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Abstract: In this expository article, we discuss the author’s conjecture that an associated metric for
a given contact form on a contact manifold of dimension ≥5 must have some positive curvature.
In dimension 3, the standard contact structure on the 3-torus admits a flat associated metric; we also
discuss a local example, due to Krouglov, where there exists a neighborhood of negative curvature
on a particular 3-dimensional contact metric manifold. In the last section, we review some results
on contact metric manifolds with negative sectional curvature for sections containing the Reeb
vector field.
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1. Introduction

During the 1974–75 academic year, the author was on sabbatical in Strasbourg, and at that time
it was unknown if the 5-dimensional torus carried a contact form. Also, at that time, Georges Reeb
commented that he felt that the existence of a contact form on a manifold “tightens up” the manifold.
Today someone working in contact topology might think of this in terms of “tight” vs. “overtwisted”
and someone working in contact geometry might ask if an associated metric should have some positive
curvature. The author conjectures that there should be some positive curvature and this is one of the
main themes of this article. In 1975 [1] the author proved that in dimensions greater than or equal to 5
there are no flat associated metrics. In 1979, R. Lutz [2] produced a very explicit contact form on the
5-torus; thus, the flat metric on the torus cannot be an associated metric. Today it is known that all
odd-dimensional tori carry contact structures [3]. However, to date, the author knows of no specific
associated metric on any torus of dimension ≥5; in principal, one can always construct one, but, so
far, not in a naturally suggested way. The standard contact structure on the 3-torus does carry a flat
associated metric.

In 1979, Z. Olszak [4] generalized the non-flatness result and showed that if a contact metric
manifold of dimension ≥5 is of constant curvature, then it must be of constant curvature +1 and
Sasakian. As mentioned above, the author conjectures that, at least in dimensions greater than or equal
to 5, every contact metric manifold has positive sectional curvature for some section at some point on
the manifold. In dimension 3, Kroglov [5] gave an example of a contact metric structure on R3, which
is negatively curved in a neighborhood of the origin but is not globally negatively curved.

We first give a brief review of the rudiments of contact metric geometry and then discuss a number
of curvature results. In the final section, we review some work on contact metric manifolds for which
the sectional curvature in the direction of the Reeb vector field is negative.

The author expresses his appreciation to the Guest Editors, Professors Ion and Adela Mihai, for
their kind invitation to write this article.
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2. Review of Contact Metric Manifolds

A contact manifold is a C∞ manifold M2n+1 carrying a 1-form η for which

η ∧ (dη)n 6= 0.

Given such a structure there exists a unique vector field Zη , called the Reeb vector field, satisfying
dη(X, Zη) = 0 and η(Zη) = 1. Denote by Dη the contact sub-bundle, defined by

{X ∈ Tm M : η(X) = 0}.

Roughly speaking, the contact condition means that the contact sub-bundle is maximally far from
being integrable; in fact, the maximum dimension of an integral submanifold of Dη is only n. Thinking
about it another way, the contact sub-bundle rotates as one moves around on the manifold.

Many topologists think of a contact structure, sometimes referred to as a contact structure in the
wider sense; the idea is that, first of all, one has a field of 2n-planes D given locally by a contact form,
and secondly, in the overlap of coordinate neighborhoods, U ∩ U ′, there is a function f , such that
η′ = f η and thus dη′ = d f ∧ η + f dη, from which

η′ ∧ (dη′)n = f n+1η ∧ (dη)n 6= 0.

Turning to contact metric geometry, an associated metric is a Riemannian metric g satisfying the
following two conditions: First,

η(X) = g(X, Zη)

and second, there exists a field of endomorphisms φ, such that

φ2 = −I + η ⊗ Zη and dη(X, Y) = g(X, φY).

The contact sub-bundle is orthogonal to the Reeb vector field, and the field of endomorphisms φ

annihilates the Reeb vector field and acts as an almost complex structure on the contact sub-bundle.
One also has that φZη = 0, η ◦ φ = 0. We refer to (φ, Zη , η, g) as a contact metric structure and to M2n+1

with such a structure as a contact metric manifold. All associated metrics have the same volume element,
proportional to η ∧ (dη)n. Associated metrics are far from unique, in fact, the space of all associated
metrics for a given contact form is infinite dimensional, see, e.g., [6].

Associated metrics can be constructed much as in symplectic geometry. For any Riemannian
metric ¯̄g on M2n+1, define a metric ḡ by

ḡ(X, Y) = ¯̄g(−X + η(X)Zη ,−Y + η(Y)Zη) + η(X)η(Y).

One immediately has ḡ(X, Zη) = η(X). Choosing a local ḡ-orthonormal basis {X1, . . . , X2n} of Dη and
evaluating dη on these vectors gives a non-singular 2n× 2n matrix, Aij = dη(Xi, Xj). By polarization,
A can be written as the product of an orthogonal matrix F and a positive definite symmetric matrix
G. Now, define an associated metric g and almost complex structure φ on Dη by g(Xi, Xj) = Gij and
φXi = Fi

jXj, then extend these to all tangent vectors by g(X, Zη) = η(X) and φZη = 0. Given another
ḡ-orthonormal basis of Dη , say {Y1, . . . , Y2n}, there exists an orthogonal matrix P, such that

Bij = dη(Yi, Yj) = dη(Pk
iXk, Pl

jXl) = (PAP−1)ij.

If B = ΦΓ is the polar decomposition of B, then ΦΓ = PFP−1PGP−1. By the uniqueness of the polar
decompositions Φ = PFP−1 and Γ = PGP−1, we have that g and φ are globally defined structure
tensors. Next note that AT = GFT = −FG, and consequently G = −FFFTGF. On the other hand,
FTGF is positive definite symmetric and, again, by the uniqueness of the polar decomposition F2 = −I
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and F = −FT . This construction dates from 1962 and is due to Y. Hatakeyama [7]; in the course of his
work he proved the analyticity of the polar decomposition.

The product manifold, M2n+1 × R, carries a natural almost complex structure J, which is
defined by

J(X, 0) =
(

φX, η(X)
d
dt

)
J(0,

d
dt
) =

(
− Zη , 0

)
.

The structure on M2n+1 is said to be normal if J is integrable. The normality condition can be
expressed as

[φ, φ](X, Y) + 2dη(X, Y)Zη = 0

where [φ, φ] is the Nijenhuis tensor of φ.

Definition 1. A Sasakian manifold is a normal contact metric manifold.

Alternatively, a Sasakian manifold can be defined in the following way. Let (Mm, g) be
a Riemannian manifold and consider the cone over Mm,

(R+ ×Mm, dr2 + r2g).

The manifold becomes Sasakian if and only if the holonomy group of the cone reduces to a subgroup
of U(m+1

2 ). Thus (R+ ×Mm, dr2 + r2g) is Kähler and m = 2n + 1, n ≥ 1.
In terms of the covariant derivative of φ, the Sasakian condition is

(∇Xφ)Y = g(X, Y)Zη − η(Y)X.

In view of this, a Sasakian manifold is often thought of as a contact metric analogue of a Kähler
manifold where one has ∇J = 0. Another common characterization of the Sasakian condition is given
in terms of the curvature tensor by

RXYZη = η(Y)X− η(X)Y.

Definition 2. A K-contact manifold is contact metric manifold on which the Reeb vector field is a Killing
vector field.

It is well known that a Sasakian manifold is K-contact. In dimension 3, the K-contact condition is
equivalent to the Sasakian condition, but in higher dimensions this is not true.

Another important structure tensor is the Lie derivative of φ with respect to the Reeb vector field;
we set

h =
1
2

£Zη φ.

This operator is symmetric, it anticommutes with φ, and it annihilates the Reeb vector field. Moreover,
h vanishes if and only if the Reeb vector field is a Killing vector field. A particularly important property
of h is the following,

∇XZη = −φX− φhX;

this exhibits the rotation of the Reeb vector field and by orthogonality, the rotation of the contact
sub-bundle. From this formula one sees immediately that the integral curves of Zη are geodesics.
If λ is a non-zero eigenvalue of h with eigenvector X, then −λ is also an eigenvalue and φX
a corresponding eigenvector.

For future use in this article we need a few more ideas. The first of these will be the notion of
a φ-basis on a contact metric manifold. Consider a coordinate neighborhood U and any unit vector field
X1 on U orthogonal to Zη . The vector field φX1 is orthogonal to X1 and Zη . Choosing a unit vector
field X2 orthogonal to Zη , X1, and φX1, it is easy to see that φX2 is also a unit vector field orthogonal
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to Zη , X1, φX1, and X2. Continuing in this way we obtain a local orthonormal basis {Xi, φXi, Zη},
i = 1, . . . , n.

Tanno introduced the idea of a D-homothetic deformation [8]. For a given contact metric structure
(φ, Zη , η, g), the deformed structure

η̄ = aη, Z̄η̄ =
1
a

Zη , φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η,

where a is a positive constant, is again a contact metric structure. A D-homothetic deformation also
preserves the states of being K-contact, and Sasakian. The name derives form the fact that, the metrics
restricted to the contact sub-bundle Dη are homothetic.

Finally we mention φ-sectional curvature. A plane section in Tm M2n+1 is a φ-section if there exists
a vector X ∈ Dη , such that {X, φX} span the section. The sectional curvature K(X, φX) is referred to
as the φ-sectional curvature of the plane section. This idea in Sasakian geometry can be regarded as
an analogue of holomorphic sectional curvature in Kähler geometry.

General references for the ideas of this section are [6,9].

3. The Sign of the Curvature of Contact Metric Manifolds

For the structure tensors—(φ, Zη , η, g) together with the tensor field h = 1
2 £Zη φ on a contact

metric manifold—we noted above that

∇XZη = −φX− φhX.

Differentiating this with respect to Zη and computing RZη XZη we have the following formulas,

(∇Zη h)X = φX− h2φX− φRX Zη Zη ,

1
2
(RX Zη Zη − φRφX Zη Zη) = −φ2X− h2X.

Choosing a unit vector X orthogonal to Zη , the inner product of X with the second formula gives the
following formula for the sum of two sectional curvatures

K(Zη , X) + K(Zη , φX) = 2(1− g(h2X, X)).

Thus, if {X1, . . . , Xn, φX1, . . . , φXn, Zη} is a φ-basis, summing over {X1, . . . , Xn} yields

Ric(Zη) = 2n− trh2. (1)

An immediate consequence is that a contact metric manifold is K-contact if and only if

Ric(Zη) = 2n.

We also note that a contact metric manifold is K-contact if and only if the sectional curvature
of all plane sections containing Zη are equal to +1. The sufficiency is clear from (1). Conversely, as
∇XZη = −φX on a K-contact manifold and ∇Zηφ = 0 on any contact metric manifold, we have by
direct computation RX Zη Zη = X.

As mentioned in the introduction, in dimensions ≥ 5 there are no flat associated metrics and one
has the following theorem of Olszak [4].

Theorem 1. A contact metric manifold of dimension ≥ 5 and of constant curvature is Sasakian and of constant
curvature +1. In dimension 3, constant curvature exists only in the flat case or the Sasakian case of constant
curvature +1.
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For our conjecture on positive curvature, we discuss a substantial supporting result. This is
a result of Rukimbira [10], utilizing a result of Zeghib [11] on geodesic plane fields. A k-dimensional
plane field on an n-dimensional Riemannian manifold is said to be geodesic if any geodesic tangent to
the plane field at one point is tangent to it at every point. Zeghib’s result is the following.

Theorem 2. A compact Riemannian manifold of strictly negative curvature cannot carry a C1 geodesic
plane field.

As we have seen, for any contact metric structure the integral curves of Zη are geodesics; therefore,
Zη determines a geodesic line field. Rukimbira applied Zeghib’s result to compact contact manifolds
giving the following result.

Theorem 3. On a compact contact manifold, there is no associated metric of strictly negative curvature.

Without compactness, in dimension 3, this is false, as was shown by an example of Krouglov [5]
of a contact metric structure on R3, which is negatively curved on some neighborhood of the origin.
However, this metric is not globally of non-positive curvature. We present this example here. Starting
with the standard Darboux form η = 1

2 (dz− ydx) and its Reeb vector field Zη = 2 ∂
∂z , an associated

metric of the type studied by Krouglov is

g =
1
4


√

2 e−z + y2 −1 −y
−1

√
2 ez 0

−y 0 1

 .

The vector fields

X =

√
2 ez/2√√

2− 1

 1
e−z

y

 , Y =

√
2 ez/2√√

2 + 1

 1
−e−z

y


belong to the sub-bundle Dη , and together with Zη form an orthonormal basis. Now let

U = αX + βY + γZη , V = λX + µY + νZη

be two independent vector fields. Computing R(U, V, V, U), we have

R(U, V, V, U) = −(αµ− βλ)2(1 + 2
√

2 y2ez)− (αν− γλ)2 − (βν− γµ)2

−4
√

1 +
√

2 (αµ− βλ)(αν− γλ)yez/2 +
4√

1 +
√

2
(αµ− βλ)(βν− γµ)yez/2;

this is negative at the origin in R3, and therefore negative in a neighborhood of the origin
giving a contact metric manifold of negative curvature. This metric is not of negative curvature
everywhere; indeed,

R(X, Y + Zη , Y + Zη , X) = −(1 + 2
√

2 y2ez)− 1− 4
√

1 +
√

2 yez/2,

which is positive for x arbitrary, y = −1, z = 0. Note that {X, Y + Zη} is not a plane section in
the contact sub-bundle. It is interesting that, for this metric, we do have the following everywhere,
negative sectional curvatures

K(X, Zη) = −1, K(Y, Zη) = −1, K(X, Y) = −1− 2
√

2y2ez.
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The non-completeness of the neighborhood may be important and the conjecture in dimension 3
may be true, aside from the flat case, when the contact metric manifold is complete.

Krouglov [5] does however give a proof of the conjecture in dimension 3 for contact structures
which are sufficiently non-trivial as fibrations; his result is the following.

Theorem 4. Let M3 be a compact contact metric manifold, for which the contact sub-bundle cannot be
decomposed as a sum of two 1-dimensional fibrations. Then, M3 admits some positive curvature.

Turning to the homogeneous case, i.e., contact manifolds admitting a transitive Lie group of
diffeomorphisms preserving the contact form, a contact metric manifold is said to be homogeneous
if it admits a transitive Lie group of diffeomorphisms preserving the structure tensors (φ, Zη , η, g).
This case was studied by A. Lotta [12], and he proved the following two theorems.

Theorem 5. In dimensions ≥5 there are no homogeneous, simply connected contact manifolds which admit
a Riemannian metric of non-positive curvature and for which the Reeb vector field is orthogonal to the contact
sub-bundle.

Theorem 6. Let M2n+1 be a homogeneous, simply connected contact metric manifold of non-positive curvature.
Then, the manifold is 3-dimensional, flat, and equivalent to the universal cover of E(2) with a left invariant
contact metric structure.

We have seen that Sasakian manifolds always have some positive curvature; in particular, the
Zη-sectional curvatures are +1. A more general class of contact metric manifolds, which includes
the Sasakian manifolds, called (κ, µ)-manifolds, has become of more interest than one might have
expected. We begin with the following theorem from [13].

Theorem 7. A contact metric manifold M2n+1 satisfying RX YZη = 0 is locally isometric to En+1 × Sn(4) for
n > 1 and flat for n = 1.

The contact metric structure on En+1 × Sn(4) is the standard one on the tangent sphere bundle of
Euclidean space (see, e.g., [6], Section 9.2).

The condition RX YZη = 0 is not a D-homothetic invariant as was observed by Themis
Koufogiorgos, unlike a number of other conditions we mentioned above; instead, it takes the form

RX YZη = κ(η(Y)X− η(X)Y) + µ(η(Y)hX− η(X)hY) (2)

for constants κ and µ. However, the form of (2) is D-homothetic invariant, in particular, for the
deformed metric ḡ = ag + a(a− 1)η ⊗ η, we have this form for R̄X Y Z̄η with

κ̄ =
κ + a2 − 1

a2 , µ̄ =
µ + 2a− 2

a
.

A contact metric manifold for which (2) is satisfied is called a (κ, µ)-manifold, and was introduced and
developed as an interesting class of contact metric manifolds in [14] by Koufogiorgos, Papatoniou, and
the author. E. Boeckx [15] gave an important classification of (κ, µ)-manifolds; here, we simply note
that (κ, µ)-manifolds exist for all values of κ ≤ 1 and µ.

We state the following theorem and give a few remarks.

Theorem 8. On a (κ, µ)-manifold we have κ ≤ 1. If κ = 1, the structure is Sasakian and if κ < 1, the (κ, µ)

condition determines the curvature of M2n+1 completely.
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In the equality case, the proof shows that h = 0 and consequently µ is indeterminant. For κ < 1,
the non-zero eigenvalues of h are ±

√
1− κ each with multiplicity n. Recall that the non-zero

eigenvalues come in pairs, λ and −λ. The (κ, µ)-manifold then admits three mutually orthogonal
sub-bundles, D(0), D(λ), and D(−λ), all of which are integrable.

In Boeckx [16], the curvature tensor of a non-Sasakian (κ, µ)-manifold was computed. Here, we
just note that for a unit vector X ∈ [λ], φX ∈ [−λ], we have the following.

K(X, Zη) = κ + λµ, K(φX, Zη) = κ − λµ, K(X, φX) = −(κ + µ).

Thus, concerning the sign of the curvature question, we have that if a (κ, µ)-manifold were to be
of negative curvature, then at least one eigenvalue would be > 1 by (1) and κ ± λµ < 0, giving
λ2 − 1 > λ|µ|. Then, K(X, φX) = −(κ + µ) < 0 would give λ|µ| < λ2 − 1 < µ, a contradiction.

We now briefly discuss an implication of some control on the Ricci curvature. In 1941 S. B. Myers [17]
proved a famous implication of the sign of the Ricci curvature, viz. that a complete Riemannian manifold for
which the Ricci curvature is bounded below by a positive constant is compact and has finite fundamental
group. In 1981 Hasegawa and Seino [18] proved a stronger result for K-contact manifolds.

Theorem 9. A complete K-contact manifold for which Ric ≥ δ > −2 is compact and has finite fundamental group.

Hasegawa and Seino state their result for Sasakian manifolds, but their proof uses only the
K-contact property. Note also that in the example of Krouglov above, the Ricci curvature in the
direction of the Reeb vector field, Zη , is equal to −2.

We close this section with the following remark and include a brief sketch of its proof. If a contact
metric manifold of non-positive curvature exists, then a D-homothetic deformation can be made to
the contact metric structure to yield one with some positive curvature. Suppose that M(φ, Zη , η, g) is
a contact metric manifold of non-positive curvature, and let

S = sup g(RXZη Zη , X) ≤ 0

on M with hX = λX, λ ≥ 0, and X a g-unit eigenvector. Under a D-homothetic deformation

ḡ(R̄XZ̄η
Z̄η , X) =

1
a2 ḡ(RXZη Zη + 2(a− 1)(X + hX) + (a− 1)2X, X).

Now, for some ε > 0, there exists a point p ∈ M such that g(RXZη Zη , X) = S− ε < 0. At the point p,
ḡ(R̄XZ̄η

Z̄η , X) = 1
a
(
a2 + 2λa + S− ε− 2λ− 1

)
, which is positive for some a > 0.

4. Negative Zη-Sectional Curvature

Although positive Zη-sectional curvature is immediate in the case of K-contact manifolds, we
indicate in this section that positive Zη-sectional curvature is not necessarily abundant for contact
metric manifolds in general. We begin this section with the following theorem of H. Chen and the
author [19]. Denote by Q the Ricci operator, i.e., the Ricci tensor of type (1,1).

Theorem 10. Let M3 be a contact metric manifold on which Qφ = φQ. Then, M3 is either Sasakian, flat, or
locally isometric to a left invariant metric on the Lie group SU(2) or SL(2,R). In the Lie group cases, M3 has
constant Zη-sectional curvature k < 1 and constant φ-sectional curvature −k; such structures can occur with
k > 0 for SU(2) and k < 0 for SL(2,R).

Note the positive curvature in this theorem on SL(2,R). The contact metric structure on the Lie
group SL(2,R) is given explicitly in [19] and in [20] as well as Section 11.2 of [6].

We next recall the formula
∇XZη = −φX− φhX
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and that it reflects the rotation of the contact structure and its Reeb vector field. In particular, if
hX = λX, one has∇XZη = −(1 + λ)φX. Thus, we can view Zη as “turning” or “falling” toward −φX
for λ > −1, or toward φX for λ < −1. We also recall that if λ is an eigenvalue of h with eigenvector X,
−λ is an eigenvalue with eigenvector φX.

We now ask if there exist directions orthogonal to Zη , along which Zη “falls” forward or backward
as one moves in such a direction.

Theorem 11. Let M be a contact metric manifold and suppose the tensor field h admits an eigenvalue λ > 1 at
a point p, then there exists a vector Y orthogonal to Zη at p, such that ∇YZη is collinear with Y. In particular,
if M has negative Zη-sectional curvature, such directions, Y, exist.

Suppose now that λ > 1 is a positive eigenvalue of h with eigenvector X, then a and b may be
chosen, such that Y = aX + bφX is such a direction where a2 + b2 = 1 and ∇YZη = −(

√
λ2 − 1)Y.

Moreover if Z = aX− bφX, then∇ZZη = (
√

λ2 − 1)Z . Thus, we can think of Zη as “falling backward”
as we move in the direction Y and “falling forward” as we move in the direction Z. For the inner
product one has g(Y, Z) = − 1

λ and hence the directions Y and Z cannot be orthogonal. If λ has
multiplicity m ≥ 1, then there exist m-dimensional sub-bundles Y and Z such that ∇YZη is collinear
with Y for any Y ∈ Y and ∇ZZη is collinear with Z for any Z ∈ Z . Directions along which the
covariant derivative of Zη is collinear with the direction are called special directions.

Classically an Anosov flow [21] is defined as follows. Consider a compact differentiable manifold
M admitting a nonvanishing vector field Z and let {ψt} denote its 1-parameter group of (Ck)
diffeomorphisms. The flow {ψt} and the vector field Z are said to be Anosov if there exist invariant
sub-bundles Es and Eu, such that TM = Es⊕ Eu⊕{Z} and there exists a Riemannian metric, such that

|ψt∗Y| ≤ ae−ct|Y| for t ≥ 0 and Y ∈ Es
p,

|ψt∗Y| ≤ aect|Y| for t ≤ 0 and Y ∈ Eu
p

for some positive constants a and c independent of p ∈ M and Y in Es
p or Eu

p . The sub-bundles Es and
Eu are called the stable and unstable sub-bundles. The sub-bundles Es and Eu are integrable with Ck

integral submanifolds.
When the manifold M is compact this idea is independent of the Riemannian metric.

For noncompact manifolds, the notion is metric-dependent; for example, one can have a metric
on R3 with respect to which one of the coordinate fields is an Anosov vector field, even though a
coordinate field is not Anosov with respect to the Euclidean metric on R3, see Section 11.2 of [6]. Here,
of course, we are dealing with Riemannian metrics associated to a contact form, thus when we speak
of the “Reeb vector field being Anosov”, we will mean that it is an Anosov vector field with respect to
an associated metric of the contact form.

The most notable example of a contact manifold for which the Reeb vector field is Anosov is
the tangent sphere bundle of a negatively curved manifold; here the Reeb vector field is (twice) the
geodesic flow, see, e.g., [6], Section 9.2. The tangent sphere bundle of a surface is closely related
to the structure on SL(2,R), from both the topological and Anosov points of view. Setting Z2 ={( 1 0

0 1

)
,
( −1 0

0 −1

)}
, PSL(2,R) = SL(2,R)/Z2 is homeomorphic to the tangent sphere bundle

of the hyperbolic plane. For a compact surface of constant negative curvature, the geodesic flow may

be realized on PSL(2,R)/Γ by
{( et 0

0 e−t

)}
, where Γ is a discrete subgroup of SL(2,R), for which

SL(2,R)/Γ is compact, (see, e.g.„ Auslander, Green, and Hahn [22] pp. 26–27). From the Riemannian
point of view, however, these examples are quite different as we next observe.
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Theorem 12. With respect to the standard contact metric structure on the tangent sphere bundle of a negatively
curved surface, the Reeb vector field is Anosov, but the special directions never agree with the stable and
unstable directions.

In contrast, if one assumes that the special directions do agree with the Anosov directions, we
have the following result.

Theorem 13. Consider a 3-dimensional contact metric manifold M3 with negative Zη-sectional curvature.
If the Reeb vector field Zη generates an Anosov flow with respect to the associated metric and the special directions
agree with the stable and unstable directions, then the contact metric structure satisfies ∇Zη h = 0. Moreover,
if M3 is compact, it is a compact quotient of S̃L(2,R).

For proofs of the preceding theorems see Section 11.2 of [6].
Y. Mitsumatsu [23] and Eliashberg and Thurston [24] introduced a generalization of Anosov

flows as follows. A flow ψt and its corresponding vector field are said to be conformally Anosov,
Eliashberg and Thurston (projectively Anosov, Mitsumatsu), if there is a continuous Riemannian metric
and a continuous, invariant splitting, TM = Es ⊕ Eu ⊕ {Zη}, as in the Anosov case, such that for
Z ∈ Eu and Y ∈ Es,

|ψt∗Z|
|ψt∗Y|

≥ ect |Z|
|Y|

for some constant c > 0 and all t ≥ 0.
A contact form determines an orientation on the underlying manifold; even for a contact structure

in the wider sense, this is true in dimension 3 , as the sign of η ∧ dη is independent of the choice of the
local contact form η.

The main result from Mitsumatsu [23] and Eliashberg and Thurston [24] for our purpose is
the following.

Theorem 14. If two contact structures (in the wider sense) on a compact 3-dimensional contact manifold M3

induce opposition orientations, then the vector field directing the intersection of the two contact sub-bundles
is a conformally Anosov flow. Conversely, given a conformally Anosov flow on M3, there exist two contact
structures giving opposite orientations on M3 whose contact sub-bundles intersect tangent to the flow.

Now, we might expect certain curvature hypotheses on a compact contact metric 3-manifold to
imply that the Reeb vector field is conformally Anosov. In particular, negative Zη-sectional curvature
is such a hypothesis, and we state a result of D. Perrone and the author [25].

Theorem 15. Consider a compact 3-dimensional contact metric manifold with nowhere vanishing h.
Let {e1, e2(= φe1), Zη} be an orthonormal eigenvector basis of h with he1 = λe1 and λ the positive eigenvalue.
If K(Zη , e1) < (1 + λ)2 and K(Zη , e2) < (1− λ)2, then the Reeb vector field Zη is conformally Anosov.
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