Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution
Abstract
:1. Introduction
2. Materials and Methods
Design of Proposed Plan
- Step 1.
- The sample size for a lot is n.
- Step 2.
- Specify the acceptance number (or action limit) c for a sample and the experiment time t0.
- Step 3.
- Perform the experiment for the sample size n and record the number of failures for a sample.
- Step 4.
- Accept the lot if at most c failures are observed in the sample. Truncate the experiment and reject the lot if more than c failures are observed in the sample.
- Step 5.
- Calculation of fuzzy p (proportion of defective items) using Equation (6).
- Step 6.
- Calculation of fuzzy acceptance probability using Equations (10) and (11).
- Step 7.
- Design of fuzzy OC curve (FOC) includes k and the acceptance probability, where k is the transformation of the fuzzy proportion of defective items.
3. Real Life Example
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OC | operating characteristic |
OC curve | operating characteristic curve |
(FOC) curve | fuzzy operating characteristic curve |
AQL | average quality level |
LQL | low quality level |
probability density function. | |
cdf | Cumulative distribution function |
SASP | single acceptance sampling plan |
BS | Birnbaum-Saunders |
Appendix A
- #When n = 5, 20, 30, 30, c = 0
- rm(list=ls ())
- windows ()
- par(mfrow=c(2,2))
- a = 0.5 #For c = 0 at t = 67
- alpha = c(0.15, 0.16, 0.17, 0.18)
- K = seq(0, 0.05, 0.01)
- x = a*((1 + alpha^2)/2) #Here b is teated as Alpha
- y = 0.5# 1, 2, 3, 4, 5, 6 values of ratio of
- X = c((1/alpha)*(sqrt(x/y)−sqrt(y/x)))
- FX = pnorm(X, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
- FX
- p = FX
- p = 2.470246e-16
- K = seq(0,0.05,0.01)
- W = p + K
- p = 0.226627400
- W = p + K
- #p = 0.226627400
- p = 0.019
- W = p + K
- K = seq(0,0.05,0.01)
- c = o, a = 0.5) and (c = 1 when a = 0.67) for a = 0.5, p = 2.470246e-16, for a = 0.67 p = 0.01923
- B = dbinom(0,10,K) # B = (1−K)^5 When n = 5, c = 0 (1)
- A = dbinom(0,10, W)# A = (1−(K+p))^5#When n = 5, c = 0 (2)
- data.frame(A,B)
- data.frame(K,W,A,B)
- #B = (1-K)^5 # THIS WILL GIVE US UPPER BAND HIGHER PROBABILITY
- #A = (1-(K+p))^5#THIS WILL GIVE US LOWER BAND LOWER PROBABILITY
- plot(K,A,type = “l”, col = “red”, xlab = “K”, ylab = “Pa “, main = “fuzzy OC curve”)
- par(new = TRUE)
- plot(W,B,type = “l”, col = “blue”, xlab = “k”, ylab = “ “, main = ““)
- legend(“topright”,c(expression(paste(alpha==0.15,”,”,a==0.67)),expression(paste(alpha==0.16,”,”,a==0.67)),expression(paste(alpha==0.17,”,”,a==0.1)),expression(paste(alpha==0.18,”,”,a==0.67)),expression(paste(n==5,”,”,c==0))))
References
- Kahraman, C.; Kaya, İ. Fuzzy acceptance sampling plans. In Production Engineering and Management under Fuzziness; Springer: Heidelberg, Germany, 2010; pp. 457–481. [Google Scholar]
- Aslam, M.; Jun, C.-H. A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters. J. Appl. Stat. 2010, 37, 405–414. [Google Scholar] [CrossRef]
- Aslam, M.; Jun, C.-H.; Ahmad, M. New acceptance sampling plans based on life tests for Birnbaum–Saunders distributions. J. Stat. Comput. Simul. 2011, 81, 461–470. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Zimmermann, H.J. Fuzzy Set Theory and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Sadeghpour Gildeh, B.; Jamkhaneh, E.B.; Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 2011, 8, 47–55. [Google Scholar]
- Grzegorzewski, P. Acceptance sampling plans by attributes with fuzzy risks and quality levels. In Frontiers in Statistical Quality Control; Springer: Heidelberg, Germany, 2001; pp. 36–46. [Google Scholar]
- Montgomery, D.C. Ihntroduction to Statistical Quality Control; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Jamkhaneh, E.B.; Sadeghpour-Gildeh, B.; Yari, G. Acceptance single sampling plan with fuzzy parameter with the using of poisson distribution. World Acad. Sci. Eng. Technol. 2009, 3, 1–20. [Google Scholar]
- Buckley, J.J. Fuzzy Probability and Statistics; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Turanoğlu, E.; Kaya, İ.; Kahraman, C. Fuzzy acceptance sampling and characteristic curves. Int. J. Comput. Intell. Syst. 2012, 5, 13–29. [Google Scholar] [CrossRef]
- Afshari, R.; Gildeh, B.S.; Sarmad, M. Multiple Deferred State Sampling Plan with Fuzzy Parameter. Int. J. Fuzzy Syst. 2017, 20, 549–557. [Google Scholar] [CrossRef]
- Afshari, R.; Gildeh, B.S.; Sarmad, M. Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors. J. Intell. Fuzzy Syst. 2017, 33, 503–514. [Google Scholar] [CrossRef]
- Jamkhaneh, E.B.; Sadeghpour-Gildeh, B.; Yari, G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 2011, 43, 555–560. [Google Scholar] [CrossRef]
- Tong, X.; Wang, Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 2012, 48, 256–266. [Google Scholar] [CrossRef]
- Sadeghpour-Gildeh, B.; Yari, G.; Jamkhaneh, E.B. Acceptance double sampling plan with fuzzy parameter. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.864.8328&rep=rep1&type=pdf (accessed on 1 November 2018).
- Jamkhaneh, E.B.; Gildeh, B.S. Notice of Retraction AOQ and ATI for Double Sampling Plan with Using Fuzzy Binomial Distribution. In Proceedings of the International Conference on Intelligent Computing and Cognitive Informatics (ICICCI), Kuala Lumpur, Malaysia, 22–23 June 2010. [Google Scholar]
- Divya, P. Quality interval acceptance single sampling plan with fuzzy parameter using poisson distribution. Int. J. Adv. Res. Technol. 2012, 1, 115–125. [Google Scholar]
- Jamkhaneh, E.B.; Gildeh, B.S. Acceptance Double Sampling Plan using Fuzzy Poisson Distribution. World Appl. Sci. J. 2012, 15, 1692–1702. [Google Scholar]
- Venkatesh, A.; Subramani, G. Acceptance sampling for the secretion of Gastrin using crisp and fuzzy Weibull distribution. Int. J. Eng. Res. Appl. 2014, 4, 564–569. [Google Scholar]
- Wu, C.-J.; Tsai, T.-R. Acceptance sampling plans for Birnbaum-Saunders distribution under truncated life tests. Int. J. Reliab. Qual. Saf. Eng. 2005, 12, 507–519. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Birnbaum-Saunders Distribution: A Review of Models, Analysis and Applications. arXiv, 2018; arXiv:1805.06730. [Google Scholar]
- Balakrishnan, N.; Leiva, V.; Lopez, J. Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution. Commun. Stat. Simul. Comput. 2007, 36, 643–656. [Google Scholar] [CrossRef]
- Stephens, K.S. The Handbook of Applied Acceptance Sampling: Plans, Principles, and Procedures; Asq Press: Milwaukee, WI, USA, 2001. [Google Scholar]
- Jamkhaneh, E.B.; Gildeh, B.S. Chain sampling plan using Fuzzy probability theory. J. Appl. Sci. 2011, 11, 3830–3838. [Google Scholar] [CrossRef]
- From, S.G.; Li, L. Estimation of the parameters of the Birnbaum–Saunders distribution. Commun. Stat. Theory Methods 2006, 35, 2157–2169. [Google Scholar] [CrossRef]
- Croarkin, C.; Tobias, P.; Zey, C. Engineering Statistics Handbook; NIST: Gaithersburg, MD, USA, 2002.
70 | 90 | 96 | 97 | 99 | 100 | 103 | 104 | 104 | 105 | 107 | 108 | 108 | 108 | 109 |
109 | 112 | 112 | 113 | 114 | 114 | 114 | 116 | 119 | 120 | 120 | 120 | 121 | 121 | 123 |
124 | 124 | 124 | 124 | 124 | 128 | 128 | 129 | 129 | 130 | 130 | 130 | 131 | 131 | 131 |
131 | 131 | 132 | 132 | 132 | 133 | 134 | 134 | 134 | 134 | 134 | 136 | 136 | 137 | 138 |
138 | 138 | 139 | 139 | 141 | 141 | 142 | 142 | 142 | 142 | 142 | 142 | 144 | 144 | 145 |
146 | 148 | 148 | 149 | 151 | 151 | 152 | 155 | 156 | 157 | 157 | 157 | 157 | 158 | 159 |
162 | 163 | 163 | 164 | 166 | 166 | 168 | 170 | 174 | 196 | 212. |
K | |||||
---|---|---|---|---|---|
0.00 | [0.00, 0.001] | [0.98, 1.00] | [0.99, 1.00] | [0.99, 1.00] | [0.996, 1.00] |
0.01 | [0.01, 0.011] | [0.95, 0.96] | [0.81, 0.82] | [0.73, 0.76] | [0.604, 0.620] |
0.02 | [0.02, 0.022] | [0.93, 0.94] | [0.65, 0.66] | [0.53, 0.54] | [0.3640, 0.372] |
0.03 | [0.03, 0.041] | [0.85, 0.86] | [0.53, 0.54] | [0.40, 0.43] | [0.213, 0.219] |
0.04 | [0.04, 0.051] | [0.81, 0.83] | [0.41, 0.43] | [0.29, 0.31] | [0.125, 0.129] |
0.05 | [0.052, 0.054] | [0.77, 0.78] | [0.35, 0.36] | [0.21, 0.23] | [0.076, 0.077] |
K | |||||
---|---|---|---|---|---|
0.00 | [0.00, 0.019] | [1.000, 1.00] | [1.0000, 1.00] | [1.00, 1.00] | [0.99, 1.00] |
0.01 | [0.01, 0.029] | [0.99, 0.995] | [0.979, 0.97] | [0.827, 0.82] | [0.82, 0.82] |
0.02 | [0.02, 0.039] | [0.94, 0.96] | [0.99, 0.949] | [0.55, 0.556] | [0.65, 0.660] |
0.03 | [0.03, 0.077] | [0.93, 0.95] | [0.82, 0.826] | [0.338, 0.338] | [0.63, 0.54] |
0.04 | [0.04, 0.050] | [0.91, 0.92] | [0.73, 0.730] | [0.190, 0.190] | 0.44, 0.42] |
0.05 | [0.05, 0.067] | [0.89, 0.900] | [0.720, 0.7202] | [0.160, 0.160] | [0.35, 0.37] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.Z.; Khan, M.F.; Aslam, M.; Mughal, A.R. Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution. Mathematics 2019, 7, 9. https://doi.org/10.3390/math7010009
Khan MZ, Khan MF, Aslam M, Mughal AR. Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution. Mathematics. 2019; 7(1):9. https://doi.org/10.3390/math7010009
Chicago/Turabian StyleKhan, Muhammad Zahir, Muhammad Farid Khan, Muhammad Aslam, and Abdur Razzaque Mughal. 2019. "Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution" Mathematics 7, no. 1: 9. https://doi.org/10.3390/math7010009
APA StyleKhan, M. Z., Khan, M. F., Aslam, M., & Mughal, A. R. (2019). Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution. Mathematics, 7(1), 9. https://doi.org/10.3390/math7010009