On Fractional Symmetric Hahn Calculus
Abstract
:1. Introduction
2. Preliminary Definitions and Properties
- The q-analogue of the power function
- The q-symmetric analogue of the power function
- The -symmetric analogue of the power function
- (a)
- (b)
- (a)
- (b)
- (c)
- for
- (d)
- where C is constant.
- (a)
- (b)
- (a)
- (b)
- (c)
- (d)
- (e)
3. Fractional Symmetric Hahn Integral
4. The Fractional Symmetric Hahn Difference Operator of the Riemann–Liouville Type
5. The Fractional Symmetric Hahn Difference Operator of the Caputo type
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costas-Santos, R.S.; Marcellán, F. Second structure Relation for q-semiclassical polynomials of the Hahn Tableau. J. Math. Anal. Appl. 2007, 329, 206–228. [Google Scholar] [CrossRef]
- Kwon, K.H.; Lee, D.W.; Park, S.B.; Yoo, B.H. Hahn class orthogonal polynomials. Kyungpook Math. J. 1998, 38, 259–281. [Google Scholar]
- Foupouagnigni, M. Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-Order Difference Equation for the rth Associated and the Laguerre-Freud Equations Recurrence Coefficients. Ph.D. Thesis, National University of Benin, Proto Novo, Benin, 1998. [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Aldwoah, K.A. Generalized Time Scales and Associated Difference Equations. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. The Hahn quantum variational calculus. J. Optim. Theory Appl. 2010, 147, 419–442. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus. In Spinger Briefs in Electrical and Computer Engineering-Control, Automation and Robotics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Malinowska, A.B.; Martins, N. Generalized transversality conditions for the Hahn quantum variational calculus. Optim. J. Math. Program. Oper. Res. 2013, 62, 323–344. [Google Scholar] [CrossRef]
- Hamza, A.E.; Ahmed, S.M. Theory of linear Hahn difference equations. J. Adv. Math. 2013, 4, 441–461. [Google Scholar]
- Hamza, A.E.; Ahmed, S.M. Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 2013, 316. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.E.; Makharesh, S.D. Leibniz’ rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math. 2016, 12, 6335–6345. [Google Scholar]
- Sitthiwirattham, T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q,ω-derivatives. Adv. Differ. Equ. 2016, 2016, 116. [Google Scholar] [CrossRef]
- Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Ntouyas, S.K.; Sitthiwirattham, T. Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions. Adv. Differ. Equ. 2017, 2017, 170. [Google Scholar] [CrossRef] [Green Version]
- Brikshavana, T.; Sitthiwirattham, T. On fractional Hahn calculus. Adv. Differ. Equ. 2017, 2017, 354. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. Existence Results for Fractional Hahn Difference and Fractional Hahn Integral Boundary Value Problems. Discrete Dyn. Nat. Soc. 2017, 2017, 7895186. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Brikshavana, T.; Sitthiwirattham, T. On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On Nonlocal Robin Boundary Value Problems for Riemann-Liouville Fractional Hahn Integrodifference Equation. Bound. Value Probl. 2018, 2018, 46. [Google Scholar] [CrossRef]
- Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions. Mathematics 2019, 7, 15. [Google Scholar] [CrossRef]
- Artur, M.C.; Cruz, B.; Martins, N.; Torres, D.F.M. Hahn’s symmetric quantum variational calculus. Numer. Algebra Control Optim. 2013, 3, 77–94. [Google Scholar]
- Sun, M.; Jin, Y.; Hou, C. Certain fractional q-symmetric integrals and q-symmetric derivatives and their application. Adv. Differ. Equ. 2016, 2016, 222. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinković, S.D.; Stanković, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patanarapeelert, N.; Sitthiwirattham, T. On Fractional Symmetric Hahn Calculus. Mathematics 2019, 7, 873. https://doi.org/10.3390/math7100873
Patanarapeelert N, Sitthiwirattham T. On Fractional Symmetric Hahn Calculus. Mathematics. 2019; 7(10):873. https://doi.org/10.3390/math7100873
Chicago/Turabian StylePatanarapeelert, Nichaphat, and Thanin Sitthiwirattham. 2019. "On Fractional Symmetric Hahn Calculus" Mathematics 7, no. 10: 873. https://doi.org/10.3390/math7100873
APA StylePatanarapeelert, N., & Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus. Mathematics, 7(10), 873. https://doi.org/10.3390/math7100873