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Abstract: In this article, the boundedness of the generalized parametric Marcinkiewicz integral
operatorsM(r)

Ω,φ,h,ρ is considered. Under the condition that Ω is a function in Lq(Sn−1) with q ∈ (1, 2],
appropriate estimates of the aforementioned operators from Triebel–Lizorkin spaces to Lp spaces
are obtained. By these estimates and an extrapolation argument, we establish the boundedness
of such operators when the kernel function Ω belongs to the block space B0,ν−1

q (Sn−1) or in the
space L(logL)ν(Sn−1). Our results represent improvements and extensions of some known results in
generalized parametric Marcinkiewicz integrals.
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1. Introduction

Throughout this work, we assume that Rn (n ≥ 2) is the n-dimensional Euclidean space and
x′ = x/|x| for x ∈ Rn \ {0}. In addition, we assume that Sn−1 is the unit sphere in Rn, which is
equipped with the normalized Lebesgue surface measure dσ.

For ρ = τ + iυ (τ, υ ∈ R with τ > 0), let KΩ,h be the kernel on Rn defined by

KΩ,h(u) = |u|ρ−n Ω(u′)h(|u|),

where h is a measurable function on R+ and Ω is a homogeneous function of degree zero on Rn with
Ω ∈ L1(Sn−1) and ∫

Sn−1
Ω(u)dσ(u) = 0. (1)

For a suitable function φ : R+ → R, we consider the generalized parametric Marcinkiewicz
integral operatorM(r)

Ω,φ,h,ρ given by

M(r)
Ω,φ,h,ρ( f )(x) =

(∫ ∞

0

∣∣∣∣ 1
tρ

∫
|u|≤t

f (x− φ(|u|)u′)KΩ,h(u)du
∣∣∣∣r dt

t

)1/r

,

where r > 1 and f ∈ S(Rn).
If φ(t) = t, h = 1, ρ = 1, and r = 2, then the operatorM(r)

Ω,φ,h,ρ, denoted byMΩ, reduces to
the classical Marcinkiewicz integral operator. The operatorMΩ was introduced by Stein in [1] in
which Stein established the Lp (1 < p ≤ 2) boundedness of MΩ provided that Ω ∈ Lipα(Sn−1)

with 0 < α ≤ 1. This result was discussed and improved by many mathematicians. For example,
the authors of [2] proved that, if Ω ∈ C1(Sn−1), then the Lp boundedness ofMΩ is satisfied for all
p ∈ (1, ∞). Later on, Al-Qassem and Al-Salman found in [3] that MΩ is bounded on Lp(Rn) for
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1 < p < ∞ whenever Ω ∈ B(0,−1/2)
q (Sn−1) with q > 1. Moreover, they proved that the condition

Ω ∈ B(0,−1/2)
q (Sn−1) is optimal in the sense that the operatorMΩ may lose the L2 boundedness when

Ω belongs to the space Ω ∈ B(0,− 1
2−ε)

q (Sn−1) for some 0 < ε < 1/2. Walsh in [4] obtained thatMΩ
is bounded on L2(Rn) if Ω ∈ L(logL)1/2(Sn−1). Furthermore, he established the optimality of the
condition Ω ∈ L(log L)1/2(Sn−1) in the sense that the exponent 1/2 in L(logL)1/2(Sn−1) cannot be
replaced by any smaller number.

Hörmander in [5] started studying the parametric Marcinkiewicz integral operator M(2)
Ω,t,1,ρ.

In fact, he proved the Lp(Rn) (1 < p < ∞) boundedness of M(2)
Ω,t,1,ρ provided that ρ > 0 and

Ω ∈ Lipα(Sn−1) with α > 0. Subsequently, the investigation of the Lp boundedness of the parametric
Marcinkiewicz integrals under very various conditions on Ω, φ, and h has attracted the attention of
many authors. For a sampling of studies of such operators, the readers are referred to [6–14] and the
references therein.

Although some open problems related to the boundedness of the operatorsM(2)
Ω,φ,h,ρ remain open,

the investigation to determine the boundedness of the generalized parametric Marcinkiewicz integrals
has been started. Historically, the operatorM(r)

Ω,φ,h,ρ was introduced by Chen, Fan and Ying in [15];

they showed that, if h ≡ 1, Ω ∈ Lq(Sn−1) for some q > 1 and 1 < r < ∞, then∥∥∥M(r)
Ω,t,h,1 f

∥∥∥
Lp(Rn)

≤ C ‖ f ‖ .
F

0
p,r(Rn)

(2)

holds for all 1 < p < ∞. However, Le in [16] improved this result. As a matter of fact, he found that the
last result is still true for all p ∈ (1, ∞) under the conditions that Ω ∈ L(log L)(Sn−1), 1 < r < ∞ and
h ∈ Γmax{r′ ,2}(R+), where Γs(R+) is the collection of all measurable functions h : [0, ∞)→ C satisfying

‖h‖Γs(R+) = sup
k∈Z

(∫ 2k+1

2k
|h(t)|s dt

t

)1/s

< ∞.

For the significance and recent advances on the study of such operators, readers may
consult [14,17–20].

For s ≥ 1, we let Ls(R+) denote the set of all measurable functions h : [0, ∞) → C that satisfy
the condition

Ls(h) = sup
k∈Z

(∫ 2k+1

2k
|h(t)| (log(2 + |h(t)|))s dt

t

)
< ∞.

In addition, we let N s(R+) denote the set of all measurable functions h : [0, ∞)→ C that satisfy
the condition

Ns(h) =
∞

∑
k=1

2kksdk(h) < ∞,

where dk(h) = sup
j∈Z

2−j |E(j, k)| with E(j, k) =
{

t ∈ (2j, 2j+1] : 2k−1 < |h(t)| ≤ 2k
}

for k ≥ 2 and

E(j, 1) =
{

t ∈ (2j, 2j+1] : |h(t)| ≤ 2
}

.
It is obvious that Γs

(
R+
)
⊂ N β(R+) ⊂ Lβ(R+) for any s ≥ 1, β > 0; and also Ls+β(R+) ⊂

N β(R+) for all s > 1, β > 0.
For ν > 0, let L(logL)ν(Sn−1) denote the space of all measurable functions Ω on Sn−1 that satisfy

‖Ω‖L(logL)ν(Sn−1) =
∫

Sn−1
|Ω(w)| (logν(2 + |Ω(w)|) dσ(w) < ∞.

It is worth mentioning that B(0,δ)
q (Sn−1) (for q > 1 and δ > −1) is denoted for the special class of

the block spaces, which was introduced by Jiang and Lu in [21].
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Let us recall the definition of the Triebel–Lizorkin spaces. For α ∈ R and 1 < p, r ≤ ∞ with

(p 6= ∞), the homogeneous Triebel–Lizorkin space
.
F

α

p,r(Rn) is defined by

.
F

α

p,r(R
n) =

 f ∈ S ′(Rn) : ‖ f ‖ .
F

α

p,r(Rn)
=

∥∥∥∥∥∥
(

∑
j∈Z

2jαr ∣∣Ψj ∗ f
∣∣r)1/r

∥∥∥∥∥∥
Lp(Rn)

< ∞

 ,

where S ′ denotes the tempered distribution class on Rn, Ψ̂j(ζ) = Φ(2−jζ) for j ∈ Z and Φ is a radial
function satisfying the following conditions:

(a) 0 ≤ Φ ≤ 1;
(b) supp Φ ⊂

{
ζ : 1

2 ≤ |ζ| ≤ 2
}

;

(c) Φ(ζ) ≥ c > 0 if 3
5 ≤ |ζ| ≤

5
3 ;

(d) ∑
j∈Z

Φ(2−jζ) = 1 (ζ 6= 0).

The following properties of the Triebel–Lizorkin space are well known:

(i) S ′(Rn) is dense in
.
F

α

p,r(Rn);

(ii)
.
F

0
p,2(Rn) = Lp(Rn) for 1 < p < ∞, and

.
F

0
∞,2(Rn) = BMO;

(iii)
.
F

α

p,r1
(Rn) ⊂

.
F

α

p,r2
(Rn) if r1 < r2;

(iv)
( .

F
α

p,r(Rn)
)∗

=
.
F
−α

p′ ,r′(Rn).

In this work, we let Hd (d 6= 0) to be the class of all smooth functions φ : (0, ∞) → R satisfying
the following growth conditions:

|φ(t)| ≤ C1td, |φ′′(t)| ≤ C2td−2, C3td−1 ≤ |φ′(t)| ≤ C4td−1

for t ∈ (0, ∞), where the positive constants C1, C2, C3, and C4 are independent of the variable t.
It is worth mentioning that, when d = 0, the class Hd is empty. Some model examples for the

classHd are td with d > 0 and tl with l < 0.
Here, and henceforth, we let p′ denote the conjugate index of p defined by 1/p + 1/p′ = 1.
Our main results are formulated as follows:

Theorem 1. Let Ω ∈ Lq (Sn−1) for some 1 < q ≤ 2 satisfy the condition (1), and h ∈ Γs(R+) for some

1 < s ≤ 2. Suppose that φ ∈ Hd for some d 6= 0. Then, for any f ∈
.
F

0
p,r(Rn), there exists a positive constant

Cp (independent of Ω, φ, h, r, s, and q) such that∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp(q− 1)−1(s− 1)−1 ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(3)

for 1 < p < r; and∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp(q− 1)−1/r(s− 1)−1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(4)

for r ≤ p < ∞.

Theorem 2. Assume that φ and Ω are given as in Theorem 1. Suppose that h ∈ Γs(R+) for some s > 2. Then,
there is a constant Cp > 0 such that∥∥∥M(r)

Ω,φ,h,ρ( f )
∥∥∥

Lp(Rn)
≤ Cp(q− 1)−1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .

F
0
p,r(Rn)

(5)
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for 1 < p < r with r ≤ s′ and 2 < s < ∞; and∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp(q− 1)−1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(6)

for s′ < p < ∞ with r > s′ and 2 < s ≤ ∞.

By the conclusions in Theorems 1 and 2 and the extrapolation arguments used in [18,22,23], we get
the following results.

Theorem 3. Assume that φ ∈ Hd for some d 6= 0 and Ω satisfies (1).

(i) If Ω ∈ B(0, 1
r−1)

q (Sn−1) for some q > 1 and h ∈ N 1/r(R+), then

∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp

(
1 + ‖Ω‖

B
(0, 1

r −1)
q (Sn−1)

)
(1 + N1/r(h)) ‖ f ‖ .

F
0
p,r(Rn)

for r ≤ p < ∞;
(ii) If Ω ∈ B(0,0)

q (Sn−1) for some q > 1 and h ∈ N 1(R+), then

∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp

(
1 + ‖Ω‖

B(0,0)
q (Sn−1)

)
(1 + N1(h)) ‖ f ‖ .

F
0
p,r(Rn)

for 1 < p < r;
(iii) If Ω ∈ L(log L)1/r(Sn−1) and h ∈ N 1/r(R+), then∥∥∥M(r)

Ω,φ,h,ρ( f )
∥∥∥

Lp(Rn)
≤ Cp

(
1 + ‖Ω‖L(log L)1/r(Sn−1)

)
(1 + N1/r(h)) ‖ f ‖ .

F
0
p,r(Rn)

for r ≤ p < ∞;
(iv) If Ω ∈ L(log L)(Sn−1) and h ∈ N 1(R+), then∥∥∥M(r)

Ω,φ,h,ρ( f )
∥∥∥

Lp(Rn)
≤ Cp

(
1 + ‖Ω‖L(log L)(Sn−1)

)
(1 + N1(h)) ‖ f ‖ .

F
0
p,r(Rn)

for 1 < p < r, where Cp is a bounded positive constant independent of h, Ω and φ.

Theorem 4. Let Ω satisfy the condition (1), h ∈ Γs(R+) for some s > 2 and φ ∈ Hd for some d 6= 0.

(i) If Ω ∈ B(0, 1
r−1)

q (Sn−1) for some q > 1, then

∥∥∥M(r)
Ω,φ,h,ρ( f )

∥∥∥
Lp(Rn)

≤ Cp

(
1 + ‖Ω‖

B
(0, 1

r −1)
q (Sn−1)

)
‖h‖Γs(R+) ‖ f ‖ .

F
0
p,r(Rn)

for 1 < p < r with r ≤ s′ and 2 < s < ∞; and for s′ < p < ∞ with r > s′ and 2 < s ≤ ∞.
(ii) If Ω ∈ L(log L)1/r(Sn−1), then∥∥∥M(r)

Ω,φ,h,ρ( f )
∥∥∥

Lp(Rn)
≤ Cp

(
1 + ‖Ω‖L(log L)1/r(Sn−1)

)
‖h‖Γs(R+) ‖ f ‖ .

F
0
p,r(Rn)

for 1 < p < r with r ≤ s′ and 2 < s < ∞; and for s′ < p < ∞ with r > s′ and 2 < s ≤ ∞.

We point out that our results generalize what Al-Qassem found in [18]; and also extend and
improve ([24], Theorems 1 and 2). Precisely, the results in [18] are acheived when we take φ(t) = t in
our results. However, when we take r = 2, we directly obtain the results in [24].
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2. Preparation

In this section, we establish some lemmas used in the proof of our results. Let us start this section
by introducing some notations. Let θ ≥ 2. For a suitable mapping φ : R+ → R, Ω : Sn−1 → R and a
measurable function h : R+ → C; the family of measures {σΩ,φ,h,t : t ∈ R+} and the corresponding
maximal operators σ∗Ω,φ,h and MΩ,φ,h,θ on Rn are defined by

∫
Rn

f dσΩ,φ,h,t = t−ρ
∫

t/2≤|u|≤t
f (φ(|u|)u′)KΩ,h(u)du,

σ∗Ω,φ,h( f ) = sup
t∈R+

| |σΩ,φ,h,t| ∗ f |,

and

MΩ,φ,h,θ f (u) = sup
k∈Z

∫ θk+1

θk
| |σΩ,φ,h,t| ∗ f (u)|dt

t
,

where |σΩ,φ,h,t| is defined in the same way as σΩ,φ,h,t, but with replacing Ω by |Ω| and h by |h|. We write

r±γ = min {rγ, r−γ} and
∥∥∥σΩ,φ,h,t

∥∥∥ for the total variation of σΩ,φ,h,t.
We shall need the following lemma which can be derived by applying the same arguments (with

only minor modifications) used in the proof of ([24], Lemma 4).

Lemma 1. Let θ ≥ 2, h ∈ Γs(R+) for some s > 1 and Ω ∈ Lq (Sn−1) for some q > 1. Suppose that φ ∈ Hd
for some d 6= 0. Then, there exist constants C and a with 0 < 2aq′ < 1 such that, for all k ∈ Z,∥∥∥σΩ,φ,h,t

∥∥∥ ≤ C, (7)

θk+1∫
θk

∣∣∣σ̂Ω,φ,h,t(ζ)
∣∣∣2 dt

t
≤ C(ln θ)

∣∣∣ζθkd
∣∣∣± 2a

ln θ ‖Ω‖2
Lq(Sn−1) ‖h‖

2
Γs(R+) , (8)

where the constant C is independent of ζ, k and φ.

By using ([9], Lemma 2.4) and following the same approaches employed in ([8], Lemmas 2.4 and
2.5) we immediately get the following lemma.

Lemma 2. Let θ ≥ 2, φ ∈ Hd for some d 6= 0, Ω ∈ Lq (Sn−1) for some 1 < q ≤ 2, and h ∈ Γs(R+) for some
s > 1. Then, there is a constant Cp such that

‖MΩ,φ,h,θ( f )‖Lp(Rn) ≤ Cp(ln θ) ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖Lp(Rn), (9)

‖σ∗Ω,φ,h( f )‖Lp(Rn) ≤ Cp ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖Lp(Rn) (10)

for all 1 < p ≤ ∞ with 1 < s ≤ 2; and

‖σ∗Ω,φ,h( f )‖Lp(Rn) ≤ Cp ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖Lp(Rn) (11)

for all s′ < p < ∞ with s ≥ 2.

By applying the same procedures (with only minor modifications) as those in [18], we obtain the
following:
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Lemma 3. Let θ ≥ 2, Ω ∈ Lq (Sn−1) for some 1 < q ≤ 2 and h ∈ Γs(R+) for some 1 < s ≤ 2. Let φ ∈ Hd
for some d 6= 0 and r > 1 be a real number. Then, there is a positive constant Cp such that the inequalities∥∥∥∥∥∥∥∥

∑
k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ)1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

f or r ≤ p < ∞ (12)

and ∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ) ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

f or 1 < p < r (13)

hold for arbitrary functions {gk(·), k ∈ Z} on Rn.

Proof. Let us first prove the inequality (12). On one hand, if p = r, then Hölder’s inequality and (9)
lead us to ∥∥∥∥∥∥∥∥

∑
k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

r

Lp(Rn)

≤ C ‖h‖(r/r′)
Γ1(R+)

‖Ω‖(r/r′)
L1(Sn−1)

× ∑
k∈Z

∫
Rn

θk+1∫
θk

t∫
1
2 t

∫
Sn−1

|gk(x− φ (l) u)|r |Ω(u)| |h(l)| dσ(u)
dl
l

dt
t

dx

≤ C(ln θ) ‖h‖(r/r′)+1
Γ1(R+)

‖Ω‖(r/r′)+1
L1(Sn−1)

∫
Rn

(
∑
k∈Z
|gk(x)|r dx

)p/r

. (14)

Hence, (12) is true for the case p = r. On the other hand, if p > r, then, by duality, there exists a
non-negative function Λ ∈ L(p/r)′(Rn) with ‖Λ‖

L(p/r)′ (Rn)
≤ 1 such that

∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1/r
∥∥∥∥∥∥∥∥

r

Lp(Rn)

=
∫

Rn

∑
k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk(x)
∣∣∣r dt

t
Λ(x)dx. (15)

By Hölder’s inequality, we obtain

∣∣∣σΩ,φ,h,t ∗ gk(x)
∣∣∣r ≤ C ‖h‖(r/r′)

Γ1(R+)
‖Ω‖(r/r′)

L1(Sn−1)

t∫
1
2 t

∫
Sn−1

|gk(x− φ (l) u)|r |Ω(u)| |h(l)| dσ(u)
dl
l

.
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Thus, by a change of variable, Hölder’s inequality and (9), we reach that∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1/r
∥∥∥∥∥∥∥∥

r

Lp(Rn)

≤ C ‖h‖(r/r′)
Γ1(R+)

‖Ω‖(r/r′)
L1(Sn−1)

∫
Rn

(
∑
k∈Z
|gk(x)|r

)
M|Ω|,φ,|h|,θΛ̃(−x)dx

≤ C ‖h‖(r/r′)
Γ1(R+)

‖Ω‖(r/r′)
L1(Sn−1)

∥∥∥∥∥∑
k∈Z
|gk|r

∥∥∥∥∥
L(p/r)(Rn)

∥∥∥M|Ω|,φ,|h|,θΛ̃
∥∥∥

L(p/r)′ (Rn)

≤ Cp(ln θ) ‖h‖(r/r′)+1
Γs(R+)

‖Ω‖(r/r′)+1
Lq(Sn−1)

∥∥∥∥∥∑
k∈Z
|gk|r

∥∥∥∥∥
L(p/r)(Rn)

∥∥∥Λ̃
∥∥∥

L(p/r)′ (Rn)
,

where Λ̃(−x) = Λ(x). Therefore, (12) is satisfied.
Now, consider the case 1 < p < r which gives r′ < p′. Again, by the duality, there exist functions

ζ = ζk(x, t) defined on Rn × R+ with
∥∥∥∥∥∥‖ζk‖Lr′ ([θk ,θk+1], dt

t )

∥∥∥
lr′

∥∥∥
Lp′ (Rn)

≤ 1 such that

∥∥∥∥∥∥∥∥
∑

k∈Z

θk∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1/r
∥∥∥∥∥∥∥∥

Lp(Rn)

=
∫

Rn

∑
k∈Z

θk+1∫
θk

(
σΩ,φ,h,t ∗ gk(x)

)
ζk(x, t)

dt
t

dx. (16)

Let Υ(ζ) be given by

Υ(ζ)(x) = ∑
k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ ζk(x, t)
∣∣∣r′ dt

t
.

As (p′/r′) > 1, we conclude that there is a function ϑ ∈ L(p′/r′)′(Rn) such that

∥∥∥(Υ(ζ))1/r′
∥∥∥r′

Lp′ (Rn)
= ∑

k∈Z

∫
Rn

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ ζk(x, t)
∣∣∣r′ dt

t
ϑ(x)dx

≤ C ‖Ω‖(r
′/r)

L1(Sn−1)
‖h‖(r

′/r)
Γs(R+)

∥∥∥σ∗|Ω|,φ,|h|(ϑ)
∥∥∥

L(p′/r′)′ (Rn)

∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

|ζk(·, t)|r
′ dt

t


∥∥∥∥∥∥∥

L(p′/r′)(Rn)

≤ Cp(ln θ) ‖Ω‖(r
′/r)+1

Lq(Sn−1)
‖h‖(r

′/r)+1
Γs(R+)

‖ϑ‖
L(p′/r′)′ (Rn)

.
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Hence, by Hölder’s inequality and (16), we obtain that∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1/r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp ln(θ)1/r
∥∥∥(Υ(ζ))1/r′

∥∥∥
Lp′ (Rn)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ)‖h‖Γs(R+) ‖Ω‖Lq(Sn−1)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

(17)

for all 1 < p < r. Therefore, the proof of Lemma 3 is complete.

In the same manner, we obtain the following:

Lemma 4. Let h ∈ Γs(R+) for some 2 ≤ s < ∞; and let Ω, θ, φ, and r be given as in Lemma 3. Then,
a positive constant Cp exists such that
(i) If r ≤ s′, we have∥∥∥∥∥∥∥∥

∑
k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ)1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

f or 1 < p < r. (18)

(ii) If r > s′, we have∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ)1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

f or s′ < p < ∞, (19)

where {gk(·), k ∈ Z} are arbitrary functions on Rn.

Proof. Let us first consider the case 1 < p < r with r ≤ s′. As above, by the duality, there are functions
ψ = ψk(x, t) defined on Rn × R+ with

∥∥∥∥∥∥‖ψk‖Lr′ ([θk ,θk+1], dt
t )

∥∥∥
lr′

∥∥∥
Lp′ (Rn)

≤ 1 such that

∥∥∥∥∥∥∥∥
∑

k∈Z

θk∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1/r
∥∥∥∥∥∥∥∥

Lp(Rn)

=
∫

Rn

∑
k∈Z

θk+1∫
θk

(
σΩ,φ,h,t ∗ gk(x)

)
ψk(x, t)

dt
t

dx
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≤ Cp ln(θ)1/r
∥∥∥(Θ(ψ))1/r′

∥∥∥
Lp′ (Rn)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

)1/r
∥∥∥∥∥∥

Lp(Rn)

, (20)

where

Θ(ψ)(x) = ∑
k∈Z

θk∫
θk

∣∣∣σΩ,φ,h,t ∗ ψk(x, t)
∣∣∣r′ dt

t
.

As r ≤ s′ ≤ s, then, by Hölder’s inequality, we have that

∣∣∣σΩ,φ,h,t ∗ ψk(x, t)
∣∣∣r′ ≤ C ‖Ω‖(r

′/r)
L1(Sn−1)

‖h‖r′
Γr(R+)

∫ θk+1

θk

∫
Sn−1
|Ω(u)|

× |ψk(x− φ (l) u, t)|r
′
dσ(u)

dl
l

≤ C ‖Ω‖(r
′/r)

L1(Sn−1)
‖h‖r′

Γs(R+)

∫ θk+1

θk

∫
Sn−1
|Ω(u)|

× |ψk(x− φ (l) u, t)|r
′
dσ(u)

dl
l

. (21)

Again, since (p′/r′) > 1, we deduce that there is a function ν ∈ L(p′/r′)′(Rn) such that

∥∥∥(Θ(ψ))1/r′
∥∥∥r′

Lp′ (Rn)
= ∑

k∈Z

∫
Rn

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ ψk(x, t)
∣∣∣r′ dt

t
ν(x)dx.

Hence, by a simple change of variables, Hölder’s inequality, ([9], Lemma 2.5) and (21), we get that∥∥∥(Θ(ψ))1/r′
∥∥∥r′

Lp′ (Rn)
≤ C‖h‖r′

Γs(R+) ‖Ω‖
(r′/r)
L1(Sn−1)

∥∥∥σ∗|Ω|,φ,1(ν)
∥∥∥

L(p′/r′)′ (Rn)

×

∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

|ψk(·, t)|r
′ dt

t


∥∥∥∥∥∥∥

L(p′/r′)(Rn)

≤ Cp ‖Ω‖(r
′/r)+1

L1(Sn−1)
‖h‖r′

Γs(R+) ‖ν‖L(p′/r′)′ (Rn)
.

Therefore, by (20) and the last inequality, we reach (18) for any 1 < p < r with r ≤ s′. Now,
we consider the case s′ < p < ∞ with s′ < r. Thanks to (11), we get that∥∥∥∥∥sup

k∈Z
sup

t∈[1,θ]

∣∣∣σΩ,φ,h,θkt ∗ gk

∣∣∣∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥σ∗Ω,φ,h

(
sup
k∈Z
|gk|
)∥∥∥∥∥

Lp(Rn)

≤ Cp ‖Ω‖Lq(Sn−1)‖h‖Γs(R+)

∥∥∥∥∥sup
k∈Z
|gk|
∥∥∥∥∥

Lp(Rn)

(22)

for all s′ < p < ∞ and s ≥ 2. This implies∥∥∥∥∥∥∥‖σΩ,φ,h,θkt ∗ gk‖L∞([1,θ], dt
t )

∥∥∥
l∞ (Z)

∥∥∥∥
Lp(Rn)

≤ Cp ‖Ω‖Lq(Sn−1)‖h‖Γs(R+)

×
∥∥∥‖gk‖l∞ (Z)

∥∥∥
Lp(Rn)

. (23)
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Here, we follow the same above procedure; by Hölder’s inequality, we get

∣∣∣σΩ,φ,h,θkt ∗ gk(x)
∣∣∣s′ ≤ C ‖Ω‖(s

′/s)
L1(Sn−1)

‖h‖s′
Γs(R+)

∫ θkt

θkt/2

∫
Sn−1
|Ω(u)|

× |gk(x− φ (l) u)|s
′
dσ(u)

dl
l

.

By duality, there is a function ϕ ∈ L(p/s′)′(Rn) with ‖ϕ‖
L(p/s′)′ (Rn)

≤ 1 such that

∥∥∥∥∥∥∥
∑

k∈Z

θ∫
1

∣∣∣σΩ,φ,h,θkt ∗ gk

∣∣∣s′ dt
t


1
s′
∥∥∥∥∥∥∥

s′

Lp(Rn)

=
∫

Rn

∑
k∈Z

θ∫
1

∣∣∣σΩ,φ,h,θkt ∗ gk(x)
∣∣∣r′ dt

t
ϕ(x)dx

≤ C ‖Ω‖(s
′/s)

L1(Sn−1)
‖h‖s′

Γs(R+)

∫
Rn

∑
k∈Z
|gk(x)|s

′
σ∗Ω,φ,1 ϕ(−x)dx

≤ C ln(θ) ‖Ω‖(s
′/s)

L1(Sn−1)
‖h‖s′

Γs(R+)

∥∥∥∥∥∑
k∈Z
|gk|s

′
∥∥∥∥∥

L(p/s′)(Rn)

∥∥∥σ∗Ω,φ,1 ϕ
∥∥∥

L(p/s′)′ (Rn)

≤ C ln(θ) ‖Ω‖(s
′/s)+1

Lq(Sn−1)
‖h‖s′

Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|s

′
) 1

s′
∥∥∥∥∥∥

s′

Lp(Rn)

, (24)

where ϕ(x) = ϕ(−x). Thus, when we define the linear operator H on any function ω = gk(x) by
H(gk(x)) = σΩ,φ,h,θkt ∗ gk(x), then, by interpolation (23) and (24), we directly obtain that

∥∥∥∥∥∥∥∥
∑

k∈Z

θk+1∫
θk

∣∣∣σΩ,φ,h,t ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥∥

Lp(Rn)

≤

∥∥∥∥∥∥∥
∑

k∈Z

θ∫
1

∣∣∣σΩ,φ,h,θkt ∗ gk

∣∣∣r dt
t


1
r
∥∥∥∥∥∥∥

Lp(Rn)

≤ Cp(ln θ)1/r ‖Ω‖Lq(Sn−1)‖h‖Γs(R+)

∥∥∥∥∥∥
(

∑
k∈Z
|gk|r

) 1
r
∥∥∥∥∥∥

Lp(Rn)

for all s′ < p < ∞ and s ≥ 2. This ends the proof of Lemma 4.

3. Proof of the Main Results

Proof of Theorem 1. The proof of this theorem depends on the arguments used in [9,18]. Let us first
assume that φ ∈ Hd for some d 6= 0, Ω ∈ Lq (Sn−1) for some q ∈ (1, 2] and h ∈ Γs(R+) for some
s ∈ (1, 2]. Thanks to Minkowski’s inequality, we have that

M(r)
Ω,φ,h,ρ( f )(x) ≤

∞

∑
k=0

(∫ ∞

0

∣∣∣∣t−ρ
∫

2−k−1t<|u|≤2−kt
f (x− φ(|u|)u′)KΩ,h(u)du

∣∣∣∣r dt
t

)1/r

=
2τ

2τ − 1

(∫ ∞

0

∣∣∣σΩ,φ,h,t ∗ f (x)
∣∣∣r dt

t

)1/r
. (25)

Let θ = 2q′s′ . For k ∈ Z, let {Φk}∞
−∞ be a smooth partition of unity in (0, ∞) adapted to the interval

Ik,θ = [θ−kd−|d|, θ−kd+|d|]. In fact, we require the following:



Mathematics 2019, 7, 886 11 of 13

0 ≤ Φk ≤ 1, ∑
k

Φk (t) = 1,

supp Φk ⊆ Ik,θ , and
∣∣∣∣dsΦk (t)

dts

∣∣∣∣ ≤ Cs

ts .

Let Ψ̂k(ζ) = Φk(|ζ|). Then, for f ∈ S(Rn), one can deduce that

M(r)
Ω,φ,h,ρ f (x) ≤ 2τ

2τ − 1 ∑
j∈Z
G(r)Ω,φ,h,j( f ), (26)

where

G(r)Ω,φ,h,j f (x) =

 ∞∫
0

∣∣∣FΩ,φ,h,j,θ(x, t)
∣∣∣r dt

t

1/r

,

FΩ,φ,h,j,θ(x, t) = ∑
k∈Z

(Ψk+j ∗ σΩ,φ,h,t ∗ f )(x)χ
[θk ,θk+1)

(t).

Notice that, we prove Theorem 1 for the case s ∈ (1, 2] once we show that∥∥∥G(r)Ω,φ,h,j( f )
∥∥∥

Lp(Rn)

≤ C2−ε|j| (q− 1)−1/r (s− 1)−1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(27)

for r ≤ p < ∞, and ∥∥∥G(r)Ω,φ,h,j( f )
∥∥∥

Lp(Rn)

≤ C2−ε|j| (q− 1)−1 (s− 1)−1 ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(28)

for 1 < p < r and for some 0 < ε < 1.
Let us prove the inequality (27). First, we consider the case p = r = 2. In this case, we have

‖ f ‖ .
F

0
2,2(Rn)

= ‖ f ‖L2(Rn). Thus, by Plancherel’s theorem, (8), and the fact ln θ ≤ C (s− 1)−1 (q− 1)−1

with s, q ∈ (1, 2], we get that

∥∥∥G(2)Ω,φ,h,j( f )
∥∥∥2

L2(Rn)
≤ ∑

k∈Z

∫
Bk+j,θ

 θk+1∫
θk

∣∣∣σ̂Ω,φ,h,t(ζ)
∣∣∣2 dt

t

 ∣∣∣ f̂ (ζ)∣∣∣2 dζ

≤ C(ln θ) ‖Ω‖2
Lq(Sn−1) ‖h‖

2
Γs(R+) ∑

k∈Z

∫
Bk+j,θ

(∣∣∣θkdζ
∣∣∣± 2a

q′s′
) ∣∣∣ f̂ (ζ)∣∣∣2 dζ

≤ C(ln θ) ‖Ω‖2
Lq(Sn−1) ‖h‖

2
Γs(R+) 2−η|j| ∑

k∈Z

∫
Bk+j,θ

∣∣∣ f̂ (ζ)∣∣∣2 dζ

≤ C (s− 1)−1 (q− 1)−1 ‖Ω‖2
Lq(Sn−1) ‖h‖

2
Γs(R+) 2−η|j| ‖ f ‖2

L2(Rn) ,

where Bk,θ =
{

ζ ∈ Rn : |ζ| ∈ Ik,θ
}

and 0 < η < 1. Therefore,∥∥∥G(2)Ω,φ,h,j( f )
∥∥∥

L2(Rn)

≤ C2−
η
2 |j| (s− 1)−1/2 (q− 1)−1/2 ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .

F
0
2,2(Rn)

. (29)
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On the other hand, by Lemma 3, we directly get that∥∥∥G(r)Ω,φ,h,j( f )
∥∥∥

Lp(Rn)

≤ C (q− 1)−1/r (s− 1)−1/r ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0
p,r(Rn)

(30)

for r ≤ p < ∞, and ∥∥∥G(r)Ω,φ,h,j( f )
∥∥∥

Lp(Rn)

≤ C (q− 1)−1 (s− 1)−1 ‖Ω‖Lq(Sn−1) ‖h‖Γs(R+) ‖ f ‖ .
F

0,r
p (Rn)

(31)

for 1 < p < r. Consequently, interpolating (29) with (30) and (31), we achieve (27) and (28).

Proof of Theorem 2. The proof of Theorem 2 can be obtained by applying the above approaches
except we need to invoke θ = 2q′ instead of θ = 2q′s′ , and Lemma 4 instead of Lemma 3.
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