Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems
Abstract
:1. Introduction
2. Preliminaries
- (1)
- Denote converging weakly to x by and converging strongly to x by .
- (2)
- Denote the weak -limit set of by .
- (i)
- Lipschitz if there exists a positive constant L such thatIn particular, if , then we say that F is nonexpansive, namely,If , then we say F is contractive.
- (ii)
- α-averaged mapping (shortly, α-av) if
- (i)
- monotone if
- (ii)
- η-strongly monotone if there exists a positive constant η such that
- (iii)
- α-inverse strongly monotone (shortly, α-ism) if there exists a positive constant α such thatIn particular, if , then we say B is firmly nonexpansive, namely,
- (i)
- is -strongly monotone, that is,
- (ii)
- is monotone, that is,
- (i)
- If are averaged mappings, then we can get that is averaged. In particular, if is -av for each , where , then is -av.
- (ii)
- If the mappings are averaged and have a common fixed point, then we have
- (iii)
- A mapping T is nonexpansive if and only if is ism.
- (iv)
- If T is ν-ism, then, for any , is -ism.
- (v)
- T is averaged if and only if is ν-ism for some . Indeed, for any , T is averaged if and only if is -ism.
- (i)
- ;
- (ii)
- ;
- (iii)
- implies for any subsequence .
3. The Main Results
- (i)
- and ;
- (ii)
- ;
- (iii)
- .
- (i)
- and ;
- (ii)
- ;
- (iii)
- .
4. Numerical Results
5. Conclusions
- (i)
- and ,
- (ii)
- either or
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Byrne, C. A united treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 2005, 21, 2071–2084. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Censor, Y.; Segal, A. The split common fixed point problem for directed operators. J. Convex Anal. 2009, 16, 587–600. [Google Scholar]
- Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. 2011, 74, 4083–4087. [Google Scholar] [CrossRef]
- Kraikaew, R.; Saejung, S. On split common fixed point problems. J. Math. Anal. Appl. 2014, 415, 513–524. [Google Scholar] [CrossRef]
- Dong, Q.L.; He, S.N.; Zhao, J. Solving the split equality problem without prior knowledge of operator norms. Optimization 2015, 64, 1887–1906. [Google Scholar] [CrossRef]
- He, S.N.; Tian, H.; Xu, H.K. The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear Convex Anal. 2018, 19, 1199–1215. [Google Scholar]
- Padcharoen, A.; Kumam, P.; Cho, Y.J. Split common fixed point problems for demicontractive operators. Numer. Algorithms 2018. [Google Scholar] [CrossRef]
- Zhao, J. Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 2015, 64, 2619–2630. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, D.F. A self-adaptive iterative algorithm for the split common fixed point problems. Numer. Algorithms 2018. [Google Scholar] [CrossRef]
- Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 2012, 13, 759–775. [Google Scholar]
- Combettes, P.L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 2004, 53, 475–504. [Google Scholar] [CrossRef]
- Chuang, C.S.; Lin, I.J. New strong convergence theorems for split variational inclusion problems in Hilbert spaces. J. Inequal. Appl. 2015, 176, 1–20. [Google Scholar] [CrossRef]
- Dong, Q.L.; Yuan, H.B.; Cho, Y.J.; Rassias, T.M. Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 2018, 12, 87–102. [Google Scholar] [CrossRef]
- Censor, Y.; Motova, A.; Segal, A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 2007, 327, 1244–1256. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 65008. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.N.; Cui, W. Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm. J. Inequal. Appl. 2018, 103, 1–15. [Google Scholar] [CrossRef]
- Jin, W.; Censor, Y.; Jiang, M. Bounded perturbation resilience of projected scaled gradient methods. Comput. Optim. Appl. 2016, 63, 365–392. [Google Scholar] [CrossRef]
- Xu, H.K. Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl. 2017, 33, 044008. [Google Scholar] [CrossRef]
- Dong, Q.L.; Zhao, J.; He, S.N. Bounded perturbation resilience of the viscosity algorithm. J. Inequal. Appl. 2016, 299, 1–12. [Google Scholar] [CrossRef]
- Censor, Y.; Chen, W.; Combettes, P.L.; Davidi, R.; Herman, G.T. On the effectiveness of projection methods for convex feasibility problem with linear inequality constrains. Comput. Optim. Appl. 2012, 51, 1065–1088. [Google Scholar] [CrossRef]
- Davidi, R.; Herman, G.T.; Censor, Y. Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res. 2009, 16, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Davidi, R.; Censor, Y.; Schulte, R.W.; Geneser, S.; Xing, L. Feasibility-seeking and superiorization algorithm applied to inverse treatment plannning in rediation therapy. Contemp. Math. 2015, 636, 83–92. [Google Scholar]
- Moreau, J.J. Proprietes des applications ‘prox’. C. R. Acad. Sci. Paris Ser. A Math. 1963, 256, 1069–1071. [Google Scholar]
- Marino, G.; Scardamaglia, B.; Karapinar, E. Strong convergence theorem for strict pseudo-contractions in Hilbert spaces. J. Inequal. Appl. 2016, 134, 1–12. [Google Scholar] [CrossRef]
- Xu, H.K. Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 2004, 298, 279–291. [Google Scholar] [CrossRef]
- Xu, H.K. Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 2011, 150, 360–378. [Google Scholar] [CrossRef]
- Geobel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge Studies in Advanced Mathematics 28; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- He, S.N.; Yang, C.P. Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, 2013, 942315. [Google Scholar] [CrossRef]
- Yang, C.P.; He, S.N. General alterative regularization methods for nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2014, 2014, 203. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef]
- Cho, Y.J.; Qin, X. Viscosity approximation methods for a finite family of m-accretive mappings in reflexive Banach spaces. Positivity 2008, 12, 483–494. [Google Scholar] [CrossRef]
- Qin, X.; Cho, Y.J.; Kang, S.M. Viscosity approximation methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 2010, 72, 99–112. [Google Scholar] [CrossRef]
- Xu, H.K. A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22, 2021–2034. [Google Scholar] [CrossRef]
n | Time (s) | Error | ||
---|---|---|---|---|
52 | ||||
135 | ||||
216 |
n | Time (s) | Error | ||
---|---|---|---|---|
45 | ||||
98 | ||||
153 |
n | Error | |||
---|---|---|---|---|
52 | ||||
132 | ||||
208 |
n | Error | |||
---|---|---|---|---|
32 | ||||
56 | ||||
115 |
n | Time (s) | Error | ||
---|---|---|---|---|
120 | ||||
235 | ||||
518 |
n | Time (s) | Error | ||
---|---|---|---|---|
22 | ||||
32 | ||||
36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, P.; Zheng, X.; Zhao, J. Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems. Mathematics 2019, 7, 14. https://doi.org/10.3390/math7010014
Duan P, Zheng X, Zhao J. Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems. Mathematics. 2019; 7(1):14. https://doi.org/10.3390/math7010014
Chicago/Turabian StyleDuan, Peichao, Xubang Zheng, and Jing Zhao. 2019. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems" Mathematics 7, no. 1: 14. https://doi.org/10.3390/math7010014
APA StyleDuan, P., Zheng, X., & Zhao, J. (2019). Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems. Mathematics, 7(1), 14. https://doi.org/10.3390/math7010014