Enumeration of Self-Dual Codes of Length 6 over ℤp
Abstract
:1. Introduction
2. Preliminaries
3. Self-Dual Codes of Length 6 over
- (i)
- is decomposable if and only if A has at least two zero elements.
- (ii)
- is indecomposable and non-MDS if and only if A has exactly one zero element.
- (iii)
- is MDS if and only if A has no zero element.
- (i)
- If and are all distinct, then corresponds to 64 equivalent codes with a bisorted generator matrix.
- (ii)
- If and , then corresponds to 48 equivalent codes with bisorted generator matrices.
- (iii)
- If and , then corresponds to at 32 equivalent codes with bisorted generator matrices.
- (iv)
- If and , then corresponds to 18 equivalent codes with bisorted generator matrices.
4. Automorphism of Self-Dual Codes of Length 6 over
5. Enumeration of Self-Dual Codes of Length 6 over
Class | d | ||
(i) | 8.48 | ||
(ii) | 4.24 | ||
(iii) | 4.16 | ||
(iv) | 4.8 |
p (Mod 24) | ||||
1 | 1 | 1 | 1 | |
5 | 1 | 0 | 0 | |
13 | 1 | 1 | 0 | |
17 | 1 | 0 | 1 |
Class | b, c, d, g | ||
(i) | 2.18 | ||
(ii) | 2.6 | ||
(iii) | 2.3 | ||
(iv) | 2.8 | ||
(v) | 2.2 | ||
(vi) | 2.2 | ||
(vii) | 2.1 |
32 | 112 | 192 | 98 | 336 | 288 | 576 |
p (Mod 24) | N1 | N2 | N3 | N4 | N5 | N6 | N7 |
1 | 1 | 1 | 1 | ||||
5 | 0 | 0 | 0 | 0 | 0 | ||
13 | 1 | 0 | 0 | 0 | |||
17 | 0 | 0 | 0 | 1 |
- (i)
- For ,
- (ii)
- For ,
- (iii)
- For ,
- (iv)
- For ,
Funding
Acknowledgments
Conflicts of Interest
References
- Huffman, W.C. On the classification and enumeration of self-dual codes. Finite Fields Appl. 2005, 11, 451–490. [Google Scholar] [CrossRef] [Green Version]
- Pless, V. A classification of self-orthogonal codes over GF (2). Discret. Math. 1972, 3, 209–246. [Google Scholar] [CrossRef]
- Pless, V.; Sloane, N.J.A. On the classification and enumeration of self-dual codes. J. Combin. Theory Ser. A 1975, 18, 313–335. [Google Scholar] [CrossRef] [Green Version]
- Betsumiya, K.; Georgiou, S.; Gulliver, A.; Harada, M.; Koukouvinos, C. On self-dual codes over some prime fields. Discret. Math. 2003, 262, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Leon, J.S.; Pless, V.; Sloane, N.J.A. Self-dual codes over GF (5). J. Combin. Theory Ser. A 1982, 32, 178–194. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Odlyzko, A.M.; Sloane, N.J.A.; Ward, H.N. Self-dual codes over GF (4). J. Combin. Theory Ser. A 1978, 25, 288–318. [Google Scholar] [CrossRef]
- Pless, V.; Sloane, N.J.A.; Ward, H. Ternary codes of minimum weight 6 and the classification of the self-dual codes of length 20. IEEE Trans. Inform. Theory 1980, 26, 305–316. [Google Scholar] [CrossRef]
- Pless, V.; Tonchev, V. Self-dual codes over GF (7). IEEE Trans. Inform. Theory 1987, 33, 723–727. [Google Scholar] [CrossRef]
- Park, Y.H. The classification of self-dual modular codes. Finite Fields Appl. 2011, 17, 442–460. [Google Scholar] [CrossRef] [Green Version]
- Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lidl, R.; Niederreiter, H. Finite Fields; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Mac Williams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North Holland Publishing Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
(14),(142),(143),(154),(164),(2536),(2635),(1432),(1423),(1542),(1543),(1564),(1642),(1643),(1654),(24635),(24536),(25346),(26345),(12536),(12635),(13625),(13526),(15432),(15642),(15643),(15423),(16432),(16542),(16543),(16423),(124635),(124536),(125346),(126345),(135246),(136245),(134625),(134526),(156432),(156423),(165432),(165423),(25)(36),(26)(35),(14)(56),(14)(23),(246)(35),(245)(36),(25)(346),(26)(345),(125)(36),(126)(35),(136)(25),(135)(26),(142)(56),(143)(56),(154)(23),(164)(23),(1246)(35),(1245)(36),(1346)(25),(1345)(26),(1432)(56),(1423)(56),(1564)(23),(1654)(23),(125)(346),(126)(345),(135)(246),(136)(245),(14)(23)(56) |
(12),(35),(46),(26),(13),(25),(45),(36),(124),(354),(135),(134),(465),(136),(163),(126),(345),(456),(346),(254),(265),(236),(235),(364),(132),(253),(146),(356),(246),(245),(152),(162),(263),(123),(145),(153),(365),(125),(264),(256),(3456),(2546),(1632),(2346),(1462),(2645),(1254),(2543),(2564),(1364),(1264),(2345),(2534),(1562),(1563),(1253),(3564),(1534),(1354),(2365),(2653),(2465),(1526),(1645),(2435),(1463),(1243),(1246),(1346),(2453),(1652),(2463),(1345),(1524),(1523),(2436),(1236),(1623),(1352),(1653),(1356),(1325),(1436),(1456),(3654),(3645),(1532),(1256),(3465),(1453),(1362),(1245),(2563),(1546),(2356),(1425),(1234),(2654),(1634),(1326),(2354),(1263),(2364),(2634),(1635),(1365),(1265),(3546),(2456),(1235),(2643),(1435),(1452),(1342),(1465),(1536),(1624),(1426),(1324),(1625),(16254),(16452),(12465),(23546),(14623),(15426),(13654),(12654),(16524),(14523),(25634),(23465),(16243),(12546),(24563),(12653),(12365),(14253),(12453),(25643),(12354),(15324),(14635),(26534),(25364),(24356),(14632),(14235),(23654),(15362),(14325),(12534),(16534),(14365),(23564),(15462),(23645),(13246),(16245),(16523),(15436),(15326),(13245),(12543),(14536),(12463),(24365),(15632),(13562),(12634),(14526),(15263),(24653),(15236),(16235),(15623),(13652),(13254),(16345),(12436),(12456),(15243),(13456),(16324),(12364),(16354),(14625),(13542),(15463),(15342),(14265),(15264),(13546),(13425),(13256),(16425),(15246),(12346),(16352),(13264),(14256),(26354),(14352),(13265),(15346),(14652),(16532),(13624),(14362),(15234),(16453),(14653),(13465),(15634),(16234),(13642),(14263),(14532),(26435),(15624),(14236),(13524),(16435),(14326),(13564),(14562),(16253),(25436),(12435),(26543),(15364),(26453),(16325),(13645),(25463),(12645),(12564),(13426),(12563),(13462),(13452),(16342),(23456),(12356),(12643),(14356),(12345),(14563),(136542),(124563),(162534),(146325),(134265),(164253),(154362),(124365),(123654),(154623),(132546),(164325),(165342),(153462),(153426),(123645),(126543),(152436),(145236),(142356),(154236),(164352),(123465),(156342),(124653),(152364),(142635),(135426),(126435),(163452),(153642),(135642),(152634),(142365),(135624),(123546),(142536),(143265),(123564),(132645),(125634),(146235),(142653),(165234),(162543),(145326),(152643),(162345),(143562),(146532),(162453),(162354),(132465),(153624),(132456),(134256),(163254),(123456),(152346),(162435),(153264),(163425),(165243),(134652),(154632),(143256),(143625),(132654),(136425),(143526),(143652),(126534),(153246),(146523),(145623),(134562),(156243),(156234),(124356),(145632),(154326),(164235),(142563),(164532),(163524),(156324),(164523),(154263),(152463),(132564),(125436),(165324),(163542),(125643),(136524),(163245),(23)(46),(12)(46),(15)(46),(12)(36),(15)(36),(12)(34),(24)(35),(26)(45),(14)(25),(13)(24),(12)(56),(13)(46),(16)(25),(23)(45),(14)(36),(15)(26),(14)(35),(12)(45),(24)(36),(16)(35),(13)(45),(35)(46),(13)(56),(14)(26),(12)(35),(25)(34),(13)(25),(13)(26),(25)(46),(26)(34),(16)(45),(36)(45),(153)(24),(142)(36),(15)(236),(16)(235),(14)(236),(132)(46),(13)(245),(136)(24),(25)(364),(13)(456),(152)(46),(14)(263),(163)(24),(16)(345),(14)(253),(23)(465),(146)(35),(126)(34),(14)(256),(12)(346),(145)(23),(123)(56),(14)(356),(163)(25),(16)(254),(125)(46),(143)(25),(123)(46),(12)(465),(135)(46),(145)(36),(124)(35),(153)(46),(163)(45),(162)(45),(256)(34),(146)(25),(12)(356),(13)(246),(24)(356),(135)(24),(123)(45),(134)(26),(16)(354),(162)(35),(154)(36),(124)(56),(236)(45),(132)(45),(136)(45),(134)(56),(126)(45),(13)(254),(153)(26),(142)(35),(12)(456),(15)(263),(263)(45),(14)(365),(15)(246),(13)(264),(265)(34),(152)(34),(164)(25),(23)(456),(16)(253),(14)(265),(16)(245),(254)(36),(15)(364),(12)(364),(134)(25),(12)(365),(162)(34),(15)(346),(13)(256),(13)(265),(152)(36),(12)(345),(154)(26),(143)(26),(15)(264),(264)(35),(14)(235),(24)(365),(13)(465),(146)(23),(125)(34),(132)(56),(235)(46),(253)(46),(124)(36),(26)(354),(12)(354),(164)(35),(145)(26),(16)(2543),(1534)(26),(1235)(46),(16)(2435),(1243)(56),(12)(3456),(1632)(45),(1645)(23),(1532)(46),(1234)(56),(13)(2654),(15)(2634),(13)(2465),(15)(2346),(1653)(24),(1342)(56),(1435)(26),(1536)(24),(1326)(45),(1265)(34),(12)(3564),(1236)(45),(1365)(24),(1634)(25),(1426)(35),(1356)(24),(14)(2563),(1546)(23),(1436)(25),(1456)(23),(1624)(35),(1325)(46),(1465)(23),(1563)(24),(1562)(34),(12)(3654),(1625)(34),(12)(3465),(1526)(34),(1324)(56),(1635)(24),(16)(2354),(15)(2643),(13)(2456),(1623)(45),(1256)(34),(1643)(25),(14)(2356),(1642)(35),(1543)(26),(1652)(34),(14)(2365),(15)(2436),(15)(2463),(14)(2653),(1425)(36),(16)(2453),(16)(2534),(1542)(36),(1523)(46),(13)(2564),(15)(2364),(16)(2345),(1524)(36),(124)(356),(162)(345),(164)(235),(123)(465),(162)(354),(143)(256),(134)(256),(134)(265),(136)(254),(146)(253),(132)(465),(152)(364),(142)(356),(142)(365),(163)(254),(164)(253),(153)(246),(135)(264),(152)(346),(124)(365),(154)(236),(145)(263),(143)(265),(132)(456),(153)(264),(145)(236),(123)(456),(146)(235),(163)(245),(125)(364),(126)(354),(154)(263),(16)(25)(34),(12)(34)(56),(15)(26)(34),(13)(24)(56),(16)(24)(35),(16)(23)(45),(15)(24)(36),(15)(23)(46) |
Necessary Cond. | Necessary Cond. | ||
---|---|---|---|
(1) | None | (34) | |
(15) | (56) | ||
(23) | (24) | ||
(16) | (243) | ||
(165) | (234) | ||
(156) | (16)(34) | ||
(24)(56) | (15)(23) | ||
(15)(34) | (16)(24) | ||
(16)(23) | (23)(56) | ||
(15)(24) | (34)(56) | ||
(16)(243) | (156)(34) | ||
(156)(24) | (165)(24) | ||
(165)(23) | (165)(34) | ||
(243)(56) | (15)(243) | ||
(15)(234) | (234)(56) | ||
(156)(23) | (16)(234) | ||
(126354) | (135462) | ||
(146352) | (136452) | ||
(126453) | (146253) | ||
(145263) | (136254) | ||
(135264) | (125364) | ||
(125463) | (145362) | ||
(1253)(46) | (14)(2635) | ||
(1462)(35) | (13)(2546) | ||
(12)(3645) | (1463)(25) | ||
(1264)(35) | (1354)(26) | ||
(1452)(36) | (1352)(46) | ||
(1362)(45) | (1254)(36) | ||
(12)(3546) | (14)(2536) | ||
(13)(2645) | (1364)(25) | ||
(1453)(26) | (1263)(45) | ||
(165)(243) | (156)(234) | ||
(165)(234) | (156)(243) | ||
(12)(35)(46) | (12)(36)(45) | ||
(14)(26)(35) | (14)(25)(36) | ||
(13)(25)(46) | (13)(26)(45) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-H. Enumeration of Self-Dual Codes of Length 6 over ℤp. Mathematics 2019, 7, 882. https://doi.org/10.3390/math7100882
Choi W-H. Enumeration of Self-Dual Codes of Length 6 over ℤp. Mathematics. 2019; 7(10):882. https://doi.org/10.3390/math7100882
Chicago/Turabian StyleChoi, Whan-Hyuk. 2019. "Enumeration of Self-Dual Codes of Length 6 over ℤp" Mathematics 7, no. 10: 882. https://doi.org/10.3390/math7100882
APA StyleChoi, W. -H. (2019). Enumeration of Self-Dual Codes of Length 6 over ℤp. Mathematics, 7(10), 882. https://doi.org/10.3390/math7100882