of infections decrease with time. However, whenever the coupling is strong, the number of infected
animals in both patches decrease with time but with more effect being noticed in Patch 2 where there
is disease control.
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Figure 1. Simulation results of the proposed two patch brucellosis model for scenario 1 under weak
symmetric coupling (a) the numbers of infected animals in patch 1 (b) the numbers of infected animals
in patch 2. In all the figures the dotted blue and solid black curves represent the infected population,
without and with control, respectively.
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Figure 2. Simulation results of the proposed two patch brucellosis model for scenario 1 under strong
symmetric coupling (a) the numbers of infected animals in patch 1 (b) the numbers of infected animals
in patch 2. In all the figures the dotted blue and solid black curves represent the infected population,
without and with control, respectively.
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Figure 3. Numerical illustrations demonstrating the effects of optimal intervention strategies on
controlling the long-term brucellosis dynamics for scenario 1 under weak asymmetric coupling (a) the
numbers of infected animals in patch 1 (b) the numbers of infected animals in patch 2. In all the
figures the dotted blue and solid black curves represent the infected population, without and with
control, respectively.
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Figure 4. Numerical illustrations depicting the effects of optimal intervention strategies on controlling
the long-term brucellosis dynamics for scenario 1 under strong asymmetric coupling (a) the numbers of
infected animals in patch 1 (b) the numbers of infected animals in patch 2. In all the figures the dotted
blue and solid black curves represent the infected population, without and with control, respectively.
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Figure 5 shows the optimal control profile for u2(t): (a) when the costs of culling are low; and
(b) when the costs of culling are high (we set B2 = C2 = 2). Recall that, due to the absence of control
in Patch 1, u1(t) = 0. As shown, when the costs of culling are either low or high, the control profile
starts from the maximum initially and stays there for more than half of the entire period before it
switches to its minimum. Precisely, when the costs of culling are low, the control profile stays at its
maximum for a longer period compared to when the costs are high. This clearly demonstrates that the
control is highly sensitive cost parameters, thus under low costs optimal culling can be implemented
at maximum intensity for a long period.
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Figure 5. The control profile for Scenario 1: (a) low cost of culling; and (b) high cost of culling.

We further investigate the impact of low intensity optimal culling in the risk patch (Patch 1);
we set u1 = 0.45 while u2 remains fixed at 0.8. Results for this scenario are depicted in Table 4 and
Figures 6–10. As observed earlier (Table 3), the highest total number of new infections occurs when
the coupling intensity is weak and symmetric. We also observe that the presence of control in Patch 1
leads to a reduction in the total number of new infections by 30.1%, 21.4% and 28.9% in Patch 1 only,
Patch 2 only and overall (Patch 1 and Patch 2 combined), respectively. In Table 4, it is also evident
that the lowest total number of new infections occurs when we have strong asymmetric coupling,
Γ = 5.12× 103. As observed in Table 3, the highest total number of new infections in the community
will occur under strong symmetric coupling, Γ = 5.79× 103.

Table 4. The total number of newly infected animals over a ten-year period and the total cost J with
respect to the control strategy under Scenario 2.

Γ1 Γ2 Γ J1 J2 J R0

1 4.98× 103 747.20 5.73× 103 5.74× 103 1.02× 103 6.76× 103 3.03
2 3.32× 103 2.47× 103 5.79× 103 3.94× 103 2.44× 103 6.38× 103 2.31
3 4.70× 103 1.02× 103 5.72× 103 5.42× 103 1.25× 103 6.67× 103 2.80
4 3.74× 103 1.38× 103 5.12× 103 4.38× 103 1.53× 103 5.91× 103 2.36
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Figure 6. Simulation results of the proposed brucellosis model demonstrating the disease dynamics
for scenario 2 under weak symmetric coupling (a) the numbers of infected animals in patch 1 (b) the
numbers of infected animals in patch 2. In all the figures the dotted blue and solid black curves
represent the infected population, without and with control, respectively.
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Figure 7. Simulation results of the proposed brucellosis model demonstrating the disease dynamics
for scenario 2 under strong symmetric coupling (a) the numbers of infected animals in patch 1 (b) the
numbers of infected animals in patch 2. In all the figures the dotted blue and solid black curves
represent the infected population, without and with control, respectively.
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Figure 8. Numerical results highlighting the impact of optimal intervention strategies on controlling
the long-term brucellosis dynamics for scenario 2 under weak asymmetric coupling (a) the numbers of
infected animals in patch 1 (b) the numbers of infected animals in patch 2. In all the figures the dotted
blue and solid black curves represent the infected population, without and with control, respectively.
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Figure 9. Numerical illustrations demonstrating the impact of optimal intervention strategies on
controlling the long-term brucellosis dynamics for scenario 2 under strong asymmetric coupling (a) the
numbers of infected animals in patch 1 (b) the numbers of infected animals in patch 2. In all the figures
the dotted blue and solid black curves represent the infected population, without and with control,
respectively.
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Figure 10. The control profile for Scenario 2.

Figures 6–9 demonstrate the impact of optimal culling under all possible coupling cases. As shown
in Figures 6–9, the total number of infected animals per patch decreases as a result of the optimal policy.
Figure 10 shows the optimal control profiles for controls u1(t) and u2(t) with low cost parameters.
As we can observe, both u1 and u2 start from the maximum initially, and stay there for a long time
before they switch to the minimum just before the final time horizon.

4. Discussion

We have provided a mathematical framework to investigate the role of short-term animal
dispersal on transmission and control of brucellosis in a heterogeneous population. The proposed
model comprises two-patches and animal dispersal has been modeled using a Lagrangian approach.
Our study is applicable in communal lands where animal mobility is highly uncontrolled. Hence, it is
well known that a single herd of livestock in these communities can be exposed to a highly variable
number of contacts with others herds of livestock for a short time frame. This heterogeneity in animal
contacts may contribute significantly to the transmission and control of brucellosis.

The basic reproduction number R0 of the proposed model was computed and analyzed.
We observed that it is a function of several factors such as the transmission rates, natural mortality
rate, proportions of vertical transmission and the proportion of time that animals of each patch spend
in their patch and the other patch. Precisely, we found that R0 depends on the characteristics of
both patches. However, in the absence of animal mobility we observed that each patch has its own
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reproduction numberR0i i = 1, 2, which depends entirely on the characteristics of that patch. With the
aid of model parameter values and initial population levels in [7], we demonstrated numerically
that, whenever there is no animal mobility R01 = 1.4 and R02 = 0.04, which implies that the
disease dies out in low risk patch (Patch 2) and persists in high risk patch (Patch 1). However, with
animal mobility incorporated, we noted that R0 will always be greater than 2 demonstrating that
animal mobility will increase the spread of the disease in the community. In particular, we observed
that R0 will be highest when the coupling intensity is weak and the mobility pattern is symmetric,
R0 = 3.03. Analytical methods were also used to demonstrate that, when R0 ≤ 1, the brucellosis
dies out in the community; and whenR0 > 1, a unique endemic equilibrium exists and the disease is
uniformly persistent.

Meanwhile, we applied optimal control theory to the proposed model to identify optimal culling
strategies that can lead to effective control of brucellosis in the community. Two controls representing
culling of infectious animals in each patch were incorporated into the original model. Two possible
scenarios that characterize disease control in developing nations were evaluated. Scenario 1 entails no
control (we set u1 = 0) in high risk patch while control is above average (we set u2 = 0.8) among the
low risk population. We hypothesized that this scenario mirrors livestock farming in areas that are in
proximity to wildlife. Due to the unavailability of resources in most developing nations, it follows that
control of brucellosis among wildlife is less prioritized. In Scenario 2, we set u1 = 0.45 and u2 = 0.8.
We also suggested that this scenario may represent two herds of livestock that belong to two different
farmers who share grazing lands. One farmer may have some financial resources to maintain culling
at an intensity above average while the other does not have enough financial capacity to do so.

Under Scenario 1, we observed that the lowest and highest total number of new infections will
be recorded in the community under weak symmetric coupling and strong symmetric coupling,
respectively. Meanwhile we observed that by introducing a control in high risk patch, the total
number of new infections decreases by 30.1%, 21.4% and 28.9% in Patch 1 only, Patch 2 only and
overall (Patch 1 and Patch 2 combined), respectively. The numerical results provided evidence that,
as expected, controlling the two patches gives the best reduction in brucellosis prevalence. Our result
show that animal mobility plays an important role in shaping the long term dynamics of brucellosis,
which subsequently impacts the design of its optimal control strategies.

Several avenues for future research arise from this work. First, future research should assess
the role of seasonal variations and short-term animal mobility on the persistence of brucellosis.
Seasonal availability of water and pastures have a significant influence on pastoral farming, hence
there is need to investigate its impact on the persistence of brucellosis. Second, although we were able
to establish the uniqueness and uniform persistence result for the endemic equilibrium, we did not
resolve the stability of this equilibrium point analytically and that remains an interesting topic for our
future research.
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Appendix A. The Derivation of Basic Reproduction Number

We begin with those equations of model in Equation (1) that account for the production of new
infections. We term the system in Equation (A1) the infected subsystem:{ dI1

dt = µ1e1 I1 + β1 p11S1
p11 I1+p21 I2

p11 N1+p21 N2
+ β2 p12S1

p12 I1+p22 I2
p12 N1+p22 N2

− (µ1 + α1)I1,
dI2
dt = µ2e2 I2 + β1 p21S2

p11 I1+p21 I2
p11 N1+p21 N2

+ β2 p22S2
p12 I1+p22 I2

p12 N1+p22 N2
− (µ2 + α2)I2.

(A1)
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Using the next-generation matrix notations in [12], the non-negative matrix F that represents the
generation of new infection and the non-singular matrix V that denotes the disease transfer among
compartments, are, respectively, given by

F =

 e1µ1 +
p2

11β1 N1
p11 N1+p21 N2

+
p2

12β2 N1
p12 N1+p22 N2

p11 p21β1 N1
p11 N1+p21 N2

+ p12 p22β2 N1
p12 N1+p22 N2

p11 p21β1 N2
p11 N1+p21 N2

+ p12 p22β2 N2
p12 N1+p22 N2

e2µ2 +
p2

21β1 N2
p11 N1+p21 N2

+
p2

22β2 N2
p12 N1+p22 N2


=

[
m11 m12

m21 m22

]
,

and,

V =

[
(µ1 + α1) 0

0 (µ2 + α2)

]
=

[
h̄1 0
0 h̄2

]
. (A2)

Then,R0, which corresponds to the dominant eigenvalue of the matrix FV−1, is given by

R0 = ρ(FV−1) =
m11h̄2 + m22h̄1 +

√
(m11h̄2 −m22h̄1)2 + 4m12m21h̄1h̄2

2h̄1h̄2
.

Appendix B. Stability of the Disease-Free Equilibrium

Now, we demonstrate the proof of Theorem 1.

Proof. Let Y(t) = (I1, I2). Since{ dI1
dt = µ1e1 I1 + β1 p11S1

p11 I1+p21 I2
p11 N1+p21 N2

+ β2 p12S1
p12 I1+p22 I2

p12 N1+p22 N2
− (µ1 + α1)I1,

dI2
dt = µ2e2 I2 + β1 p21S2

p11 I1+p21 I2
p11 N1+p21 N2

+ β2 p22S2
p12 I1+p22 I2

p12 N1+p22 N2
− (µ2 + α2)I2,

(A3)

it follows that

U̇ (t) ≤ (F − V)Y ,

where F and V are defined in Equation (A2). Motivated by [17], we define a Lyapunov function
as follows

U = wTV−1Y .

Differentiating U along solutions of Equation (1), we have

U̇ (t) = wTV−1Ẏ
≤ wTV−1(F − V)Y
= (R0 − 1)wTY ≤ 0, if R0 ≤ 1.

It can be easily verified that the largest invariant subset of Ω where U̇ = 0 is the singleton {E0}.
Therefore, by LaSalle’s invariance principle [18], E0 is globally asymptotically stable in Ω whenR0 ≤ 1.

If R0 > 1, then by continuity, U̇ > 0 in a neighbourhood of E0 in Ω̊. Solutions in Ω̊
sufficiently close to E0 move away from the DFE, implying that the DFE is unstable. In the following,
we demonstrate that, if R0 > 1, then the disease persists and a unique endemic equilibrium
point exists.

Appendix C. Uniform Persistence

Proof of Theorem 2. Let X = Ω, x = (S1, S2, I1, I2, R1, R2) and X0 = {x ∈ X|I1 + I2 > 0}. Hence,
∂X0 = X\X0 = {x ∈ X|I1 = I2 = 0}. Let ψt be semi-flow induced by the solutions of Equation (1)
and M∂ = {x ∈ ∂X0|ψtx ∈ ∂X0, t ≥ 0}. By Equation (2), we have ψtX0 ⊂ X0 and ψt is bounded in X0.
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Therefore, a global attractor for ψt exists. The disease- free equilibrium is the unique equilibrium on
the manifold ∂X0 and is globally asymptotically stable on ∂X0. Moreover, ∪x∈M∂

ω(x) = {E0} and
no subset of M forms a cycle in ∂X0. Finally, since the disease-free equilibrium is unstable on X0 if
R0 > 1, we deduce that the system in Equation (1) is uniformly persistent by using a result from [19]
(Theorem 1.3.1 and Remark 1.3.1). This completes the proof of Theorem 2.

Appendix D. Existence of a Unique Endemic Equilibrium Point

Proof of Theorem 3. We can reduce the system in Equation (1) into a four-dimensional system by
setting Ri = Ni − Si − Ii to get

dSi
dt = µi(Ni − ei Ii)−∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− µiSi + δi(Ni − Si − Ii),

dIi
dt = µiei Ii + ∑2

j=1 β j pijSi
∑2

k=1 pkj Ik

∑2
k=1 pkj Nk

− (µi + αi)Ii,
(A4)

We use a result by Hethcote and Thieme in [20] to prove the uniqueness of the endemic equilibrium.
An endemic equilibrium (S∗i , I∗i ) satisfies:

µi(Ni − ei I∗i )−∑2
j=1 β j pijS∗i

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

− µiS∗i + δi(Ni − S∗i − I∗i ) = 0,

µiei I∗i + ∑2
j=1 β j pijS∗i

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

− (µi + αi)I∗i = 0,
(A5)

The first part of Equation (A5) gives S∗i =
µi(Ni − ei I∗i ) + δi(Ni − I∗i )

∑2
j=1 β j pij

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

+ (µi + δi)
(A6)

Hence, from the last part of Equation (A5), we deduce that I∗i =
µi(Ni − ei I∗i ) + δi(Ni − I∗i )

∑2
j=1 β j pij

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

+ (µi + δi)
×

∑2
j=1 β j pij

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

µi(1− ei) + αi
(A7)

Let

H(x) =



µ1(N1 − e1 I∗1 ) + δ1(N1 − I∗1 )

∑2
j=1 β j p1j

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

+ (µ1 + δ1)
×

∑2
j=1 β j p1j

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

µ1(1− e1) + α1

µ2(N2 − e2 I∗2 ) + δ2(N2 − I∗2 )

∑2
j=1 β j p2j

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

+ (µ2 + δ2)
×

∑2
j=1 β j p2j

∑2
k=1 pkj I∗k

∑2
k=1 pkj Nk

µ2(1− e2) + α2


where x = (I∗1 , I∗2 ). The function H(x) is continuous, bounded, differentiable and H(0R2) = 0R2 .
The function H is monotone if the corresponding Jacobian matrix is Metzler, that is all off-diagonal
entries are nonnegative. We have the derivative of H(x)

Ḣ(x) =

[
J1(x) J2(x)
J3(x) J4(x)

]
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where

J1(x) =
1

(µ1(1− e1) + α1)

(
∑2

j=1 β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ1 + δ1)

)[(µ1(N1 − e1 I∗1 )

+δ1(N1 − I∗1 ))

(
(p11)

2β1

∑2
k=1 pk1Nk

+
(p12)

2β2

∑2
k=1 pk2Nk

)(
1−

2

∑
j=1

β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkjNk

)

−(δ1 + e1µ1)
2

∑
j=1

β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkjNk

]
(A8)

J2(x) =

(µ1(N1 − e1 I∗1 ) + δ1(N1 − I∗1 ))

(
p11 p21β1

∑2
k=1 pk1Nk

+
p12 p22β2

∑2
k=1 pk2Nk

)

(µ1(1− e1) + α1)

(
∑2

j=1 β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ1 + δ1)

) [
1

−
∑2

j=1 β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk(
∑2

j=1 β j p1j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ1 + δ1)

)] (A9)

J3(x) =

(µ2(N2 − e2 I∗2 ) + δ2(N2 − I∗2 ))

(
p11 p21β1

∑2
k=1 pk1Nk

+
p12 p22β2

∑2
k=1 pk2Nk

)

(µ2(1− e2) + α2)

(
∑2

j=1 β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ2 + δ2)

) [
1

−
∑2

j=1 β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk(
∑2

j=1 β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ2 + δ2)

)] (A10)

J4(x) =
1

(µ2(1− e2) + α2)

(
∑2

j=1 β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkj Nk
+ (µ2 + δ2)

)[(µ2(N2 − e2 I∗2 )

+δ2(N2 − I∗2 ))

(
(p21)

2β1

∑2
k=1 pk1Nk

+
(p22)

2β2

∑2
k=1 pk2Nk

)(
1−

2

∑
j=1

β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkjNk

)

−(δ2 + e2µ2)
2

∑
j=1

β j p2j
∑2

k=1 pkj I∗k
∑2

k=1 pkjNk

]
(A11)

Since J2(x) ≥ 0 and J3(x) ≥ 0, all off-diagonal entries of the Jacobian matrix are nonnegative,
thus the function H(x) is monotone. Therefore, monoticity of a matrix H(x) implies that the model in
Equation (1) has a unique positive fixed point if and only ifR0 > 1. This completes the first part of the
proof for Theorem 3 and due to less traceability of our model we will utilizing numerical simulations
to demonstrate the global stability of the endemic equilibrium (see Figure A1).
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Figure A1. Phase portrait illustrating the global stability of E∗ for the system in Equation (1) in the S1-I1

plane withR0 = 2.84 (we set β1 = β2 = 1.5). Each curve in the plot corresponds to a different initial
condition, and all these curves converge to the equilibrium E∗ (where S1 = S2

.
= 1500, I1 = I2

.
= 1000)

over time
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