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Abstract: In real applications, most decisions are fuzzy decisions, and the decision results
mainly depend on the choice of aggregation operators. In order to aggregate information more
scientifically and reasonably, the Heronian mean operator was studied in this paper. Considering
the advantages and limitations of the Heronian mean (HM) operator, four Heronian mean operators
for bipolar neutrosophic number (BNN) are proposed: the BNN generalized weighted HM
(BNNGWHM) operator, the BNN improved generalized weighted HM (BNNIGWHM) operator,
the BNN generalized weighted geometry HM (BNNGWGHM) operator, and the BNN improved
generalized weighted geometry HM (BNNIGWGHM) operator. Then, their propositions were
examined. Furthermore, two multi-criteria decision methods based on the proposed BNNIGWHM
and BNNIGWGHM operator are introduced under a BNN environment. Lastly, the effectiveness of
the new methods was verified with an example.

Keywords: bipolar neutrosophic number (BNN); BNN improved generalized weighted HM
(BNNIGWHM) operator; BNN improved generalized weighted geometry HM (BNNIGWGHM)
operator; decision-making

1. Introduction

In the real world, there is lots of uncertain information in science, technology, daily life, and so
on. Particularly under the background of big data, the uncertainty of information is more complex
and diverse. Now, how to make use of mathematical tools to deal with the uncertain information
is an urgent problem for researchers. In order to describe uncertain information, Zadeh [1] put
forward the concept of fuzzy sets. Considering the complexities and changes of uncertainty in the
real environment, there was a certain limit on fuzzy sets to describe complex uncertainty; then,
some extension theories [2–4] were put forward. Afterword, the neutrosophic set (NS) containing three
neutrosophic components and the single-valued neutrosophic set were proposed by Smarandache [5],
and the single-valued neutrosophic set was also mentioned by Wang and Smarandache [6]. Wang and
Zhang [7] put forward an interval neutrosophic set (INS) theory. Furthermore, an n-value neutrosophic
set [8] theory was proposed by Smarandache. The fuzzy set theory changed the binary view of
people, but ignored the bipolarity of things. Under the background of big data, the confliction
between data became more and more obvious. Traditional fuzzy sets could not do well in analyzing
and handing uncertain information with incompatible bipolarity; this phenomenon was identified
in 1994. For the first time, Zhang [9] introduced incompatible bipolarity into the fuzzy set theory,
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and put forward the bipolar fuzzy set (BFS). The founder of the fuzzy set theory, Zadeh, also affirmed
that the bipolar fuzzy set theory was a breakthrough in traditional fuzzy set theory [10]. Then,
Zemankova et al. [11] discussed a more generalized multipolar fuzzy problem, and pointed out that
the multipolar fuzzy problem can be divided into multiple bipolar fuzzy problems. Chen et al. [12]
studied m-polar fuzzy sets. Bosc and Pivert [13] introduced a study on fuzzy bipolar relational algebra.
Manemaran and Chellappa [14] gave some applications of bipolar fuzzy groups. Zhou and Li [15]
introduced some applications of bipolar fuzzy sets in semiring. Deli et al. [16] put forward a bipolar
neutrosophic set (BNS), which can describe bipolar information. Later, some studies about BNS were
put forward [17–20]. In this paper, we propose four Heronian mean operators for bipolar neutrosophic
number (BNN). Compared with the literature [17–19], the HM operator can embody the interaction
between attributes to avoid unreasonable situations in information aggregation. Compared with
the literature [20], the Bonferroni mean (BM) aggregation operator not only neglects the relationship
between each attribute and itself, but also considers the relationship between each attribute and other
attributes repeatedly. However, the BM aggregation operator has large computational complexity,
but the Heronian mean (HM) can overcome these two shortcomings.

The remaining sections are organized as follows: some related concepts are reviewed in Section 2.
The four operators are defined and their properties are investigated in Section 3; these four operators
are BNN generalized weighted HM (BNNGWHM), BNN improved generalized weighted HM
(BNNIGWHM), BNN generalized weighted geometry HM (BNNGWGHM), and BNN improved
generalized weighted geometry HM (BNNIGWGHM). Multi-criteria decision-making (MCDM)
methods based on the BNNIGWHM and BNNIGWGHM operators are established in Section 4.
A numerical example is provided and the effects of parameters p and q are analyzed in Section 5.
The conclusion of this paper is given in Section 6.

2. Some Basic Concepts

2.1. BNN and Its Operational Laws

Definition 1 [16]. Let U = {u1, u2, . . . , un} be a universe; a BNS Γ in U is defined as follows:

Γ = {〈u, α+Γ (u), β+
Γ (u), γ+

Γ (u), α−Γ (u), β−Γ (u), γ−Γ (u)〉|u ∈ U},

in which α+Γ (u) : U → [0, 1] means a truth-membership function, γ+
Γ (u) : U → [0, 1] means a

falsity-membership function and β+
Γ (u) : U → [0, 1] means an indeterminacy-membership function,

corresponding to a BNS Γ and α−Γ (u), γ−Γ (u), β−Γ (u) : U → [−1, 0] mean, respectively, the truth
membership, false membership, and indeterminate membership to some implicit counter-property
corresponding to a BNS Γ.

Definition 2 [16]. Let U be a universe, and Γ1 and Γ2 be two BNSs.

Γ1 = {〈u, α+Γ1
(u), β+

Γ1
(u), γ+

Γ1
(u), α−Γ1

(u), β−Γ1
(u), γ−Γ1

(u)〉|u ∈ U},

Γ2 = {〈u, α+Γ2
(u), β+

Γ2
(u), γ+

Γ2
(u), α−Γ2

(u), β−Γ2
(u), γ−Γ2

(u)〉|u ∈ U}.

Then, the operations of Γ1 and Γ2 are defined as follows [16]:
À Γ1 ⊆ Γ2, if and only if α+Γ1

(u) ≤ α+Γ2
(u), β+

Γ1
(u) ≥ β+

Γ2
(u), γ+

Γ1
(u) ≥ γ+

Γ2
(u), and α−Γ1

(u) ≥
α−Γ2

(u), β−Γ1
(u) ≤ β−Γ2

(u), γ−Γ1
(u) ≤ γ−Γ2

(u);
Á Γ1 = Γ2, if and only if α+Γ1

(u) = α+Γ2
(u), β+

Γ1
(u) = β+

Γ2
(u), γ+

Γ1
(u) = γ+

Γ2
(u), and α−Γ1

(u) =

α−Γ2
(u), β−Γ1

(u) = β−Γ2
(u), γ−Γ1

(u) = γ−Γ2
(u);
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Â Γ1 ∪ Γ2 = {〈
u, max

(
α+Γ1

(u), α+Γ2
(u)
)

,
β+Γ1

(u)+β+Γ2
(u)

2 , min
(

γ+
Γ1
(u), γ+

Γ2
(u)
)

,

min
(

α−Γ1
(u), α−Γ2

(u)
)

,
β−Γ1

(u)+β−Γ2
(u)

2 , max
(

γ−Γ1
(u), γ−Γ2

(u)
) 〉|u ∈ U};

Ã Γ1 ∩ Γ2 = {〈
u, min

(
α+Γ1

(u), α+Γ2
(u)
)

,
β+Γ1

(u)+β+Γ2
(u)

2 , max
(

γ+
Γ1
(u), γ+

Γ2
(u)
)

,

max
(

α−Γ1
(u), α−Γ2

(u)
)

,
β−Γ1

(u)+β−Γ2
(u)

2 , min
(

γ−Γ1
(u), γ−Γ2

(u)
) 〉|u ∈ U};

For convenience, we denote a bipolar neutrosophic number (BNN) by τ = 〈α+τ , β+
τ , γ+

τ , α−τ , β−τ , γ−τ 〉.

Definition 3 [16]. Let τ1 and τ2 be two BNNs, τ1 = 〈α+τ1
, β+

τ1
, γ+

τ1
, α−τ1

, β−τ1
, γ−τ1
〉 and τ2〈=

α+τ2
, β+

τ2
, γ+

τ2
, α−τ2

, β−τ2
, γ−τ2
〉, and δ > 0; then, the operations for BNNs are defined as follows [16]:

τ1 ⊕ τ2 = 〈α+τ1
+ α+τ2

− α+τ1
α+τ2

, β+
τ1

β+
τ2

, γ+
τ1

γ+
τ2

,−α−τ1
α−τ2

,−
(
−β−τ1

− β−τ2
− β−τ1

β−τ2

)
,−
(
−γ−τ1

− γ−τ2
− γ−τ1

γ−τ2

)
〉; (1)

τ1 ⊗ τ2 = 〈α+τ1
α+τ2

, β+
τ1
+ β+

τ2
− β+

τ1
β+

τ2
, γ+

τ1
+ γ+

τ2
− γ+

τ1
γ+

τ2
,−
(
−α−τ1

− α−τ2
− α−τ1

α−τ2

)
,−β−τ1

β−τ2
,−γ−τ1

γ−τ2
〉; (2)

δτ1 = 〈1−
(
1− α+τ1

)δ,
(

β+
τ1

)δ,
(
γ+

τ1

)δ,−
(
−α−τ1

)δ,−
(

1−
(
1−

(
−β−τ1

))δ
)

,−
(

1−
(
1−

(
−γ−τ1

))δ
)
〉; (3)

τ1
δ = 〈

(
α+τ1

)δ, 1−
(
1− β+

τ1

)δ, 1−
(
1− γ+

τ1

)δ,−
(

1−
(
1−

(
−α−τ1

))δ
)

,−
(
−β−τ1

)δ,−
(
−γ−τ1

)δ〉. (4)

Definition 4 [16]. Let τ = 〈α+τ , β+
τ , γ+

τ , α−τ , β−τ , γ−τ 〉 be a BNN; then, we define s(τ), a(τ), and c(τ) as the
score, accuracy, and certain functions, respectively; they are as follows:

s(τ) =
1
6
(
α+τ + 1− β+

τ + 1− γ+
τ + 1 + α−τ − β−τ − γ−τ

)
; (5)

a(τ) = α+τ − γ+
τ + α−τ − γ−τ ; (6)

c(τ) = α+τ − γ+
τ . (7)

Definition 5 [16]. Let τ1 and τ2 be two BNNs, τ1〈= α+τ1
, β+

τ1
, γ+

τ1
, α−τ1

, β−τ1
, γ−τ1
〉 and τ2 =

〈α+τ2
, β+

τ2
, γ+

τ2
, α−τ2

, β−τ2
, γ−τ2
〉; then, we can get Figure 1.
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2.2. Generalized Weighted HM (GWHM), Improved Generalized Weighted HM (IGWHM), Generalized
Weighted Geometry HM (GWGHM), and Improved Generalized Weighted Geometry HM
(IGWGHM) Operators

Definition 6 [21]. Let ε = (ε1, ε2, · · · , εk) be the weight vector of a collection of non-negative real numbers
(τ1, τ2, . . . , τk), ∑k

j=1 ε j = 1 and ε j ∈ [0, 1], and t, s ≥ 0. Then,

GWHM t, s(τ1, τ2, . . . , τk) =
(

2
k(k+1) ∑k

j=1 ∑k
i=j (ε jτj)

t(εiτi)
s
) 1

t+s , (8)

which is called a GWHM operator.

Definition 7 [22]. Let ε = (ε1, ε2, · · · , εk) be the weight vector of a collection of non-negative real numbers
(τ1, τ2, . . . , τk), ∑k

j=1 ε j = 1 and ε j ∈ [0, 1], and t, s ≥ 0. Then,

GWHM t, s(τ1, τ2, . . . , τk) =

(
1
λ

k
⊕

j=1

k
⊕
i=j

(
ε j

tεi
sτj

t ⊗ τi
s) ) 1

t+s

, (9)

where λ = ∑k
j=1 ∑k

i=j ε j
tεi

s is called an IGWHM operator.

Definition 8 [21]. Let ε = (ε1, ε2, · · · , εk) be the weight vector of a collection of non-negative real numbers
(τ1, τ2, . . . , τk), ∑k

j=1 ε j = 1 and ε j ∈ [0, 1], and t, s ≥ 0. Then,

GWGHM t, s(τ1, τ2, . . . , τk) =
1

t + s
k
⊗

j=1

k
⊗
i=j

(
(tτj)

ε j ⊕ (sτi)
εi
) 2

k(k+1) , (10)

which is called a GWGHM operator.

Definition 9 [22]. Let ε = (ε1, ε2, · · · , εk) be the weight vector of a collection of non-negative real numbers
(τ1, τ2, . . . , τk), ∑k

j=1 ε j = 1 and ε j ∈ [0, 1], and t, s ≥ 0. Then,

IGWGHM t, s(τ1, τ2, . . . , τk) =
1

t + s

 k
⊗

j=1

k
⊗
i=j

(
tτj ⊕ sτi

) 2(k+1−j)
k(k+1)

εi
∑k

m=j εm

, (11)

which is called an IGWGHM operator.

3. Some BNN Aggregation Operators

3.1. GWHM Operators for BNNs

Definition 10. Let t, s ≥ 0, and t + s 6= 0, a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of

BNN; then, we define the BNNGWHM operator as follows:

BNNGWHMt, s(τ1, τ2, . . . , τk) =

 2
k(k + 1)

k

∑
j=1

k

∑
i = j

(ε jτj)
t(εiτi)

s


1

t+s

, (12)

where ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].

According to Definitions 3 and 10, the following theorem can be attained:
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Theorem 1. Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs, using the

BNNGWHM operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNGWHMt, s(τ1, τ2, . . . , τk) =

 2
k(k+1)

k
∑

j=1

k
∑

i = j
(ε jτj)

t(εiτi)
s


1

t+s

=

〈

(
1−

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
) 1

λ

) 1
t+s

,1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
β+

τj

)ε j
)t(

1−
(

β+
τi

)εi
)s
) 1

λ

) 1
t+s

,

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
γ+

τj

)ε j
)t(

1−
(

γ+
τi

)εi
)s
) 1

λ

) 1
t+s

,−

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
−α−τj

)ε j
)t(

1−
(
−α−τi

)εi
)s
) 1

λ

) 1
t+s

,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s
) 1

λ

) 1
t+s

,−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
) 1

λ

) 1
t+s

〉

(13)

where 1
λ = 2

k(k+1) , ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].

Proof.

(1) ε jτj = 〈1−
(

1− α+τj

)ε j
,
(

β+
τj

)ε j
,
(

γ+
τj

)ε j
,−
(
−α−τj

)ε j
,−
(

1−
(

1−
(
−β−τj

))ε j
)

,−
(

1−
(

1−
(
−γ−τj

))ε j
)
〉;

(2) εiτi = 〈1−
(

1− α+τi

)εi
,
(

β+
τi

)εi
,
(

γ+
τi

)εi
,−
(
−α−τi

)εi
,−
(

1−
(

1−
(
−β−τi

))εi
)

,−
(

1−
(

1−
(
−γ−τi

))εi
)
〉;

(3)(ε jτj)
t = 〈

(
1−

(
1− α+τj

)ε j
)t

, 1−
(

1−
(

β+
τj

)ε j
)t

, 1−
(

1−
(

γ+
τj

)ε j
)t

,

−
(

1−
(

1−
(
−α−τj

)ε j
)t
)

,−
(

1−
(

1−
(
−β−τj

))ε j
)t

,−
(

1−
(

1−
(
−γ−τj

))ε j
)t
〉;

(4) (εiτi)
s = 〈

(
1−

(
1− α+τi

)εi
)s

, 1−
(

1−
(

β+
τi

)εi
)s

, 1−
(

1−
(

γ+
τi

)εi
)s

,

−
(

1−
(

1−
(
−α−τi

)εi
)s
)

,−
(

1−
(

1−
(
−β−τi

))εi
)s

,−
(

1−
(

1−
(
−γ−τi

))εi
)s
〉;

(5)
(
ε jτj
)t
(εiτi)

s = 〈
(

1−
(

1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s

,

1−
(

1−
(

β+
τj

)ε j
)t

+ 1−
(

1−
(

β+
τi

)εi
)s
−
(

1−
(

1−
(

β+
τj

)ε j
)t
)(

1−
(

1−
(

β+
τi

)εi
)s
)

,

1−
(

1−
(

γ+
τj

)ε j
)t

+ 1−
(

1−
(

γ+
τi

)εi
)s
−
(

1−
(

1−
(

γ+
τj

)ε j
)t
)(

1−
(

1−
(

γ+
τi

)εi
)s
)

,

−
((

1−
(

1−
(
−α−τj

)ε j
)t
)
+

(
1−

(
1−

(
−α−τi

)εi
)s
)
−
(

1−
(

1−
(
−α−τj

)ε j
)t
)(

1−
(

1−
(
−α−τi

)εi
)s
))

,

−
(

1−
(

1−
(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s

,−
(

1−
(

1−
(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
〉

(6)∑k
j=1 ∑k

i = j
(
ε jτj
)t
(εiτi)

s = 〈1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
)

,

∏k
j=1 ∏k

i=j

(
1−

(
1−

(
β+

τj

)ε j
)t(

1−
(

β+
τi

)εi
)s
)

, ∏n
j=1 ∏n

i=j

(
1−

(
1−

(
γ+

τj

)ε j
)t(

1−
(

γ+
τi

)εi
)s
)

,

−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
−α−τj

)ε j
)t(

1−
(
−α−τi

)εi
)s
)

,

−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1−

(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s
))

,

−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1−

(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
))
〉;
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(7) 2
k(k+1) ∑k

j=1 ∑k
i = j

(
ε jτj
)t
(εiτi)

s = 1
λ ∑k

j=1 ∑k
i = j

(
ε jτj
)t
(εiτi)

s =

〈

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
) 1

λ

,

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
β+

τj

)ε j
)t(

1−
(

β+
τi

)εi
)s
) 1

λ

,

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
γ+

τj

)ε j
)t(

1−
(

γ+
τi

)εi
)s
) 1

λ

,

−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
−α−τj

)ε j
)t(

1−
(
−α−τi

)εi
)s
) 1

λ

,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s
) 1

λ

)
,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
) 1

λ

)

〉;

(8)

(
1
λ ∑k

j=1 ∑k
i = j

(
ε jτj
)t
(εiτi)

s

) 1
t+s

=

〈

(
1−

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
) 1

λ

) 1
t+s

,

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
β+

τj

)ε j
)t(

1−
(

β+
τi

)εi
)s
) 1

λ

) 1
t+s

,

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
γ+

τj

)ε j
)t(

1−
(

γ+
τi

)εi
)s
) 1

λ

) 1
t+s

,

−

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
−α−τj

)ε j
)t(

1−
(
−α−τi

)εi
)s
) 1

λ

) 1
t+s

,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s
) 1

λ

) 1
t+s

,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
) 1

λ

) 1
t+s

〉.

This proves Theorem 1. �

Theorem 2. (Monotonicity). Set τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) and σj =

〈α+σj
, β+

σj
, γ+

σj
, α−σj

, β−σj
, γ−σj
〉 (j = 1, 2, · · · , k) as two collections of BNNs; if α+τj

≤ α+σj
, β+

τj
≥ β+

σj
, γ+

τj
≥

γ+
σj

and α−τj
≥ α−σj

, β−τj
≤ β−σj

, γ−τj
≤ γ−σj

, then

BNNGWHM t, s(τ1, τ2, . . . , τk) ≤ BNNGWHM t, s(σ1, σ2, . . . , σk).

Proof. For α+τj
≤ α+σj

, β+
τj
≥ β+

σj
, γ+

τj
≥ γ+

σj
and α−τj

≥ α−σj
, β−τj
≤ β−σj

, γ−τj
≤ γ−σj

, it is obvious that

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
≤
(

1−
(

1− α+σj

)ε j
)t(

1−
(

1− α+σi

)εi
)s

,
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(
1−

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
1− α+τj

)ε j
)t(

1−
(

1− α+τi

)εi
)s
) 1

λ

) 1
t+s

≤
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1− α+σj

)ε j
)t(

1−
(

1− α+σi

)εi
)s
) 1

λ

) 1
t+s

.

Similarly

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
β+

τj

)ε j
)t(

1−
(

β+
τi

)εi
)s
) 1

λ

) 1
t+s

≥

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
β+
σj

)ε j
)t(

1−
(

β+
σi

)εi
)s
) 1

λ

) 1
t+s

,

1−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
γ+

τj

)ε j
)t(

1−
(

γ+
τi

)εi
)s
) 1

λ

) 1
t+s

≥ 1−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
γ+

σj

)ε j
)t(

1−
(

γ+
σi

)εi
)s
) 1

λ

) 1
t+s

,

−

1−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
−α−τj

)ε j
)t(

1−
(
−α−τi

)εi
)s
) 1

λ

) 1
t+s


≥ −

1−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
−α−σj

)ε j
)t(

1−
(
−α−σi

)εi
)s
) 1

λ

) 1
t+s

,

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−β−τj

))ε j
)t(

1−
(

1−
(
−β−τi

))εi
)s
) 1

λ

) 1
t+s

≤ −
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1−

(
−β−σj

))ε j
)t(

1−
(

1−
(
−β−σi

))εi
)s
) 1

λ

) 1
t+s

,

and

−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1−

(
−γ−τj

))ε j
)t(

1−
(

1−
(
−γ−τi

))εi
)s
) 1

λ

) 1
s+t

≤

−
(

1−∏k
j=1 ∏k

i=j

(
1−

(
1−

(
1−

(
−γ−σj

))ε j
)t(

1−
(

1−
(
−γ−σi

))εi
)s
) 1

λ

) 1
s+t

.

Thus, BNNGWHMt, s(τ1, τ2, . . . , τk) ≤ BNNGWHMt, s(σ1, σ2, . . . , σk); this proves Theorem 2.
�

3.2. Improved Generalized Weighted HM Operators for BNNs

Definition 11. Let t, s ≥ 0, and t + s 6= 0, a collection τj〈= α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj

(j = 1, 2, · · · , k)〉 of
BNN; then, we define the BNNIGWHM operator as follows:

BNNIGWHM t, s(τ1, τ2, . . . , τk) =

(
1

∑k
j=1 ∑k

i=j ε jεi

k
⊕

j=1

k
⊕
i=j

(
ε jεiτj

t ⊗ τi
s) ) 1

t+s

, (14)

where ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].
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According to Definitions 3 and 11, the following theorem can be attained:

Theorem 3. Set a collection τj〈= α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj

(j = 1, 2, · · · , k)〉 of BNNs, using BNNIGWHM
operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNIGWHMt, s(τ1, τ2, . . . , τk) =

(
1

∑k
j=1 ∑k

i=j ε jεi

k
⊕

j=1

k
⊕
i=j

(
ε jεiτj

t ⊗ τi
s) ) 1

t+s

=

〈

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
α+τj

)t(
α+τi

)s
)ε jεi

) 1
λ


1

t+s

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
1− β+

τj

)t(
1− β+

τi

)s
)ε jεi

) 1
λ


1

t+s

,

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
1− γ+

τj

)t(
1− γ+

τi

)s
)ε jεi

) 1
λ


1

t+s

,

−

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
1−

(
−α−τj

))t(
1−

(
−α−τi

))s
)ε jεi

) 1
λ


1

t+s

,

−

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
−β−τj

)t(
−β−τi

)s
)ε jεi

) 1
λ


1

t+s

,

−

1−
(

k
∏
j=1

k
∏
i=j

(
1−

(
−γ−τj

)t(
−γ−τi

)s
)ε jεi

) 1
λ


1

t+s

〉,
(15)

where λ = ∑k
j=1 ∑k

i=j ε jεi,
k
∑

j=1
ε j = 1 and ε j ∈ [0, 1].

The proof of Theorem 3 can be achieved according to the proof of Theorem 1; thus, we omit
it here.

Theorem 4. (Idempotency). Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs;

if τj = τ, then

BNNIGWHM t, s(τ1, τ2, . . . , τk) = BNNIGWHM t, s(τ, τ, . . . τ) = τ.
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Proof. For τj = τ(j = 1, 2, . . . , k), the following result can be easily attained:

BNNIGWHM t, s(τ1, τ2, . . . , τk) = BNNIGWHM t, s(τ, τ, . . . τ) =

〈

=

1−
(

k
∏
j=1

k
∏
i=j

(
1− (α+τ )

t
(α+τ )

s
)ε jεi

) 1
λ


1

t+s

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1− (1− β+

τ )
t
(1− β+

τ )
s
)ε jεi

) 1
λ


1

t+s

,

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1− (1− γ+

τ )
t
(1− γ+

τ )
s
)ε jεi

) 1
λ


1

t+s

,

−

1−

1−
(

k
∏
j=1

k
∏
i=j

(
1− (1− (−α−τ ))

t
(1− (−α−τ ))

s
)ε jεi

) 1
λ


1

t+s

,

−

1−
(

k
∏
j=1

k
∏
i=j

(
1− (−β−τ )

t
(−β−τ )

s
)ε jεi

) 1
λ


1

t+s

,

−

1−
(

k
∏
j=1

k
∏
i=j

(
1− (−γ−τ )

t
(−γ−τ )

s
)ε jεi

) 1
λ


1

t+s

(
(α+τ )

t+s
) 1

t+s , 1−
(
(1− β+

τ )
t+s
) 1

t+s ,

= 〈1−
(
(1− γ+

τ )
t+s
) 1

t+s ,−
(

1−
(
(1− (−α−τ ))

t+s
) 1

t+s
)

, 〉= 〈α+τ , β+
τ , γ+

τ , α−τ , β−τ , γ−τ 〉 = τ

−
(
(−β−τ )

t+s
) 1

t+s ,−
(
(−γ−τ )

t+s
) 1

t+s

〉.

This proves Theorem 4. �

Theorem 5. (Monotonicity). Set τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) and σj =

〈α+σj
, β+

σj
, γ+

σj
, α−σj

, β−σj
, γ−σj
〉 (j = 1, 2, · · · , k) as two collections of BNNs; if α+τj

≤ α+σj
, β+

τj
≥ β+

σj
, γ+

τj
≥

γ+
σj

and α−τj
≥ α−σj

, β−τj
≤ β−σj

, γ−τj
≤ γ−σj

, then,

BNNIGWHM t, s(τ1, τ2, . . . , τk) ≤ BNNIGWHM t, s(σ1, σ2, . . . , σk).

The proof of Theorem 5 is similar to Theorem 2; thus, we omit it.

Theorem 6. (Boundedness). Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs, and

let τ− = 〈
min

(
α+τj

)
, max

(
β+

τj

)
, max

(
γ+

τj

)
,

max
(

α−τj

)
, min

(
β−τj

)
, min

(
γ−τj

) 〉 and τ+ = 〈
max

(
α+τj

)
, min

(
β+

τj

)
, min(γ+

τj
),

min
(

α−τj

)
, max

(
β−τj

)
, max

(
γ−τj

) 〉; then,

τ− ≤ BNNIGWHMt, s(τ1, τ2, . . . , τk) ≤ τ+.

Based on Theorems 4 and 5, the following can be obtained:

τ− = BNNIGWHMt, s (τ−, τ−, . . . , τ−
)
and τ+ = BNNIGWHMt, s (τ+, τ+, . . . , τ+

)
.

BNNIGWHMt, s(τ−, τ−, . . . , τ−) ≤ BNNIGWHMt,s (τ1, τ2, . . . , τk)

≤ BNNIGWHMt, s (τ+, τ+, . . . , τ+).
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Then, τ− ≤ BNNIGWHMt, s (τ1, τ2, . . . , τk) ≤ τ+.

This proves Theorem 6.

3.3. GWGHM Operators of BNNs

Definition 12. Let t, s ≥ 0, t + s 6= 0, a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs;

then, we define the BNNGWGHM operator as follows:

BNNGWGHMt, s(τ1, τ2, . . . , τk) =
1

t + s
k
⊗

j=1

k
⊗
i=j

(
(tτj)

ε j ⊕ (sτi)
εi
) 2

k(k+1) , (16)

where ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].

According to Definitions 3 and 12, the following theorem can be attained:

Theorem 7. Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs, using the

BNNGWGHM operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNGWGHMt, s(τ1, τ2, . . . , τk) =
1

t+s
k
⊗

j=1

k
⊗
i=j

(
(tτ j)

ε j ⊕ (sτi)
εi
) 2

k(k+1) =

〈

1−

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
1−

(
α+τj

))t
)ε j
)(

1−
(

1−
(

1−
(

α+τi

))s)εi
)) 1

λ

 1
t+s

,

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
β+

τj

)t
)ε j
)(

1−
(

1−
(

β+
τi

)s)εi
)) 1

λ

 1
t+s

,

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
γ+

τj

)t
)ε j
)(

1−
(

1−
(

γ+
τi

)s)εi
)) 1

λ

 1
t+s

,

−

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
−α−τj

)t
)ε j
)(

1−
(

1−
(
−α−τi

)s)εi
)) 1

λ

 1
t+s

,

−

1−

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
1−

(
−β−τj

))t
)ε j
)(

1−
(

1−
(

1−
(
−β−τi

))s)εi
)) 1

λ

 1
t+s
,

−

1−

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
1−

(
1−

(
−γ−τj

))t
)ε j
)(

1−
(

1−
(

1−
(
−γ−τi

))s)εi
)) 1

λ

 1
t+s


〉,
(17)

where 1
λ = 2

k(k+1) , ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].

Theorem 8. (Monotonicity). Set τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) and σj =

〈α+σj
, β+

σj
, γ+

σj
, α−σj

, β−σj
, γ−σj
〉 (j = 1, 2, · · · , k) as two collections of BNNs; if α+τj

≤ α+σj
, β+

τj
≥ β+

σj
, γ+

τj
≥

γ+
σj

and α−τj
≥ α−σj

, β−τj
≤ β−σj

, γ−τj
≤ γ−σj

, then,

BNNGWGHMt, s(τ1, τ2, . . . , τk) ≤ BNNGWGHMt, s(σ1, σ2, . . . , σk).

The proofs of theorems about BNNGWGHM are similar to those about BNNGWHM; thus, we omit them.
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3.4. IGWGHM Operators of BNNs

Definition 13. Let t, s ≥ 0, and t + s 6= 0, a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of

BNNs; then, we define the BNNIGWGHM operator as follows:

BNNIGWGHMt, s (τ1, τ2, . . . , τk) =
1

t + s

 k
⊕

j=1

k
⊗
i=j

(
tτj ⊕ sτi

) 2(k+1−j)
k(k+1)

εi
∑k

m=j εm

, (18)

where ∑k
j=1 ε j = 1 and ε j ∈ [0, 1].

According to Definitions 3 and 13, the following theorem can be attained:

Theorem 9. Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs, using the

BNNIGWGHM operator; then, the aggregation result is still a BNN, which is given by the following form:

BNNIGWGHMt, s (τ1, τ2, . . . , τk) =
1

t+s

 k
⊕

j=1

k
⊗
i=j

(
tτj ⊕ sτi

) 2(k+1−j)
k(k+1)

εi
∑k

m=j εm

 =

〈

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
α+τj

))t(
1−

(
α+τi

))s
) 1

λ

) 1
t+s

,(
1−

k
∏
j=1

k
∏
i=j

(
1−

(
β+

τj

)t(
β+

τi

)s
) 1

λ

) 1
t+s

,(
1−

k
∏
j=1

k
∏
i=j

(
1−

(
γ+

τj

)t(
γ+

τi

)s
) 1

λ

) 1
t+s

−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
−α−τj

)t(
−α−τi

)s
) 1

λ

) 1
t+s

,

−

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
−β−τj

))t(
1−

(
−β−τi

))s
) 1

λ

) 1
t+s

,

−

1−
(

1−
k

∏
j=1

k
∏
i=j

(
1−

(
1−

(
−γ−τj

))t(
1−

(
−γ−τi

))s
) 1

λ

) 1
t+s



〉,

(19)

where 1
λ = 2(k+1−j)

k(k+1)
εi

∑k
m=j εm

,
k
∑

j=1
ε j = 1 and ε j ∈ [0, 1].

Theorem 10. (Monotonicity). Set τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) and σj =

α+σj
, β+

σj
, γ+

σj
, α−σj

, β−σj
, γ−σj

(j = 1, 2, · · · , k) as two collections of BNNs; if α+τj
≤ α+σj

, β+
τj
≥ β+

σj
, γ+

τj
≥

γ+
σj

and α−τj
≥ α−σj

, β−τj
≤ β−σj

, γ−τj
≤ γ−σj

, then,

BNNIGWGHMt, s (τ1, τ2, . . . , τk) ≤ BNNIGWGHMt, s(σ1, σ2, . . . , σk).

Theorem 11. (Idempotency). Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of BNNs; if

τj= τ, then,

BNNIGWGHMt, s (τ1, τ2, . . . , τk) = BNNIGWGHMt, s(τ, τ, . . . τ) = τ.
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Theorem 12. (Boundedness). Set a collection τj = 〈α+τj
, β+

τj
, γ+

τj
, α−τj

, β−τj
, γ−τj
〉 (j = 1, 2, · · · , k) of

BNN, and let τ− = 〈min
(

α+τj

)
, max

(
β+

τj

)
, max

(
γ+

τj

)
, max

(
α−τj

)
, min

(
β−τj

)
, min

(
γ−τj

)
〉 , and τ+ =

〈max
(

α+τj

)
, min

(
β+

τj

)
, min(γ+

τj
), min

(
α−τj

)
, max

(
β−τj

)
, max

(
γ−τj

)
〉; then,

τ− ≤ BNNIGWHMt, s(τ1, τ2, . . . , τk) ≤ τ+.

The proofs of theorems about BNNIGWGHM are similar to those about BNNIGWHM; thus,
we omit them.

4. MCDM Methods Based on the BNNIGWHM and BNNIGWGHM Operator

We applied the BNNIGWHM and BNNIGWGHM operator to manage MCDM problems within
BNN information in this section.

Suppose that a set Γ = {Γ1, Γ2, . . . , Γn} of alternatives and a set Φ = {Φ1, Φ2, . . . , Φm} of
attributes, with the weight vector ε = (ε1,ε2, . . . , εm) of Φj(j = 1, 2, . . . , m), in which ∑n

j=1 ε j = 1
and ε j ∈ [0, 1]. Decision-makers use BNNs to evaluate the alternatives. The evaluation values
τij for Γi associated with the attribute Φj are represented by the form of BNNs. Assume that(
τij
)

n×m =
(
〈α+τij

, β+
τij

, γ+
τij

, α−τij
, β−τij

, γ−τij
〉
)

n×m
is the BNN decision matrix.

Now, based on the BNNIGWHM and BNNIGWGHM operator, we can develop some
decision algorithms:

Step 1: Construct the decision matrix:(
τij
)

n×m =
(
〈α+τij

, β+
τij

, γ+
τij

, α−τij
, β−τij

, γ−τij
〉
)

n×m
.

Step 2: According to Definition 11 or Definition 13, calculate τi.
Step 3: According to the Equation (5), calculate the score value of s(τi) for τi(i = 1, 2, . . . , n).
Step 4: According to Definition 5, rank all the alternatives corresponding to the values of s(τi).

5. Illustrative Example

In this section, we used a numerical example adapted from the literature [16]. A woman wants
to buy a car. Now, four kinds of cars Γ1, Γ2, Γ3, and Γ4 are taken into account according to gasoline
consumption (Φ1), aerodynamics (Φ2), comfort (Φ3), and safety performances (Φ4). The importance
of these four attributes is given as ε = (0.5, 0.25, 0.125, 0.125)T . Then, she evaluates four alternatives
under the above four attributes in the form of BNNs.

5.1. The Decision-Making Process Based on the BNNIGWHM Operator or BNNIGWGHM Operator

Step 1: Establish the BNN decision matrix (τij)4×4 provided by customer, as shown in Table 1.

Table 1. The decision matrix (τij)4×4.

Φ1 Φ2 Φ3 Φ4

Γ1 〈0.5, 0.7, 0.2,−0.7,−0.3,−0.6〉 〈0.4, 0.4, 0.5,−0.7,−0.8,−0.4〉 〈0.7, 0.7.0.5,−0.8,−0.7,−0.6〉 〈0.1, 0.5, 0.7,−0.5,−0.2,−0.8〉
Γ2 〈0.9, 0.7, 0.5,−0.7,−0.7,−0.1〉 〈0.7, 0.6, 0.8,−0.7,−0.5,−0.1〉 〈0.9, 0.4, 0.6,−0.1,−0.7,−0.5〉 〈0.5, 0.2, 0.7,−0.5,−0.1,−0.9〉
Γ3 〈0.3, 0.4, 0.2,−0.6,−0.3,−0.7〉 〈0.2, 0.2, 0.2,−0.4,−0.7,−0.4〉 〈0.9, 0.5, 0.5,−0.6,−0.5,−0.2〉 〈0.7, 0.5, 0.3,−0.4,−0.2,−0.2〉
Γ4 〈0.9, 0.7, 0.2,−0.8,−0.6,−0.1〉 〈0.3, 0.5, 0.2,−0.5,−0.5,−0.2〉 〈0.5, 0.4, 0.5,−0.1,−0.7,−0.2〉 〈0.4, 0.2, 0.8,−0.5,−0.5,−0.6〉

Step 2: According to Definition 11 (suppose p = q = 1) and ε of attributes, calculate τi(i = 1, 2, 3, 4):

τ1 = 〈0.4656, 0.5984, 0.3248,−0.6874,−0.4906,−0.5832〉,

τ2 = 〈0.8362, 0.5751, 0.5918,−0.5868,−0.6108,−0.2872〉,
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τ3 = 〈0.4212, 0.3684, 0.2341,−0.5268,−0.4254,−0.5540〉,

τ4 = 〈0.7456, 0.5504, 0.2669,−0.5838,−0.5793,−0.2006〉.

Step 3: According to Equation (5), calculate thscore value of s(τi) for τi(i = 1, 2, 3, 4):

s(τ1) = 0.4881; s(τ2) = 0.4968; s(τ3) = 0.5458; s(τ4) = 0.5207.

Step 4: According to Definition 5, rank Γ3 � Γ4 � Γ2 � Γ1 corresponding to s(τi); thus, Γ3 is the
best choice among all the alternatives.

Now, we use the BNNIGWGHM operator (set p =1, q = 1) to deal with this problem.
Step 1’: Just as described in step 1.
Step 2’: According to Definition 13 (suppose p = q = 1) and ε of attributes, calculate

τi(i = 1, 2, 3, 4):
τ1 = 〈0.3834, 0.5909, 0.4846,−0.6881,−0.4467,−0.5722〉,

τ2 = 〈0.7371, 0.5369, 0.6627,−0.5747,−0.4484,−0.2381〉,

τ3 = 〈0.4112, 0.3994, 0.2991,−0.5106,−0.3982,−0.3551〉,

τ4 = 〈0.4922, 0.5086, 0.4579,−0.5674,−0.5684,−0.2139〉.

Step 3’: According to Equation (5), calculate the score value of s(τi). for τi(i = 1, 2, 3, 4):

s(τ1) = 0.4398; s(τ2) = 0.4416; s(τ3) = 0.4926; s(τ4) = 0.4568.

Step 4’: According to Definition 5, rank Γ3 � Γ4 � Γ2 � Γ1 corresponding to s(τi); thus, Γ3 is the
best choice among all the alternatives.

5.2. Analyzing the Effects of the Parameters p and q

In this section, we took different parameters p and q for calculating τi(i = 1, 2, 3, 4) for the
alternative Γi, and then we analyzed the influence of the parameters p and q for the ranking result.
Tables 2 and 3 show the values of s(τ1) to s(τ4) and the ranking results.

Table 2. Ranking results with different values of p and q based on bipolar neutrosophic number
improved generalized weighted Heronian mean (BNNIGWHM) operator.

No. p, q BNNIGWHM Ranking

1 p = 1, q = 0 s(τ1) = 0.4915, s(τ2) = 0.4782, s(τ3) = 0.5471, s(τ4) = 0.5116 Γ3 � Γ4 � Γ1 � Γ2
2 p = 1, q = 0.5 s(τ1) = 0.4823, s(τ2) = 0.4809, s(τ3) = 0.5392, s(τ4) = 0.5083 Γ3 � Γ4 � Γ1 � Γ2
3 p = 1, q = 2 s(τ1) = 0.5059, s(τ2) = 0.5316, s(τ3) = 0.5658, s(τ4) = 0.5495 Γ3 � Γ4 � Γ2 � Γ1
4 p = 0, q = 1 s(τ1) = 0.5021, s(τ2) = 0.5433, s(τ3) = 0.5659, s(τ4) = 0.5517 Γ3 � Γ4 � Γ2 � Γ1
5 p = 0.5, q = 1 s(τ1) = 0.4871, s(τ2) = 0.4966, s(τ3) = 0.5445, s(τ4) = 0.5215 Γ3 � Γ4 � Γ2 � Γ1
6 p = 2, q = 1 s(τ1) = 0.4981, s(τ2) = 0.5161, s(τ3) = 0.5589, s(τ4) = 0.5346 Γ3 � Γ4 � Γ2 � Γ1
7 p = 2, q = 2 s(τ1) = 0.5105, s(τ2) = 0.5425, s(τ3) = 0.5730, s(τ4) = 0.5567 Γ3 � Γ4 � Γ2 � Γ1

Table 3. The ranking with different p and q based on BNN improved generalized weighted geometry
HM (BNNIGWGHM) operator.

No. p, q BNNIGWGHM Ranking

1 p = 1, q = 0 s(τ1) = 0.5228, s(τ2) = 0.5768, s(τ3) = 0.5967, s(τ4) = 0.5955 Γ3 � Γ4 � Γ2 � Γ1
2 p = 1, q = 0.5 s(τ1) = 0.4831, s(τ2) = 0.4893, s(τ3) = 0.5358, s(τ4) = 0.5039 Γ3 � Γ4 � Γ2 � Γ1
3 p = 1, q = 2 s(τ1) = 0.3834, s(τ2) = 0.3990, s(τ3) = 0.4504, s(τ4) = 0.4160 Γ3 � Γ4 � Γ2 � Γ1
4 p = 0, q = 1 s(τ1) = 0.4190, s(τ2) = 0.4376, s(τ3) = 0.4841, s(τ4) = 0.4584 Γ3 � Γ4 � Γ2 � Γ1
5 p = 0.5, q = 1 s(τ1) = 0.4411, s(τ2) = 0.4492, s(τ3) = 0.4957, s(τ4) = 0.4664 Γ3 � Γ4 � Γ2 � Γ1
6 p = 2, q = 1 s(τ1) = 0.4275, s(τ2) = 0.4211, s(τ3) = 0.4791, s(τ4) = 0.4341 Γ3 � Γ4 � Γ1 � Γ2
7 p = 2, q = 2 s(τ1) = 0.3873, s(τ2) = 0.3913, s(τ3) = 0.4496, s(τ4) = 0.4057 Γ3 � Γ4 � Γ2 � Γ1
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From the decision results based on BNNIGWHM in Table 2, we can see that all the ranking orders
are Γ3 � Γ4 � Γ1 � Γ2 in No. 1–2 and all the ranking orders are Γ3 � Γ4 � Γ2 � Γ1 in No. 3–7; thus,
the best choice is Γ3. From the decision results based on BNNIGWGHM in Table 3, we can see that
the ranking order is Γ3 � Γ4 � Γ1 � Γ2 in No. 6 and the others are Γ3 � Γ4 � Γ2 � Γ1; thus, the best
choice is also Γ3.

IGWHM and IGWGHM aggregation operators can take into account the correlation between
attribute values and can better reflect the preferences of decision-makers and make the decision results
more reasonable and reliable. A BNS has two fully independent parts, one part has three independent
positive membership functions and the other has three independent negative membership functions,
which can deal with uncertain information containing incompatible polarity. Here, we used the
BNNIGWHM and BNNIGWGHM operators to solve real problems and analyze the influences of
parameters p and q on the results of decisions, using different parameter values for sorting and
comparing the corresponding results. Then, it could be found that the influences of parameters p
and q on the results of decisions were small in these both methods. Comparing the results of the two
methods, it can be found that their results were consistent; therefore, the proposed methods in this
paper have feasibility and generality.

5.3. Comparison with Related Methods

In this section, we compared the methods proposed in this paper with other related methods
proposed in the literature [16,19]. Table 4 lists the ranking results.

Table 4. Decision results based on four aggregation operators.

Aggregation Operator Score Value Ranking

The bipolar neutrosophic weighted average operator
(Aw) and bipolar neutrosophic weighted geometric

operator (Gw) proposed in Reference [16]

σ(τ1) = 0.50, σ(τ2) = 0.52,
σ(τ3) = 0.56, σ(τ4) = 0.54 Γ3 � Γ4 � Γ2 � Γ1

The Similarity measures of bipolar neutrosophic sets
proposed in Reference [19] with the following variables:

λ = 0.25 σ(τ1) = 0.24683, σ(τ2) = 0.11778,
σ(τ3) = 0.27833, σ(τ4) = 0.21136 Γ3 � Γ1 � Γ4 � Γ2

λ = 0.3 σ(τ1) = 0.27063, σ(τ2) = 0.19497,
σ(τ3) = 0.30222, σ(τ4) = 0.22904 Γ3 � Γ1 � Γ4 � Γ2

λ = 0.6 σ(τ1) = 0.41342, σ(τ2) = 0.29803,
σ(τ3) = 0.44555, σ(τ4) = 0.33510 Γ3 � Γ1 � Γ4 � Γ2

λ = 0.9 σ(τ1) = 0.55620, σ(τ2) = 0.40109,
σ(τ3) = 0.54313, σ(τ4) = 0.44116 Γ1 � Γ3 � Γ4 � Γ2

In Table 4, we can see that the ranking results were different; Γ3 was obtained as the optimal
alternative except the method in Reference [19] with λ = 0.9. Compared with these related methods,
the BNNIGWHM and BNNIGWGHM operators considered the correlation between attribute
values and could better reflect the preferences of decision-makers and make the decision results
more reasonable and reliable while dealing with uncertain information containing incompatible
polarity. Thus, we think the proposed methods in this paper are more suitable to handle these
decision-making problems.

6. Conclusions

This paper firstly proposed the BNNGWHM, BNNIGWHM, BNNGWGHM, and BNNIGWGHM
operators for BNNs and discussed the related properties of these four operators. Furthermore,
we developed two methods of MCDM in a BNN environment based on the BNNIGWHM and
BNNIGWGHM operators. Finally, these two methods were used for a numerical example to establish
their effectiveness and application. Dealing with the calculation, we took different values for p and
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q to observe the sorting results and found that both parameters had little influence on the decision
results. Furthermore, we compared the proposed methods with related methods and discovered that
the selection result using the proposed methods was the same as the majority of existing methods.
In the future, we will make further research bipolar neutrosophic sets, using, e.g., the technique
for order preference by similarity to an ideal solution (TOPSIS) and VIKOR (VIseKriterijumska
Optimizacija I Kompromisno Resenje, that means: multicriteria optimization and compromise solution,
with pronunciation: vikor) methods with BNS [23], the weighted aggregated sum product assessment
(WASPAS) method with BNS [24], the Multi-Attribute Market Value Assessment ( MAMVA) method
with BNS [25], and so on [26–28].
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