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Abstract

:

In this paper, the authors introduce the Orlicz spaces corresponding to the Young function and, by virtue of the equivalent theorem between the modified K-functional and modulus of smoothness, establish the direct, inverse, and equivalent theorems for linear combinations of modified summation operators of integral type in the Orlicz spaces.
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1. Introduction and Main Results


Throughout this paper, we use C to denote an absolute constant independent of anything, which may be not necessarily the same in different cases.



There are many types of integral operators (see, for example, [1,2,3,4,5,6,7] and closely related references therein). In the paper [8], Ueki provided a characterization for the boundedness and compactness of the Li-Stević type integral operators


Tφgf(z)=∫0zf(φ(ξ))g(ξ)dξ








from the weighted Bergman space Lap(dAα) to the β-Zygmund space Zβ. Later, Li and Ma [9] investigated the boundedness and compactness of products of composition operators and integral type operators


(CφIgf)(z)=∫0φ(z)f′(ξ)g(ξ)dξ








from Zygmund-type spaces to Qk spaces. Recently, the equivalent characterizations for the boundedness and compactness of several integral type operators


VΦhf(z)=∫0zf′(Φ(t))h′(t)dt








from F(p,q,s) space to α-Bloch-Orlicz and β-Zygmund-Orlicz spaces were developed in [10]. Gupta and Yadav [11] estimated the approximation by complex summation integral type operator


Mn(f,z)=(n+1)∑k=1npn,k(z)∫01f(t)pn,k−1(t)dt+f(0)pn,0(z)








in compact disks, where pn,k(z)=nkzk(1−z)n−k. In [8,9,10,11], some approximating properties of integral type operators in complex spaces were established. Vural, Altin, and Yüksel [12] provided weighted approximation and obtained a rate of convergence of Schurer’s generalization of the q-Hybrid summation operators of integral type


Mn,p,q(α,β)(f,x)=[n+p−1]q∑k=1∞Sn,p,kq(x)∫0∞Pn,p,k−1q(t)f[n+p]qt+α[n+p]q+βdq(t)+e−[n+p]qxfα[n+p]q+β,








where


Sn,p,kq(x)=([n+p]qx)ke−[n+p]qx[k]q!andPn,p,kq=n+p+k−1kqqk(k+1)xk(1+x)qn+p+k.








In [13], Govil and Gupta considered the simultaneous approximation for the Stancu-type generalization of certain summation operators of integral type


Gnα,β(f,x)=∑k=1∞pn,k(x)∫0∞bn,k−1(t)fnt+αn+βdt+(1+x)−nfαn+β








by hypergeometric series. Srivastava and Gupta [14] introduced and investigated a new sequence of linear positive operators


Gn,c(f,x)=n∑k=1∞∫0∞pn,k(x;c)pn+c,k−1(t;c)f(t)dt+∫0∞pn,0(x;c)pn,0(t;c)δ(t)f(t)dt,








which included some well-known operators as its special cases and obtained an estimate on the rate of convergence by means of the decomposition technique for functions of bounded variation. In [15], Gupta, Mohapatra, and Finta studied the mixed summation operators of integral type


Sn(f,x)=∑v=1∞sn,v(x)∫0∞bn,v−1(t)f(t)dt+e−nxf(0)








and obtained the rate of point-wise convergence, where


sn,v(x)=e−nx(nx)vv!andbn,v(t)=1B(n,v+1)tv(1+t)−n−v−1.








In [12,13,14,15], some approximating properties of integral type operators were discussed in C[0,∞), which is a special case of the Orlicz space. For f∈LΦ∗[0,∞), the modified summation operators of integral type Bn(f,x) are defined in [16] as


Bn(f,x)=1n+1∑k=1∞bn,k(x)∫0∞bn,k(t)f(t)dt,x∈[0,∞),



(1)




where bn,k(x)=(n+k)!(k−1)!n!xk−1(1+x)n+k+1 for k,n≥1. Recently, Han and Wu [16] obtained the following direct, inverse, and equivalent theorems of modified summation operators of integral type in Orlicz spaces.



Theorem 1

(Direct theorem [16]). Let f∈LΦ∗[0,∞), φ2(x)=x(1+x), and Ψ∈Δ2. Then


∥Bn(f)−f∥Φ≤Cω2,φf,1nΦ+ω1f,1nΦ+∥f∥Φn.













Theorem 2

(Inverse theorem [16]). Let f∈LΦ∗[0,∞), 0≤α<2, and ∥Bn(f)−f∥Φ=On−α/2. Then


ω2,φ(f,t)Φ=O(tα)andω1(f,t)Φ=Otα/2.













Theorem 3

(Equivalence theorem [16]). Let f∈LΦ∗[0,∞) and 0≤α<2. Then


∥Bn(f)−f∥Φ=On−α/2ifandonlyifω2,φ(f,t)Φ=O(tα)andω1(f,t)Φ=Otα/2.













In recent years, since the Orlicz spaces are more general than the classical Lp spaces, which is composed of measurable functions f(x) such that |f(x)|p are integrable, there is growing interest in problems of approximation in Orlicz spaces.



For smoothly proceeding, we recall from [17] some definitions and related results.



A continuous convex function Φ(t) on [0,∞) is called a Young function if it satisfies


limt→0+Φ(t)t=0andlimt→∞Φ(t)t=∞.








For a given Young function Φ(t), its complementary Young function is denoted by Ψ(t).



It is clear that the convexity of Φ(t) can lead to Φ(αt)≤αΦ(t) for α∈[0,1]. In particular, one has Φ(αt)<αΦ(t) for α∈(0,1).



A Young function Φ(t) is said to satisfy the Δ2-condition, denoted by Φ∈Δ2, if there exist t0>0 and C≥1 such that Φ(2t)≤CΦ(t) for t≥t0.



Let Φ(t) be a Young function. We define the Orlicz class LΦ[0,∞) as the collection of all Lebesgue measurable functions u(x) on [0,∞). Since the integral


ρ(u,Φ)=∫0∞Φ(|u(x)|)dx








is finite, we define the Orlicz space LΦ∗[0,∞) as the linear hull of LΦ[0,∞) under the Luxemburg norm


∥u∥(Φ)=infλ>0λ:ρuλ,Φ≤1.








The Orlicz norm, which is equivalent to the Luxemburg norm on LΦ∗[0,∞), is given by


∥u∥Φ=supρ(v,Ψ)≤1∫0∞u(x)v(x)dx








and satisfies


∥u∥(Φ)≤∥u∥Φ≤2∥u∥(Φ).



(2)







For f∈LΦ∗[0,∞), the weighted K-functional Kr,φ(f,tr), the modified weighted K-functional K¯r,φ(f,tr), and the weighted modulus of smoothness ωr,φ(f,t)Φ are given, respectively, by


Kr,φ(f,tr)Φ=infg∥f−g∥Φ+trφrg(r)Φ:g(r−1)∈ACloc,K¯r,φ(f,tr)Φ=infg∥f−g∥Φ+trφrg(r)Φ+t2rg(r)Φ:g(r−1)∈ACloc,








and


ωr,φ(f,t)Φ=sup0<h≤t∥Δhφrf∥Φ,








where φ(x)=x, φ(x)=x(1+x), or φ(x)=x, and g(r−1)∈ACloc means that g is r−1 times differentiable and g(r−1) is absolutely continuous in every closed finite interval [c,d]⊆[0,∞).



Between the weighted modulus of smoothness and the modified weighted K-functional, there exists the following equivalent theorem.



Theorem 4

([16]). Let f∈LΦ∗[0,∞). Then there exist some constants C and t0 such that


ωr,φ(f,t)ΦC≤K¯r,φ(f,tr)Φ≤Cωr,φ(f,t)Φ,0<t≤t0.



(3)









Between the weighted modulus of smoothness and the weighted K-functional, there exists the following equivalent theorem.



Theorem 5

([18]). Let f∈LΦ∗[0,∞). Then there are some constants C and t0 such that


ωr,φ(f,t)ΦC≤Kr,φ(f,tr)Φ≤Cωr,φ(f,t)Φ,0<t≤t0.



(4)









Currently, there are few results about linear combinations of modified summation operators of integral type Bn(f,x). In this article, we investigate the approximation of linear combinations of modified summation operators of integral type Bn(f,x) in Orlicz spaces LΦ∗[0,∞). The linear combinations of modified summation operators of integral type Bn(f,x) are defined as


Ln,r(f,x)=∑i=02r−1ci(n)Bni(f,x),








where


n≤n0≤n1<…<n2r−1≤Cn,∑i=02r−1ci(n)=1,∑i=02r−1|ci(n)|<C,∑i=02r−1ci(n)Bni(t−x)k,x=0,k=0,1,2,…,2r−1.



(5)







Our main results in this paper can be stated as the following three theorems.



Theorem 6

(Direct theorem). Let f∈LΦ∗[0,∞), n∈N, Ψ∈Δ2, and φ(x)=x(1+x). Then


∥Ln,r(f)−f∥Φ≤Cω2r,φf,1nΦ.













Theorem 7

(Inverse theorem). Let f∈LΦ∗[0,∞), n≥2r, and φ2(x)=x(1+x). Then


ω2r,φf,1nr/2Φ≤Cnr∑k=1nkr−1∥Ln,r(f)−f∥Φ.













Theorem 8

(Equivalent theorem). Let f∈LΦ∗[0,∞), n≥2r, φ2(x)=x(1+x), and Ψ∈Δ2. Then


∥Ln,r(f)−f∥Φ=Oψ1n1/2,n→∞ifandonlyifω2r,φ(f,t)Φ=O(ψ(t)),t→0+.













These main results improve some conclusions in [19] and increase the approximating speed of corresponding operators.




2. Proof of the Direct Theorem


In order to prove the direct theorem, we need several lemmas below.



Lemma 1.

The modified summation operator of integral type Bn(f,x) defined in Equation (1) satisfies


Bn(1,x)=1andBn(t−x)2r,x≤Cδn2(x)nr,








where δn2(x)=maxφ2(x),1n, φ(x)=x(1+x), r∈N, and C is a positive constant.





Proof. 

This follows from simple calculation. □





Lemma 2

([19]). If u locates between x and t, then


(t−u)2r−1φ2r(u)≤|t−x|2r−1φ2(r−1)(x)1x11+x+11+t.













Lemma 3.

Let f∈LΦ∗[0,∞). Then


∥Ln,r(f)∥Φ≤C∥f∥Φ.













Proof. 

By Lemma 3.2 in [16], we have


∥Bn(f)∥Φ≤2∥f∥Φ.











Using Equation (5), we obtain


∥Ln,r(f)∥Φ=∑i=02r−1ci(n)Bni(f)Φ≤∑i=02r−1|ci(n)|∥Bni(f)∥Φ≤C∥f∥Φ.











The proof of Lemma 3 is complete. □





Lemma 4

([18]). For f∈LΦ∗[0,∞) and Ψ∈Δ2, we have


∥θ(f)∥Φ≤C∥f∥Φ,








where


θ(f,x)=sup0≤t<∞t≠x1t−x∫xtf(u)du








is the Hardy-Littlewood function of f(x), and C is a positive constant.





We are now in a position to prove Theorem 6.



Proof of Theorem 6.

Let


U=WΦ2rg:g(2r−1)∈ACloc,φ2rg(2r)∈LΦ∗[0,∞).








Taylor’s formula with integral remainder of g∈U reads


g(t)=∑i=02r−1g(i)(x)i!(t−x)i+R2r(g,t,x),








where


R2r(g,t,x)=1(2r−1)!∫xt(t−u)2r−1g(2r)(u)du,x∈[0,∞).








From Equation (5), it follows that Ln,r(g,x)−g(x)=Ln,r(R2r(g,t,x),x) and


∥Ln,r(g)−g∥Φ=∥Ln,r(R2r(g,·,x),x)∥Φ.



(6)







Now we estimate |R2r(g,t,x)|. As x∈[1n,∞), we have δn2(x)=φ2(x). Applying Lemma 2 leads to


|R2r(g,t,x)|≤1(2r−1)!∫xt(t−u)2r−1φ2r(u)δn2r(u)g(2r)(u)du≤1(2r−1)!|t−x|2r−1φ2r−2(x)1x11+x+11+t∫xtδn2r(u)g(2r)(u)du≤1(2r−1)!(t−x)2rφ2r−2(x)1x(1+x)+1x(1+t)θ(δn2rg(2r),x)≜I1+I2.








From Lemma 1, we conclude that


Bn(I1,x)=1n+1∑k=1∞bn,k(x)∫0∞bn,k(t)1(2r−1)!(t−x)2rφ2r(x)θ(δn2rg(2r),x)dt=θ(δn2rg(2r),x)φ−2r(x)(2r−1)!Bn(t−x)2r,x≤Cnrθ(δn2rg(2r),x)



(7)




and


Bn(I2,x)=θ(δn2rg(2r),x)n+1∑k=1∞bn,k(x)∫0∞bn,k(t)1(2r−1)!(t−x)2rφ2r−2(x)1x(1+t)dt=θ(δn2rg(2r),x)φ−2r(x)(2r−1)!(n+1)∑k=1∞n+1n+k+12bn+1,k(x)∫0∞bn+1,k(t)(t−x)2rdt≤Cnrθ(δn2rg(2r),x).



(8)




Hence, by Inequalities (7) and (8) and Lemma 4, it follows that


∥Bn(R2r(g,·,x),x)∥Φ[1n,∞)≤Cnrθ(δn2rg(2r),x)Φ[1n,∞)≤Cnrδn2rg(2r)Φ[1n,∞).



(9)







For x∈[0,1n) and δn2(x)=1n, we have


|R2r(g,t,x)|=1(2r−1)!∫xt(t−u)2r−1g(2r)(u)du=1(2r−1)!∫xt(t−u)2r−11/nrδn2r(u)g(2r)(u)du≤1(2r−1)!(x−t)2rnrθ(δn2rg(2r),x).








Using Lemmas 1 and 4 arrives at


Bn(|R2r(g,t,x)|,x)≤nr(2r−1)!Cnrδn2r(x)θ(δn2rg(2r),x)≤Cnrθ(δn2rg(2r),x)








and


∥Bn(R2r(g,·,x),x)∥Φ[0,1n)≤Cnrθ(δn2rg(2r))Φ[0,1n)≤Cnrδn2rg(2r)Φ[0,1n).








Combining this with Equation (9) leads to


∥Bn(R2r(g,·,x),x)∥Φ[0,∞)≤Cnrδn2rg(2r)Φ[0,∞)








and, consequently,


∥Ln,r(R2r(g,·,x),x)∥Φ≤∑i=02r−1|ci|∥Bni(R2r(g,·,x),x)∥Φ≤∑i=02r−1|ci|Cnirδni2rg(2r)Φ≤∑i=02r−1|ci|Cnrδn2rg(2r)Φ≤Cnrδn2rg(2r)Φ.








Then, applying the above inequality, Inequalities (3) and (6), and Lemma 3, we obtain


∥Ln,r(f)−f∥Φ≤∥Ln,r(f−g)−(f−g)∥Φ+∥Ln,r(g)−g∥Φ≤C∥f−g∥Φ+Cnrδn2rg(2r)Φ≤Cω2r,φf,1nΦ.








The proof of the direct theorem is complete. □






3. Proofs of the Inverse and Equivalent Theorems


For proving Theorems 7 and 8, we need the following lemmas.



Lemma 5.

If f∈LΦ∗[0,∞) and n≥2r, then


φ2rLn,r(2r)(f)Φ≤Cnr∥f∥Φ.













Proof. 

Since


Bn(2r)(f,x)=1n+1∑k=1∞bn,k(2r)(x)∫0∞bn,k(t)f(t)dt=1n+1∑k=1∞(n+k)!(k−1)!n!∑i=02r2ri(−1)iD2r−ixk−1Di1(1+x)n+k∫0∞bn,k(t)f(t)dt=∏j=22r(n+j)∑k=1∞bn+2r,k(x)∫0∞∑i=02r2ri(−1)ibn,k+2r−i(t)f(t)dt≤∏j=22r(n+j)∑k=1∞bn+2r,k(x)∫0∞∑i=02r2ribn,k+2r−i(t)f(t)dt,



(10)




we have


φ2r(x)Bn(2r)(f,x)≤∏j=22r(n+j)∑k=1∞bn+2r,kφ2r(x)∫0∞∑i=02r2ribn,k+2r−i(t)f(t)dt   ≤∏j=22r(n+j)∑k=1∞bn,k+r(x)(k+r−1)!n!(n+r+k)!(n+2r+k)!(k−1)!(n+2r)!∫0∞∑i=02r2ribn,k+2r−i(t)f(t)dt   ≤Cnrn+1∑i=02r2ri∑k=1∞bn,k+r(x)∫0∞bn,k+2r−i(t)f(t)dt.











Therefore, by Jensen’s inequality [20] and the inequality (2), we obtain


φ2r(x)Bn(2r)(f)Φ  ≤2infλ>0λ:∫0∞Φ1n+1∑i=02r2ri∑k=1∞bn,k+r(x)∫0∞bn,k+2r−i(t)Cnr|f(t)|λdtdx≤1  ≤2infλ>0λ:∫0∞122r∑i=02r2riΦ1n+1∑k=1∞bn,k+r(x)∫0∞bn,k+2r−i(t)Cnr|f(t)|λdtdx≤1  ≤2infλ>0λ:∫0∞122r∑i=02r2riΦ1n+1∑k=1∞bn,k(x)∫0∞bn,k+r−i(t)Cnr|f(t)|λdtdx≤1  ≤2infλ>0λ:∫0∞122r∑i=02r2ri1n+1∑k=1∞bn,k(x)∫0∞bn,k+r−i(t)ΦCnr|f(t)|λdtdx≤1  ≤Cnr∥f∥Φ,








where bn,k+r−i(t)=0 for n+r−i≤0. Combining this with Equation (5) leads to


φ2r(x)Ln,r(2r)(f)Φ≤∑i=02r−1|ci(n)|φ2r(x)Bni(2r)(f)Φ≤∑i=02r−1|ci(n)|Cnir∥f∥Φ≤Cnr∥f∥Φ.











Lemma 5 is thus proved. □





Lemma 6.

Let f∈LΦ∗[0,∞) and n≥2r. Then


φ2rLn,r(2r)(f)Φ≤Cφ2rf(2r)Φ.













Proof. 

Integrating by parts 2r times in Equation (10) gives


Bn(2r)(f,x)=1n+1∏j=12r(n+j)∑k=1∞bn+2r,k(x)∫0∞∑i=02r2ri(−1)ibn,k+2r−i(t)f(t)dt=(n+1)(n+2)…(n+2r)n(n−1)…(n−2r+1)1n+1∑k=1∞bn+2r,k(x)∫0∞bn−2r,k+2r(2r)(t)f(t)dt=(n+2r)!(n−2r)!(n!)21n+1∑k=1∞bn+2r,k(x)∫0∞bn−2r,k+2r(t)f(2r)(t)dt.











Accordingly,


φ2r(x)Bn(2r)(f,x)   =(n+2r)!(n−2r)!(n!)21n+1∑k=1∞bn+2r,k(x)φ2r(x)∫0∞bn−2r,k+2r(t)φ−2r(t)φ2r(t)f(2r)(t)dt   ≤Cn+1∑k=1∞bn−2r+2,k+r(x)∫0∞bn,k+r(t)φ2r(t)f(2r)(t)dt.











Employing Inequality (2) and Jensen’s inequality [20] reveals


φ2r(x)Bn(2r)(f)Φ   ≤2infλ>0λ:∫0∞ΦCn+1∑k=1∞bn−2r+2,k+r(x)∫0∞bn,k+r(t)φ2r(t)f(2r)(t)λdtdx≤1   ≤2infλ>0λ:∫0∞ΦCn+1∑k=1∞bn−2r+2,k(x)∫0∞bn,k(t)φ2r(t)f(2r)(t)λdtdx≤1   ≤2infλ>0λ:∫0∞∑k=1∞bn−2r+2,k(x)n−2r+3∫0∞bn,k(t)ΦC(n−2r+3)n+1φ2r(t)f(2r)(t)λdtdx≤1   ≤2infλ>0λ:n+1n−2r+3∫0∞ΦC(n−2r+3)n+1φ2r(t)f(2r)(t)λdt≤1   ≤Cφ2rf(2r)Φ.











Applying the above inequality and Inequality (5) results in


φ2rLn,r(2r)(f)Φ=∑i=02r−1ci(n)φ2rBni(2r)(f)Φ≤∑i=02r−1|ci(n)|φ2rBni(2r)(f)Φ≤C∑i=02r−1|ci(n)|φ2rf(2r)Φ≤Cφ2rf(2r)Φ.











The lemma is proved. □





Proof of Theorem 7.

From Lemmas 5 and 6 and [21] (Theorem 2.2), we obtain


K2r,φf,1nr/2Φ≤Cnr∑k=1nkr−1∥Ln,r(f)−f∥Φ.











Utilizing Inequality (4) concludes the inverse theorem. □





Proof of Theorem 8.

Using the so-called order function ψ(t)=tα|lnt|βe|lnt|γ for 0<α<1, β∈R, and γ<1 and combining Theorems 7 and 8 conclude the equivalent theorem. □
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