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Abstract: We present a new method to efficiently solve a multi-dimensional linear Partial Differential
Equation (PDE) called the quasi-inverse matrix diagonalization method. In the proposed method,
the Chebyshev-Galerkin method is used to solve multi-dimensional PDEs spectrally. Efficient
calculations are conducted by converting dense equations of systems sparse using the quasi-inverse
technique and by separating coupled spectral modes using the matrix diagonalization method.
When we applied the proposed method to 2-D and 3-D Poisson equations and coupled Helmholtz
equations in 2-D and a Stokes problem in 3-D, the proposed method showed higher efficiency in all
cases than other current methods such as the quasi-inverse method and the matrix diagonalization
method in solving the multi-dimensional PDEs. Due to this efficiency of the proposed method,
we believe it can be applied in various fields where multi-dimensional PDEs must be solved.

Keywords: Chebyshev polynomials; Galerkin basis functions; partial differential equation;
quasi-inverse technique; matrix diagonalization

1. Introduction

The spectral method has been used in many fields to solve linear partial differential equations
(PDEs) such as the Poisson equation, the Helmholtz equation, and the diffusion equation [1,2].
The advantage of the spectral method over other numerical methods in solving linear PDEs is its
high accuracy; when solutions of PDEs are smooth enough, errors of numerical solutions decrease
exponentially as the number of discretization nodes increases [3].

Based on the types of boundary conditions, different spectral basis functions can be used to
discretize in physical space. There are several boundary conditions used in solving mathematical and
engineering linear PDEs, but the boundary conditions can be classified as periodic and non-periodic
boundary conditions. For periodic boundary conditions, the domain is usually discretized using the
Fourier series, while Lengendre polynomials and Chebyshev polynomials are most frequently used
as basis functions for non-periodic boundary conditions. To investigate an efficient way to spectrally
solve PDEs in this paper, we restrict the scope of this paper by only considering linear PDEs with
non-periodic boundary conditions. Of the spectral basis functions that can be used with non-periodic
boundary conditions, we use the Chebyshev polynomial to discretize the equations in space to use
their minimum error properties and achieve spectral accuracy across the whole domain [4].

There are several methods for solving linear PDEs using Chebyshev polynomials. In the
collocation method, linear PDEs are directly solved in physical space so that implementation of
the method is relatively easy compared to other methods. However, the differentiation matrix derived
from the collocation method is full, making computation slow, and ill-conditioning of the differentiation
matrix in the collocation method can produce numerical solutions with high errors, especially when a
high number of collocation points is used [5].

Mathematics 2019, 7, 90; doi:10.3390/math7010090 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7010090
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 90 2 of 21

Another method for solving linear PDEs spectrally with Chebyshev polynomials is the
Chebyshev-tau method, which involves solving linear PDEs in spectral space. In the Chebyshev-tau
method, the boundary conditions of PDEs are directly enforced to the equation of the system [5–7].
This enforcement of boundary conditions produces tau lines, making numerical calculation slow
because tau lines increase interactions between Chebyshev modes [8,9]. As the dimension of PDEs
rises, the length of calculation time caused by tau lines increases rapidly, resulting in significant lagging
to solve PDEs [10,11].

Unlike the Chebyshev-tau method, the Chebyshev-Galerkin method removes direct enforcement
of boundary conditions to the equation of the system by discretizing in space using carefully chosen
basis functions called Galerkin basis functions that automatically obey given boundary conditions [8].
As a result, when the Chebyshev-Galerkin method is used, tau lines are not created in the system
of equation, and therefore, the interaction of tau lines in numerical calculations is not a concern.
Because of this advantage, the Chebyshev-Galerkin method is popular for spectral calculation of
PDEs. For example, Shen [12] studied proper choices of Galerkin basis functions satisfying standard
boundary conditions such as Dirichlet and Neumann boundary conditions and solved linear PDEs
with them, and Julien and Watson [13] and Liu et al. [11] used the Galerkin basis functions to solve
multi-dimensional linear PDEs with high efficiency.

In 1-D problems, it is straightforward to write linear PDEs as a matrix form in spectral space using
a differentiation matrix (see Section 2 for more details). However, because the differentiation matrix
is an upper triangular matrix, solving linear PDEs by inverting the differentiation matrix (or using
iterative methods to solve the differentiation matrix) is a computationally expensive way to solve
equations. Because computational cost increases rapidly as the dimension of the problems increases,
efficiently computing solutions of linear PDEs becomes even more important in multi-dimensional
problems. In 1-D problems, computational time can be easily saved by modifying the dense equation
to sparse systems using the three term recurrence relation [14]. However, due to the coupling of
Chebyshev modes in multi-dimensional problems, finding an efficient way to solve linear PDEs is not
as straightforward as in 1-D problems.

To facilitate computation in multi-dimensional linear PDE problems, Julien and Watson [13]
presented a method called the quasi-inverse technique. Based on the three term recursion relationship
in 1-D, they invented a quasi-inverse matrix, and applied it to multi-dimensional linear PDE problems.
As a result of the quasi-inverse technique, dense differential operators in multi-dimensional linear
PDEs were reduced to sparse operators, then it was possible to efficiently solve multi-dimensional
linear PDEs from the sparse systems with approximately O(N2k−1) operations for k-dimensional
problems. Haidvogel and Zang [15] and Shen [12] presented another way to efficiently solve
multi-dimensional linear PDEs called matrix diagonalization method. The key of the matrix
diagonalization method is decoupling the coupled Chebyshev modes using the eigenvalue and
eigenvector decomposition method [16] and lowering dimensionality of the problem to convert
solving a high dimensional problem into solving 1-D linear PDE problems multiple times as a function
of the eigenvalues of the system [17].

In this paper, we propose a new method to solve multi-dimensional linear PDEs using
Chebyshev polynomials called the quasi-inverse matrix decomposition method. Our method was
created by adapting the quasi-inverse technique to the matrix diagonalization method. In our
method, the equations of systems are first derived using the quasi-inverse technique, then the matrix
diagnalization method is used to efficiently solve the derived equations of the systems using eigenvalue
and eigenvector decomposition. Because our method uses merits of both the quasi-inverse technique
and the matrix diagonalization method, it computes numerical solutions of multi-dimesional linear
PDE problems faster than these two methods. We will describe our quasi-inverse matrix decomposition
method in this paper by applying it to four test examples.

The rest of our paper is composed as follows. In Section 2, we review the Chebyshev-tau method,
the Chebyshev-Galerkin method, and the quasi-inverse technique with a 1-D Poisson equation. Then,
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the quasi-inverse matrix decomposition method is explained in the next section by applying it to solve
2-D and 3-D Poisson equations based on the Chebyshev-Galerkin method. In Section 4, we apply our
quasi-inverse matrix decomposition method to several multi-dimensional linear PDEs and compare
results to the ones from the quasi-inverse method and matrix diagonalization method in terms of
accuracy of numerical solutions and CPU time to solve the problems. Our conclusions are described in
Section 5.

2. 1-D Poisson Equation

In this section, we will explain the Chebyshev-tau method, the Chebyshev-Galerkin method, and
the quasi-inverse technique by applying them to solve a 1-D Poisson equation.

2.1. Chebyshev-Tau Method

We start with the 1-D Poisson equation with the Dirichlet boundary conditions as follows:

∂2u
∂x2 = f (x), −1 ≤ x ≤ 1

u(±1) = 0.
(1)

Definition 1. The u(x) and f (x) can be approximated in space with the M-th highest mode, respectively
defined as

u(x) =
M

∑
m=0

ûmTm(x) (2)

and

f (x) =
M

∑
m=0

f̂mTm(x), (3)

where Tm(x) is the m-th Chebyshev polynomial in x, and ûm and f̂m are the m-th Chebyshev coefficients of u(x)
and f (x), respectively.

Definition 2. The second derivative of u with respect to x (defined as ∂2u
∂x2 ) can be approximated by a sum of the

coefficients of the second derivatives û(2)
m multiplied by Chebyshev polynomials

∂2u
∂x2 =

M

∑
m=0

û(2)
m Tm(x). (4)

Definition 3. The coefficients of the second derivatives can be written as

û(2)
m =

1
cm

M

∑
p=m+2

p+m even

p(p2 −m2)ûp, (5)

where c0 = 2 and cm = 1 for m = 1, 2, · · · , M [18].

From Equations (1) and (3)–(5), we can obtain

1
cm

M

∑
p=m+2

p+m even

p(p2 −m2)ûp = f̂m, (6)

As a matrix form, Equation (6) can be rewritten as

D2
xu = f (7)
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where D2
x is usually called the 1-D Laplacian matrix descretized in x, whose matrix components are

defined by the left-hand side of Equation (6), and u and f are the (M + 1)× 1 arrays that are defined
as u = [û0, û1, · · · , ûM]T and f = [ f̂0, f̂1, · · · , f̂M]T , respectively. Note that D2

x is the square matrix of
order M + 1, but the rank of the matrix D2

x is M − 1 because all elements at the two bottom-most
rows are zeros. To make Equation (7) solvable, two additional equations that are provided from the
boundary conditions of the Poisson equation as follows

M

∑
m=0

ûm = 0,
M

∑
m=0

(−1)mûm = 0 (8)

are required to be enforced to the matrix in Equation (7). If the boundary conditions incorporated 1-D
Laplacian matrix and the boundary conditions incorporated right-hand side array are defined as D̄x

and f̄, respectively, solutions of the 1-D Poisson equation can be obtained from

D̄2
xu = f̄ (9)

by solving Equation (9) for u. However, solving the 1-D Poisson equation from Equation (9) is an
inefficient way to achieve numerical solutions because the left-hand side matrix of Equation (9) is the
upper triangular matrix with the tau lines at the bottom. Operation complexity of solving this matrix
is O(M2), which is not computationally cheap.

2.2. Quasi-Inverse Approach

A better way of computing the 1-D Poisson equation is using recursion relations in
computing derivatives

cm−1û(q)
m−1 − û(q)

m+1 = 2mû(q−1)
m , m, q ≥ 1 (10)

where û(q)
m is the m-th Chebyshev coefficients of q-th derivative of u with respect to x defined as

dqu
dxq =

M

∑
m=0

û(q)
m Tm(x). (11)

If we use Equation (10) with q = 2 and q = 1, it respectively gives

cm−1û(2)
m−1 − û(2)

m+1 = 2mû(1)
m (12)

cm−1û(1)
m−1 − û(1)

m+1 = 2mûm (13)

where ûm is used instead of û(0)
m . Without loss generality, to satisfy Equation (1) in the Chebyshev

space for all m, the condition û(2)
m = f̂m is needed to be established. Then, substituting û(2)

m−1 and û(2)
m+1

in Equation (12) to f̂m−1 and f̂m+1, respectively, and rearranging the terms give

û(1)
m =

1
2m
(
cm−1 f̂m−1 − f̂m+1

)
. (14)

Then, with Equations (13) and (14), it is possible to derive

ûm =
cm−2

4m(m− 1)
f̂m−2 −

βm

2(m2 − 1)
f̂m +

βm+2

4m(m + 1)
f̂m+2 (15)

for m = 2, 3, · · · , M where βm = 1 for m = 2, 3, · · · , M− 2 and βm = 0 for m > M− 2.
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Remark 1. If the matrix Jx is defined as the identity matrix except for the two top-most diagonal elements
whose values zero out as Jx = diags([0 0 1 1 · · · 1]), Equation (15) can be written in a matrix form as

Jxu = Bxf (16)

where the matrix Bx is the tridiagonal matrix, where the non-zero elements of Bx defined by bi,j are given as

bi,j =



ci−2

4i(i− 1)
if i = j− 2

− βi
2(i2 − 1)

if i = j

βi+2

4i(i + 1)
if i = j + 2

for i = 2, 3, · · · , M.

Note that the subscript x in matrix symbols (e.g., Bx and Jx) is to indicate that those matrices are
associated with x. Using this subscript symbol identifying which direction the matrix comes from is
useful in distinguishing the influence of matrices in multi-dimensional problems where subscripts can
be x and y in 2-D, and x, y, and z in 3-D. When the matrix Bx is multiplied on the left in Equation (7),
it is possible to claim

BxD2
x = Jx. (17)

The matrix Bx is called a quasi-inverse matrix in x for the Laplace operator because it acts like an
inverse matrix of the Laplace operator, producing the quasi-identity matrix (not identity matrix) when
multiplied with the Laplace operator.

Similar to the Chebyshev-tau method, boundary conditions need to be incorporated to
Equation (16). To do it, we rewrite two equations in Equation (8) as a matrix. By defining Bc as
the (M + 1) × (M + 1) matrix whose elements are zeros, except for the top two rows where all
elements’ values in the top row are one and the values in the second row from the top are alternatively
1 and −1 from the first to last columns, the boundary conditions can be written in a matrix form as

Bcu = fc (18)

where the fc is the (M + 1)× 1 zero array. Adding Equation (18) to Equation (16) gives

(Jx + Bc)u = Bxf + fc. (19)

Note that fc is the zero array only under the given boundary conditions in Equation (1). The fc

can be omitted in Equation (19) because fc is the zero array, but we represent this term to clearly show
the boundary condition enforcement to the equation. The left-hand side matrix of Equation (19) is
sparse, so it can be solved efficiently. Non-zero components of (Jx + Bc) are diagonal elements from
Jx and the top two rows’ entries from Bc forming tau lines. This matrix can be solved with O(M)

operations for u using a simple Gauss elimination. Compared to the method described in Section 2.1,
solving a Poisson equation with the quasi-inverse approach is more efficient because the quasi-inverse
approach allows reduction of operation complexity by one order of the number of unknowns.

The key point of the quasi-inverse approach for a Poisson equation is the constitution of the
quasi-inverse matrix Bx for the Laplace operator. Multiplying Bx to the both sides of the Poisson
equation simplifies the system of the equation based on the property of Bx described in Equation (17).
This property of the quasi-inverse matrix Bx can also be used in solving multi-dimensional PDEs
efficiently, which will be described in Section 3.
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2.3. Chebyshev-Galerkin Method

One disadvantage of the Chebyshev-tau method is the direct enforcement of boundary conditions
to the system, which creates tau lines in the equation. For example, when the Poisson equation is
solved with the quasi-inverse technique using the Chebyshev-tau method so that the final equation is
expressed as Equation (19), the enforcement of boundary conditions generates tau lines in the top two
rows. These tau lines increase interaction between Chebyshev modes, hindering fast calculations of the
equation. To overcome this drawback of the Chebyshev-tau method and enable efficient computation,
researchers have used the Chebyshev-Galerkin method to solve PDEs.

While the boundary conditions of PDEs are directly enforced to the equations of systems in
the Chebyshev-tau method, when the Chebyshev-Galerkin method is used, boundary conditions
are automatically satisfied without direct boundary condition enforcement to the equations. This is
done by discretizing PDEs with new basis functions called Galerkin basis functions that satisfy the
given boundary conditions automatically. There are plenty of ways to define Galerkin basis functions
satisfying specific boundary conditions, but one commonly used way is representing Galerkin basis
functions with linear combinations of Chebyshev polynomials to allow simple but fast transformations
between Chebyshev space and Galerkin space. In solving PDEs with Dirichlet boundary conditions
using the Chebyshev-Galerkin method, Shen [12] showed the efficiency of the following Galerkin
basis functions

φm(x) = Tm+2(x)− Tm(x), (20)

where φm(x) is the m-th Galerkin basis function. In this paper, we used the same Galerkin basis
functions as Shen used to transform efficiently from Chebyshev space to Galerkin space and vice versa.

Definition 4. When a 1-D Poisson equation is solved with the Chebyshev-Galerkin method using the Galerkin
basis functions defined in Equation (20), u(x) can be approximated by a sum of the Galerkin basis functions
multiplied by their coefficients v̂m, which can be written as

u(x) =
M−2

∑
m=0

v̂mφm(x) =
M−2

∑
m=0

v̂m

(
Tm+2(x)− Tm(x)

)
. (21)

Remark 2. Equating Equations (2) and (21) allows Chebyshev coefficients to associate with Galerkin coefficients

u = Sxv, (22)

where v is the (M− 1)× 1 array made up with v = [v̂0, v̂1, · · · , v̂M−2]
T and Sx is the (M + 1)× (M− 1)

transformation matrix, where the (i, j) entry si,j is defined as

si,j =


−1 if j = i

1 if j = i− 2

0 otherwise

for j = 0, 1, · · · , M− 2.

Note that the matrix Sx is not a square matrix because u(x) is discretized with (M + 1)-th modes
in Chebyshev space but discretized with (M− 1)-th modes in Galerkin space, where the difference
comes from the absence of boundary conditions enforcement at the Chebyshev-Galerkin method.
Substituting Equation (22) into Equation (16) gives

Axv = gx, (23)
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where Ax = JxSx and gx = Bxf. Note that Ax is the (M+ 1)× (M− 1) matrix and gx is the (M+ 1)× 1
array. The top two rows’ elements of the matrix Ax and array gx are zeros because these rows are
discarded for boundary conditions enforcement. However, in the Chebyshev-Garlerkin method, since
the boundary conditions are automatically obeyed by the proper choice of Galerkin basis functions,
the top two rows of Ax and gx are no longer necessary. Therefore, those modes can be deleted from
the equation so we can only consider non-discarded modes in Equation (23).

Definition 5. Let us define the symbol tilde to represent the top two rows of a certain matrix that are thrown
away. Based on this notation, Ãx and g̃x are respectively the (M− 1)× (M− 1) matrix and (M− 1)× 1
array, which are the subsets of Ax and gx, where the top two rows of Ax and gx are omitted, respectively. Then,
we can take into account only non-discarded modes from Equation (23) by using Ãx and g̃x

Ãxv = g̃x. (24)

Because the matrix Ãx is the bi-diagonal matrix whose main diagonal elements are all 1 and
the second super-diagonal elements are all −1, Equation (24) can be solved for v with the backward
substitution efficiently in O(M) operations. After v is computed, the solution of the 1-D Poisson
equation u can be easily obtained from Equation (22).

3. Quasi-Inverse Matrix Diagonalization Method

The quasi-inverse technique can be used with both the Chebyshev-tau method and the
Chebyshev-Galerkin method. In this paper, we will use the quasi-inverse technique with the
Chebyshev-Galerkin method to solve multi-dimensional problems for two reasons: (1) using the
Galerkin basis function is much more convenient to apply the matrix diagonalization method because
the Chebyshev-tau method needs to impose boundary conditions to the equation, which makes
the entire calculation complicated in multi-dimensional problems and sometimes makes equations
non-separable, and (2) the Chebyshev-Galerkin method is faster than the Chebyshev-tau method to
obtain numerical solutions of PDEs. Due to these advantages, our quasi-inverse matrix diagonalization
method is invented based on the Chebyshev-Galerkin method. In this section, we will introduce the
quasi-inverse matrix diagonalization method by applying it to solve 2-D and 3-D Poisson equations.

3.1. 2-D Poisson Equation

Solving PDEs (including 2-D and 3-D Poisson equations) using the quasi-inverse matrix
diagonalization method is divided into two steps.: (1) derive sparse equations of systems using
the quasi-inverse technique, and (2) solve the derived equations efficiently using the matrix
diagonalization method.

3.1.1. Quasi-Inverse Technique

The 2-D Poisson equation with Dirichlet boundary conditions can be expressed as follows:

∂2u
∂x2 +

∂2u
∂y2 = f (x, y), (−1 ≤ x ≤ 1, −1 ≤ y ≤ 1)

u(±1, y) = u(x,±1) = 0.
(25)

Definition 6. When the 2-D Poisson equation is solved spectrally with Chebyshev polynomials, u(x, y) and
f (x, y) are respectively discretized in space as

u(x, y) =
L

∑
l=0

M

∑
m=0

ûlmTl(x)Tm(y) (26)
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and

f (x, y) =
L

∑
l=0

M

∑
m=0

f̂lmTl(x)Tm(y) (27)

where L and M are the highest Chebyshev modes in x and y, respectively, and ûlm and f̂lm are (l, m) Chebyshev
coefficients of u(x, y) and f (x, y), respectively.

Multi-dimensional PDEs can be solved with the combination of a 1-D differential matrix using
the Kronecker product [19]. Here, the Kronecker product of matrices A and B is defined as

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am1B . . . amnB

 ,

where aij is the (i, j) element of matrix A. Because the second derivative of u with respect to x and y in
2-D are respectively equal to D2

x ⊗ Iy and Ix ⊗D2
y where D2

x and D2
y are respectively the 1-D Laplacian

matrices differentiated in x and y, Equation (25) can be rewritten in a matrix form as

(D2
x ⊗ Iy + Ix ⊗D2

y)u = f. (28)

Here, u and f are the (L + 1)(M + 1)× 1 arrays where the i row elements ui and fi equal ûlm
and f̂lm, respectively, where i = l(M + 1) + m for l = 0, 1, · · · , L and m = 0, 1, · · · , M. To make use
of the advantage of the quasi-inverse technique, we multiply on the left by Bx ⊗ By to Equation (28).
Then, based on the property of the Kronecker product such that (A⊗ B)(C⊗D) = (AC)⊗ (BD), we
can obtain

(Jx ⊗ By + Bx ⊗ Jy)u = (Bx ⊗ By)f. (29)

Definition 7. In the Chebyshev-Galerkin method, u(x, y) is approximated by the coefficients of the Galerkin
basis functions v̂lm multiplied by the Galerkin basis functions in x and y, defined by

u(x, y) =
L−2

∑
l=0

M−2

∑
m=0

v̂lmφl(x)φm(y). (30)

Remark 3. If we define v as the (L− 1)(M− 1)× 1 array in which the j row element vj is equal to v̂lm where
j = l(M− 1) + m for l = 0, 1, · · · , L− 2 and m = 0, 1, · · · , M− 2, equating Equations (30) and (26) allows
us to transform Chebyshev space to Galerkin space from

u = (Sx ⊗ Sy)v. (31)

Here, the sizes of matrices Sx and Sy are (L + 1)× (L− 1) and (M + 1)× (M− 1), respectively.

Substituting Equation (31) to Equation (29) gives

(Jx ⊗ By + Bx ⊗ Jy)(Sx ⊗ Sy)v = (Bx ⊗ By)f. (32)

Then, by defining Aχ = JχSχ and Cχ = BχSχ where χ = x and y, it is possible to obtain

(Ax ⊗ Cy + Cx ⊗Ay)v = (Bx ⊗ By)f (33)

from Equation (32). The top two rows of all matrices in Equation (33) are zero because these rows are
discarded for boundary conditions enforcement. As studied in the 1-D Poisson equation, discarded
modes should be omitted from the equation when a PDE is solved with the Chebyshev-Galerkin
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method. Using the tilde notation described in Section 2.3, we can only consider non-discarded modes
at Equation (33), which can be written as

(Ãx ⊗ C̃y + C̃x ⊗ Ãy)v = (B̃x ⊗ B̃y)f. (34)

The array v can be computed by inverting the sparse matrix (Ãx⊗ C̃y + C̃x⊗ Ãy) in Equation (34),
but we will further use the matrix diagonalization method to obtain the solutions more efficiently.

3.1.2. Matrix Diagonalization Method

To separate Equation (34) using the eigenvalue and eigenvector decomposition technique, we first
reshape the (L− 1)(M− 1)× 1 array v to the (L− 1)× (M− 1) matrix and define the matrix as V.
Similarly, let’s reshape the (L + 1)(M + 1)× 1 array f to the (L + 1)× (M + 1) matrix and define the
matrix as F. Then, we can rewrite Equation (34) as

ÃxVC̃T
y + C̃xVÃT

y = B̃xFB̃T
y . (35)

Multiplying to Equation (35) on the right by C̃−T
y gives

ÃxV + C̃xVÃT
y C̃−T

y = B̃xFB̃T
y C̃−T

y . (36)

We want to emphasize that an n-by-n matrix is diagonalizable if and only if the matrix has n
independent eigenvectors [20]. From this argument, we can easily show that the matrix ÃT

y C̃−T
y is

diagonalizable because matrices Ãy and C̃y (and their inverse and transpose matrices) are linearly
independent, and multiplication of two linearly independent matrices is also linearly independent .
As a result, using eigenvalue decomposition, the matrix ÃT

y C̃−T
y can be decomposed as

ÃT
y C̃−T

y = PQP−1, (37)

where P and Q are the eigenvector and diagonal eigenvalue matrices of ÃT
y C̃−T

y , respectively.
After substituting Equation (37) to Equation (36), multiplying on the right by P allows us to obtain

ÃxV∗ + C̃xV∗Q = H, (38)

where V∗ = VP and H = B̃xFB̃T
y C̃−T

y P. The matrix V∗ in Equation (38) can be solved efficiently
column by column due to the fact that Q is the diagonal matrix. If we set V∗ = [v∗0 , v∗1 , · · · , v∗M−2] and
H = [h0, h1, · · · , hM−2] and define the j-th diagonal element of Q as qj, the j-th column of Equation (38)
can be written as

(Ãx + qjC̃x)v∗j = hj (39)

for j = 0, 1, · · · , M − 2. The matrices Ãx and C̃x are bi-diagonal and quad-diagonal matrices,
respectively, whose non-zero elements are presented in Figure 1. Due to the sparsity, solving
Equation (39) for v∗j can be performed efficiently with O(L) operations for all j. Once it is performed
so that all elements of the matrix V∗ are obtained, the matrix V can be computed from

V = V∗P−1. (40)
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Figure 1. Non-zero elements of the matrices Ãx and C̃x are presented in (a) and (b), respectively. Here,
both L and M are set to 64.

3.2. 3-D Poisson Equation

By following the same steps used in the 2-D problem, we can use the quasi-inverse matrix
diagonalization method to 3-D PDEs. Here, we will explain the way to use the quasi-inverse matrix
diagonalization method for 3-D problems, particularly applying it to solve a 3-D Poisson equation.

3.2.1. Quasi-Inverse Technique

We want to solve the 3-D Poisson equation with the following Dirichlet boundary conditions:

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = f (x, y, z), (−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1)

u(±1, y, z) = u(x,±1, z) = u(x, y,±1) = 0.
(41)

Definition 8. In employing Chebyshev polynomials to solve PDEs, u(x, y) and f (x, y) are represented by the
sums of Chebyshev coefficients multiplied by Chebyshev polynomials, defined as

u(x, y, z) =
L

∑
l=0

M

∑
m=0

N

∑
n=0

ûlmnTl(x)Tm(y)Tn(y) (42)

and

f (x, y, z) =
L

∑
l=0

M

∑
m=0

N

∑
n=0

f̂lmnTl(x)Tm(y)Tn(y) (43)

where L, M and N are the highest Chebyshev modes in x, y, and z, respectively, and ûlmn and f̂lmn are the
(l, m, n)-th Chebyshev coefficients of u(x, y, z) and f (x, y, z), respectively.

In a matrix form, Equation (41) can be rewritten using the Kronecker product as

(D2
x ⊗ Iy ⊗ Iz + Ix ⊗D2

y ⊗ Iz + Ix ⊗ Iy ⊗D2
z)u = f, (44)

where u and f are the (L + 1)(M + 1)(N + 1)× 1 arrays in which the j row components of those arrays
are respectively equal to ûlmn and f̂lmn where j = (M + 1)(N + 1)l + (N + 1)m + n for l = 0, 1, · · · , L,
m = 0, 1, · · · , M and n = 0, 1, · · · , N. Multiplying to the left of Equation (44) by Bx ⊗ By ⊗ Bz gives[

Jx ⊗ By ⊗ Bz + Bx ⊗ Jy ⊗ Bz + Bx ⊗ By ⊗ Jz

]
u = (Bx ⊗ By ⊗ Bz)f. (45)
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Definition 9. When using the Chebyshev-Galerkin method, we approximate u(x, y, z) with the Galerkin basis
functions, with their coefficients as

u(x, y, z) =
L−2

∑
l=0

M−2

∑
m=0

N−2

∑
n=0

v̂lmnφl(x)φm(y)φn(z), (46)

where v̂lmn is the (l, m, n) mode coefficient of the Galerkin basis functions.

Remark 4. By defining v as the (L − 1)(M − 1)(N − 1) × 1 array in which the j row component is set
to v̂lmn where j = (M − 1)(N − 1)l + (N − 1)m + n for l = 0, 1, · · · , L− 2, m = 0, 1, · · · , M − 2 and
n = 0, 1, · · · , N − 2, the arrays u and v are associated by

u = (Sx ⊗ Sy ⊗ Sz)v. (47)

Substituting Equation (47) to Equation (45) and distributing the transformation matrix Sχ in each
direction produce[
(JxSx)⊗ (BySy)⊗ (BzSz)+ (BxSx)⊗ (JySy)⊗ (BzSz)+ (BxSx)⊗ (BySy)⊗ (JzSz)

]
v = (Bx⊗By⊗Bz)f. (48)

As we defined in the solution of the 2-D Poisson equation, use notations of Aχ = JχSχ and
Cχ = BχSχ for χ = x, y and z. Then, Equation (49) can be rewritten as[

Ax ⊗ Cy ⊗ Cz + Cx ⊗Ay ⊗ Cz + Cx ⊗ Cy ⊗Az

]
v = (Bx ⊗ By ⊗ Bz)f. (49)

At each matrix in Equation (49), all elements in the top two rows are zeros because those places are
discarded to impose boundary conditions. Erasing those rows and using the symbol tilde to represent
the deleted top two rows of given matrices give[

Ãx ⊗ C̃y ⊗ C̃z + C̃x ⊗ Ãy ⊗ C̃z + C̃x ⊗ C̃y ⊗ Ãz

]
v = (B̃x ⊗ B̃y ⊗ B̃z)f. (50)

For simplicity, define Ẽxy = Ãx ⊗ C̃y + C̃x ⊗ Ãy, C̃xy = C̃x ⊗ C̃y and B̃xy = B̃x ⊗ B̃y, then
Equation (50) can be simplified as[

C̃xy ⊗ Ãz + Ẽxy ⊗ C̃z

]
v = (B̃xy ⊗ B̃z)f. (51)

3.2.2. Matrix Diagonalization Method

Decomposition of Equation (51) can be performed by using the same matrix diagonalization steps
used in the 2-D Poisson equation. However, here we want to briefly describe the procedure again to
clearly show how the equation is diagonalized and solved efficiently in 3-D problems.

We reshape the array v and f to the (L− 1)(M− 1)× (N− 1) matrix and (L+ 1)(M+ 1)× (N + 1)
matrix and define them as V and F, respectively. With these matrices, we can rewrite Equation (51) as

C̃xyVÃT
z + ẼxyVC̃T

z = B̃xyFB̃T
z . (52)

Let us multiply on the right by Ã−T
z to Equation (52)

C̃xyV + ẼxyVC̃T
z Ã−T

z = B̃xyFB̃T
z Ã−T

z . (53)

and decompose C̃T
z Ã−T

z as
C̃T

z Ã−T
z = PQP−1, (54)



Mathematics 2019, 7, 90 12 of 21

where P and Q are the eigenvector matrix and diagonal eigenvalue matrix of C̃T
z Ã−T

z , respectively.
Then, after substituting Equation (54) to Equation (53) and multiplying on the right by P, if we define
W = VP and G = B̃xyFB̃T

z Ã−T
z P, it is possible to obtain

(C̃xy + qkẼxy)wk = gk (55)

for k = 0, 1, · · · , N − 2 where the qk is the k-th diagonal element of Q, and W and G are set as
W = [w0, w1, · · · , wN−2] and G = [g0, g1, · · · , gN−2], respectively.

Equation (55) is decoupled in z direction but still coupled in x and y directions. To decouple it
completely in all directions, based on the definition of C̃xy and Ẽxy, Equation (55) can be expanded as[

(C̃x + qkÃx)⊗ C̃y + qkC̃x ⊗ Ãy

]
wk = gk. (56)

Again, let’s reshape (L− 1)(M− 1)× 1 arrays wk and gk to (L− 1)× (M− 1) matrices and refer
those matrices as Z(k) and H(k). Note that the index k in the parenthesis here is used to clearly show
that those matrices are a function of k so that the matrices’ entries are changed when k is changed.
Defining Kx(k) =C̃x + qkÃx allows Equation (56) to be rewritten as

KxZ(k)C̃T
y + qkC̃xZ(k)ÃT

y = H(k). (57)

At each k, Equation (57) is the 2-D coupled equation. This is the same type of equation as
Equation (35), and therefore the Z(k) can be efficiently solved by applying the matrix diagonalization
method once again to separate coupled modes in x and y directions. To do this, after multiplying on
the right by C̃−T

y to Equation (57), decompose ÃT
y C−T

y = RΛR−1 where R and Λ are the eigenvector
matrix and diagonal eigenvalue matrix of ÃT

y C−T
y , respectively. After that, if we multiply on the right

by R and set Y(k) = Z(k)R and S(k) = H(k)C−T
y R, then we can get

(Kx + qkλjC̃x)yj(k) = sj(k). (58)

Here, the λj is the j-th diagonal element of Λ, and Y(k) and S(k) are set to Y(k) =

[y0(k), y0(k), · · · , yM−2(k)] and S(k) = [s0(k), s1(k), · · · , sM−2(k)]. For each k and j, Equation (58)
can be solved for yj(k) in O(L) operations.

4. Numerical Examples

In this section, our quasi-inverse matrix diagonalization method is applied to several 2-D and
3-D PDEs, and the numerical results are presented. The numbers of Chebyshev modes to discretize
solutions at each spatial direction do not need to be identical. Nonetheless, we use the same numbers
of Chebyshev modes N at each spatial direction in all test problems for simplicity. Numerical codes are
implemented in MATLAB and operated using a 16 GB-RAM Macbook Pro with a 2.3 GHz quad-core
Intel Core i7 processor. For matrix diagonalization, MATLAB’s built-in function “eig” is used to
compute the matrix’s eigenvalues and eigenvectors. For inverse matrix calculation, we use MATLAB’s
backslash operator.

4.1. Multi-Dimensional Poisson Equation

The n-dimensional Poisson equations described in Section 3 are solved using the quasi-inverse
matrix diagonalization method for n = 2 and 3

∆u(x) = f (x), u = 0 on Γ (59)
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where Γ is the boundary of the rectangular domain. As a test example, we define f (x) as

f (x) = −n(4π2)
n

∏
i=1

sin(2πxi). (60)

Note that we use coordinates x1 and x2 in the 2-D problem and x1, x2, and x3 in the 3-D problem.
Then, the exact solution of Equation (59) becomes

u(x) =
n

∏
i=1

sin(2πxi). (61)

This test problem is solved using the quasi-inverse technique, matrix diagonalization method,
and quasi-inverse matrix diagonalization method. The accuracy of numerical solutions obtained with
these three methods is presented in Table 1 as a function of N where the accuracy is computed by the
relative L2-norm error between the exact and numerical solutions, defined as

Error =
||u− uext||2
||uext||2

, (62)

where || ||2 indicates the L2-norm, and u and uext are the numerical and exact solutions, respectively.
In both 2-D and 3-D problems, three methods show a similar order of accuracy, which is identical until
N = 24. At N = 32, all numerical solutions encounter machine accuracy (∼10−16) in double precision.

At high N, errors of numerical solutions obtained from the spectral method using Chebyshev
polynomials can increase because the system of equation tends to be ill-conditioned as N increases.
To be a good spectral method, the error of numerical solutions at high N should be retained near the
machine accuracy and should not rise as N increases. In this aspect, to further check the error and
robustness of the proposed method, we solve the Poisson problem with high N up to N = 1024 in
2-D and N = 256 in 3-D and measure the errors of numerical solutions of the proposed method as a
function of N. We present the results of this experiment in Figure 2. As shown in the figure, even at
high N, the errors of numerical solutions of the proposed method retain the order of 10−15, showing
high accuracy and robustness of the proposed method.

Table 1. Errors of numerical solutions of 2-D and 3-D Poisson equations as a function of unknowns in
1-D. The numerical solutions are computed using QI, MD, and OIMD methods where QI, MD, and
QIMD stand for Quasi-Inverse, Matrix Diagonalization, and Quasi-Inverse Matrix Diagonalization,
respectively. All methods show a similar order of accuracy and reach spectral accuracy at N = 32.

Method N Error (2-D) Error (3-D)

QI method

8 1.68× 10−1 1.87× 10−2

16 1.75× 10−6 2.83× 10−6

24 4.36× 10−13 7.31× 10−13

32 6.39× 10−16 1.58× 10−15

MD method

8 1.68× 10−1 1.87× 10−2

16 1.75× 10−6 2.83× 10−6

24 4.36× 10−13 7.31× 10−13

32 1.75× 10−15 3.41× 10−15

QIMD method

8 1.68× 10−1 1.87× 10−2

16 1.75× 10−6 2.83× 10−7

24 4.36× 10−13 7.31× 10−13

32 1.43× 10−15 3.62× 10−15
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Figure 2. Errors of numerical solutions of 2-D (plotted in (a)) and 3-D (plotted in (b)) Poisson equations
with a the high number of N. In both 2-D and 3-D problems, the errors of the proposed method (QIMD)
do not rise as N increases. The proposed method shows the same order of accuracy as the quasi-inverse
method and the matrix diagonalization method.

Figure 3 shows the CPU time of the quasi-inverse, matrix diagonalization, and quasi-inverse
matrix diagonalization methods in solving 2-D and 3-D Poisson equations as a function of N as a
log-log scale. Then, we know that the slope of each method’s data in the figure indicates the operation
complexity of the corresponding method. To calculate slopes, the date are fitted using the best linear
regression by t = exp(mlnN + b) where t is CPU time, and m and b are the coefficients of best linear
regression. The results of the best regression are presented in Table 2 where r2 is the r-squared value of
the best linear regression.
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Figure 3. Comparison of CPU times among the Quasi-Inverse (QI), Matrix Diagonalization (MD), and
Quasi-Inverse Matrix Diagonalization (QIMD) methods as a function of the one-dimensional number
of unknowns in solving (a) a 2-D Poisson equation and (b) a 3-D Poisson equation. The results of the
best linear regression associated with the lines in the figure are represented in Table 2. Here,O(N2) and
O(N3) operation lines in (a), and O(N3) and O(N5) operation lines in (b) are plotted for comparison.

In solving the 2-D Poisson equation, we observe that the operation complexity of the matrix
diagonalization method is highest among the three methods, while the other two methods show
similar operation complexity. However, actual CPU time of the quasi-inverse matrix diagonalization
method is more than 10 times shorter than the quasi-inverse method. These observations indicate
that reduction of operation complexity comes from the quasi-inverse technique’s ability to make
the equations of systems sparse, rather than from the matrix diagonalization technique. However,
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the matrix diagonalization technique is still able to help reduce CPU times by decreasing the actual
number of calculations, even though the two methods have the same order of operation complexity.

In solving the 3-D Poisson equation, as Julien and Waston claimed in [13], the operation complexity
of the quasi-inverse technique is approximately O(N5). In the matrix diagonalization method, the
operation complexity approximately increases from O(N3) to O(N4) as dimensionality of the Poisson
equation rises from 2-D to 3-D. This is because the bottleneck of the matrix diagonalization method
in solving the Poisson equation is computing vi from the dense matrix, which requires about O(N2)

operations per calculation, and repetition of this calculation increases from N to N2 times. When using
the quasi-inverse matrix diagonalization method to solve the 3-D problem, the most time consuming
step is also computing vi, but the left-hand side matrix (Kx + qiλjC̃x) in Equation (58) is sparse where
the bandwidth is four, and therefore vi can be solved in O(N) operations. Because this calculation
is repeated N2 times in the 3-D problem, the total operation complexity of the quasi-inverse matrix
diagonalization method becomes O(N3) as shown in Table 2.

Table 2. CPU time (t) and the number of unknowns in 1-D (N) are associated using the best linear
regression in the log-log scale by t = exp(m ln N + b). Values of m, b and r2 of the Quasi-Inverse (QI),
Matrix Diagonalization(MD) and Quasi-Inverse Matrix Diagonalization (QIMD) methods in solving
2-D and 3-D Poisson equations are presented where r2 here is the r-squared value of the best
linear regression.

Method
2-D 3-D

m b r2 m b r2

QI method 2.498 −14.069 0.8857 5.055 −16.043 0.9899
MD method 2.890 −17.936 0.9833 3.934 −18.511 0.9922

QIMD method 2.431 −16.655 0.9669 2.973 −15.033 0.9951

4.2. Two-Dimensional Poisson Equation with No Analytic Solution

The next numerical example is a 2-D Poisson equation with the complicated forcing term. That is,
we solve the same problem described in Section 3 in 2-D but with the forcing term

f (x) =
20 sin(πx) sin(πy)exy√
1 + tanh(x)2 + tanh(y)2

. (63)

Note that analytic solutions cannot be found for this Poisson equation. The problem is solved
using the quasi-inverse matrix diagonalization method by changing the number of unknowns so
N = 16, 32, 64, 128, 256, 512, and 1024.

Figure 4 shows the values of the forcing term f (x, y) in Figure 4a and the numerical solution
of the problem u(x, y) at N = 128 in Figure 4b. To check the accuracy of the quasi-inverse matrix
diagonalization method in solving this problem, we compute the numerical errors of the problem.
Because no exact solution of the problem is available, we treat the numerical solution at N = 1024 as
the most accurate solution and compare the other numerical solutions with it. Therefore, the error
here indicates the relative difference between the numerical solutions obtained at N < 1024 and the
numerical solution obtained at N = 1024 in a sense of the L2 norm. We present the values of the errors
as a function of N as a log-log scale in Figure 5. As N increases, the error decreases exponentially,
which shows spectral accuracy of our method, as expected.
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Figure 4. Values of the forcing term f (x, y) and the numerical solution u(x, y) of a 2-D Poisson equation
with no exact solution are presented in (a) and (b), respectively. The numerical solution presented in
(b) is at N = 128.
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Figure 5. Error of numerical solutions of a 2-D Poisson equation with no exact solution. The numerical
solutions here are obtained from the quasi-inverse matrix diagonalization method. The values of the
errors are computed by comparing the numerical solution at each N with the one at N = 1024.

4.3. Coupled Two-Dimensional Helmholtz Equation

We apply the quasi-inverse matrix diagonalization method to 2-D coupled Helmholtz equations
and compared the numerical results with the ones obtained from the quasi-inverse technique.
We consider the following coupled equations with Dirichlet boundary conditions

∆u1 + k1u2 = f1(x, y)

k2u1 + ∆u2 = f2(x, y)

u1(x, y) = 0, u2(x, y) = 0 on Γ

(64)

where k1 and k2 are constant numbers. As a test problem, the functions f1(x, y) and f2(x, y) are
assumed as

f1(x, y) = −2 sin(πx) sin(πy) +
k1

π2

(
1 + cos(πx) + cos(πy) + cos(πx) cos(πy)

)
f2(x, y) = − cos(πx)− cos(πy)− 2 cos(πx) cos(πy) +

k2

π2 sin(πx) sin(πy).
(65)
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Then, the exact solutions of Equation (64) are

u1(x, y) =
1

π2 sin(πx) sin(πy), u2(x, y) =
1

π2

(
1 + cos(πx)

)(
1 + cos(πy)

)
. (66)

The numerical solutions u1(x, y) and u2(x, y) are defined by using Chebyshev polynomials and
Galerkin basis functions as

u1(x, y) =
L

∑
l=0

M

∑
m=0

(û1)lmTl(x)Tm(y) =
L−2

∑
l=0

M−2

∑
m=0

(v̂1)lmφl(x)φm(y)

u2(x, y) =
L

∑
l=0

M

∑
m=0

(û2)lmTl(x)Tm(y) =
L−2

∑
l=0

M−2

∑
m=0

(v̂2)lmφl(x)φm(y)

(67)

and f1(x, y) and f2(x, y) are defined using Chebyshev polynomials as

f1(x, y) =
L

∑
l=0

M

∑
m=0

( f̂1)lmφl(x)φm(y)

f2(x, y) =
L

∑
l=0

M

∑
m=0

( f̂2)lmφl(x)φm(y).

(68)

For k = 1 and 2, define two (L − 1)(M − 1) × 1 arrays as vk and fk in which the j-th entries
are respectively equal to (v̂k)lm and ( f̂k)lm where j = (M − 1)l + m for l = 0, 1, · · · , L − 2 and
m = 0, 1, · · · , M− 2. This allows us to express Equation (64) in a matrix form as[

(JxSx)⊗ (BySy) + (BxSx)⊗ (JySy)
]
v1 + k1

[
(BxSx)⊗ (BySy)

]
v2 = (Bx ⊗ By)f1[

(JxSx)⊗ (BySy) + (BxSx)⊗ (JySy)
]
v2 + k2

[
(BxSx)⊗ (BySy)

]
v1 = (Bx ⊗ By)f2.

(69)

To make Equation (69) simple, rewrite JχSχ and BχSχ as Aχ and Cχ, respectively, then(
Ax ⊗ Cy + Cx ⊗Ay

)
v1 + k1

(
Cx ⊗ Cy

)
v2 = (Bx ⊗ By)f1(

Ax ⊗ Cy + Cx ⊗Ay

)
v2 + k2

(
Cx ⊗ Cy

)
v1 = (Bx ⊗ By)f2.

(70)

Erasing the top two rows of the matrices in Equation (70) as we did in solving the
multi-dimensional Poisson equations gives(

Ãx ⊗ C̃y + C̃x ⊗ Ãy

)
v1 + k1

(
C̃x ⊗ C̃y

)
v2 = (B̃x ⊗ B̃y)f1(

Ãx ⊗ C̃y + C̃x ⊗ Ãy

)
v2 + k2

(
C̃x ⊗ C̃y

)
v1 = (B̃x ⊗ B̃y)f2,

(71)

where the symbol tilde is defined as before. We want to combine two equations in Equation (71). To do
this, define v = [v1; v2] and Ji as

Ji =

[
α1 α2

α3 α4

]
,

where αj = 1 if i = j, otherwise 0. Then, two equations in Equation (71) can be combined as[
(Ãx ⊗ C̃y+C̃x ⊗ Ãy)⊗ J1

]
v + k1

[
(C̃x ⊗ C̃y)⊗ J2

]
v +

[
(Ãx ⊗ C̃y + C̃x ⊗ Ãy)⊗ J4

]
v

+ k2

[
(C̃x ⊗ C̃y)⊗ J3

]
v = (B̃x ⊗ B̃y ⊗ J1)f + (B̃x ⊗ B̃y ⊗ J4)f.

(72)
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By rearranging the terms, Equation (72) can be rewritten as

(Ẽxy ⊗ (J1 + J4))v + (C̃xy ⊗ (k1J2 + k2J3))v = (B̃xy ⊗ (J1 + J4))f, (73)

where Ẽxy = Ãx ⊗ C̃y + C̃x ⊗ Ãy, C̃xy = C̃x ⊗ C̃y and B̃xy = B̃x ⊗ B̃y as defined in Section 3.2. Because
Equations (73) and (51) are the same types of equations, Equation (73) can be solved for v by following
the same steps as solving 3-D PDEs described in Section 3.2.

We tested coupled 2-D Helmholtz equations at k1 = 0.7 and k2 = 1.1. When N is 32, 64, 128,
256, and 512, the L-infinite errors between the numerical and exact solutions and CPU times are
computed using the quasi-inverse and quasi-inverse matrix diagonalization methods, and the results
are presented in Table 3. In both cases, the same order of high accuracy is obtained for all N. In terms
of CPU time, similar to the multi-dimensional Poisson equation problems, the latter method is much
faster than the former method, especially when N is high, showing the efficiency of our quasi-inverse
matrix diagonalization method.

Table 3. Results of solving the coupled Helmholtz equations using the Quasi-Inverse (QI) and
Quasi-Inverse Matrix Diagonalization (QIMD) methods with respect to accuracy and CPU times.
Although both methods show the similar order of accuracy as a function of N, the CPU times of
the QIMD method are much less than the ones of the QI method, showing the high efficiency of the
QIMD method.

N
QI Method QIMD Method

Error (u1) Error (u2) CPU Time (s) Error (u1) Error (u2) CPU Time (s)

32 5.94× 10−16 3.10× 10−16 2.94× 10−2 9.19× 10−16 4.94× 10−16 3.98× 10−2

64 5.78× 10−16 4.48× 10−16 1.71× 10−1 1.25× 10−15 7.85× 10−16 9.40× 10−2

128 5.78× 10−16 4.48× 10−16 1.29× 100 1.37× 10−15 7.06× 10−16 2.14× 10−1

256 4.66× 10−16 4.58× 10−16 6.47× 100 1.12× 10−15 6.45× 10−16 5.89× 10−1

512 5.58× 10−16 4.48× 10−16 3.26× 101 1.49× 10−15 8.75× 10−16 1.75× 100

4.4. Stokes Problem

As a last text problem, a 3-D Stokes problem is solved using our quasi-inverse matrix
diagonalization method. The Stokes problem we solved is

µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
− ∂p

∂x
+ fx = 0

µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
− ∂p

∂y
+ fy = 0

µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
− ∂p

∂z
+ fz = 0

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0

(74)

with the boundary conditions u = v = w = p = 0 on Γ where Γ is the boundary of the rectangular
domain. In the problem, we set the body force terms fx, fy and fz in Equation (74) as

fx = −4π(ecos(2πx) − e) sin(2πy) sin(2πz)

fy = πecos(2πx) sin(2πx) sin(2πz)g(x, y)

fz = πecos(2πx) sin(2πx) cos(2πy)g(x, z),

(75)
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where g(x, y) =
[

cos2(2πx) + 3 cos(2πx) + 1
][

cos(2πy)− 1
]
+ 3 cos(2πy) and µ = 1. Then, the exact

solutions of this Stokes problem are given by

u = − 1
2π

(
ecos(2πx) − e

)
sin(2πy) sin(2πz)

v =
1

4π
ecos(2πx) sin(2πx) sin(2πz)(cos(2πy)− 1)

w =
1

4π
ecos(2πx) sin(2πx) sin(2πy)(cos(2πz)− 1)

p = ecos(2πx) sin(2πx) sin(2πy) sin(2πz).

(76)

The accuracy of numerical solutions of u, v, w, and p obtained using the quasi-inverse matrix
diagonalization method is presented in Figure 6. The errors decay slower than the ones tested in
the previous examples, but all of them show spectral convergence that reached machine accuracy
around N = 90. Figure 7 shows the CPU time of the Stokes problem in a log-log scale as a function
of N. When the best linear regression of the data is implemented, the slope of this graph is 2.884,
approximately showing O(N3) operation complexity of the 3-D Stokes problem as expected.
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Figure 6. Numerial errors of u, v, w, and p as a function of N in solving the Stokes problem.
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Figure 7. Blue markers show CPU times in solving the 3-D Stokes problem. The blue dashed line is
plotted from the best linear regression of the blue markers’ data, where the slope is 2.884. The black
dashed line shows O(N3) for comparsion.
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5. Conclusions

A new efficient way of solving multi-dimensional linear PDEs spectrally using Chebyshev
polynomials called the quasi-inverse matrix diagonalization method is presented in this paper. In this
method, we discretize numerical solutions in spaces using the Chebyshev-Galerkin basis functions,
which automatically obey the boundary conditions of the PDEs. Then, the quasi-inverse technique is
used to construct sparse differential operators for the Chebyshev-Galerkin basis functions, and the
matrix diagonalization technique is applied to further facilitate computations by decoupling the modes
in spatial directions. It is proved that the proposed method is highly efficient compared to other current
methods when applying it on the test problems. The proposed method is especially fast in computing
3-D linear PDEs. We show that the operation complexity of the proposed method in solving 3-D
linear PDEs is approximately O(N3) when tested with the numerical examples in this paper (tested
up to N = 512), suggesting the possibility of handling 3-D linear PDE problems with high numbers
of unknowns. Although the test problems in the paper are restricted to second order linear PDEs,
the quasi-inverse matrix diagonalization method can be used to solve separable high order linear
PDEs such as fourth order linear PDEs which do not have cross terms (e.g., ∂2u

∂x∂y ) and biharmonic

equations with {u, ∂2u
∂n2 } types of boundary conditions where the derivative with respect to n is the

normal derivative of the boundary of the domain.
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