Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals
Abstract
:1. Introduction and Preliminaries
2. Main Theorems
3. Derived Results
3.1. Choose and
3.2. Tends to 1 from the Left Side
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience, John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Res. Notes Math. Ser. 301; Longman Scientific & Technical: Harlow, UK, 1994. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; World Scientific: Singapore, 2012. [Google Scholar]
- Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 2005, 396, 317–328. [Google Scholar] [Green Version]
- Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy. Physica A 2007, 375, 110–122. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. On generalized distributions and path-ways. Phys. Lett. A 2008, 372, 2109–2113. [Google Scholar]
- Nair, S.S. Pathway fractional integration operator. Fract. Calc. Appl. Anal. 2009, 12, 237–252. [Google Scholar]
- Nisar, K.S.; Purohit, S.D.; Abouzaid, M.S.; Qurashi, M.A.; Baleanu, D. Generalized k-Mittag-Leffler function and its composition with pathway integral operators. J. Nonlinear Sci. Appl. 2016, 9, 3519–3526. [Google Scholar]
- Dragomir, S.S. Some integral inequalities of Gruss type. Indian J. Pure Appl. Math. 2000, 31, 397–415. [Google Scholar]
- Agarwal, P.; Choi, J. Certain fractional integral inequalities associated with pathway fractional integral operators. Bull. Korean Math. Soc. 2016, 53, 181–193. [Google Scholar]
- Ahmadmir, N.; Ullah, R. Some inequalities of Ostrowski and Gru¨ss type for triple integrals on time scales. Tamkang J. Math. 2011, 42, 415–426. [Google Scholar]
- Anastassiou, G.A. Advances on Fractional Inequalities; Springer Briefs in Mathematics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Anastassiou, G.A. Fractional representation formulae and right fractional inequalities. Math. Comput. Model. 2011, 54, 3098–3115. [Google Scholar]
- Baleanu, D.; Purohit, S.D. Chebyshev type integral inequalities involving the fractional hypergeometric operators. Abstr. Appl. Anal. 2014, 2014, 609160. [Google Scholar]
- Baleanu, D.; Purohit, S.D.; Prajapati, J.C. Integral inequalities involving generalized Erde‘lyi-Kober fractional integral operators. Open Math. 2016, 14, 89–99. [Google Scholar]
- Baleanu, D.; Purohit, S.D.; Ucar, F. On Gruss type integral inequality involving the Saigo’s fractional integral operators. J. Comput. Anal. Appl. 2015, 19, 480–489. [Google Scholar]
- Choi, J.; Purohit, S.D. A Gruss type integral inequality associated with Gauss hypergeometric function fractional integral operator. Commun. Korean Math. Soc. 2015, 30, 81–92. [Google Scholar]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a Riemann–Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Farid, G.; Pečarić, J.; Tomovski, Ž. Opial-type inequalities for fractional integral operator involving Mittag-Leffler function. Fract. Differ. Calc. 2015, 5, 93–106. [Google Scholar]
- Iqbal, S.; Pečarić, J.; Samraiz, M.; Tomovski, Ž. Hardy-type inequalities for generalized fractional integral operators. Tbil. Math. J. 2017, 10, 75–90. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues. J. Math. Inequal. 2013, 7, 239–249. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain fractional integral inequalities involving the Gauss hypergeometric function. Rev. Te´c. Ing. Univ. Zulia 2014, 37, 167–175. [Google Scholar]
- Saxena, R.K.; Purohit, S.D.; Kumar, D. Integral inequalities associated with Gauss hypergeometric function fractional integral operator. Proc. Nat. Acad. Sci. India Sect. A Phys. Sci. 2018, 88, 27–31. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.M.; Baleanu, D.; Tchier, F.; Purohit, S.D. Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals. Mathematics 2019, 7, 896. https://doi.org/10.3390/math7100896
Mishra AM, Baleanu D, Tchier F, Purohit SD. Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals. Mathematics. 2019; 7(10):896. https://doi.org/10.3390/math7100896
Chicago/Turabian StyleMishra, Aditya Mani, Dumitru Baleanu, Fairouz Tchier, and Sunil Dutt Purohit. 2019. "Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals" Mathematics 7, no. 10: 896. https://doi.org/10.3390/math7100896
APA StyleMishra, A. M., Baleanu, D., Tchier, F., & Purohit, S. D. (2019). Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals. Mathematics, 7(10), 896. https://doi.org/10.3390/math7100896