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Abstract

:

The inverse problem is one of the four major problems in computational mathematics. There is an inverse problem in medical image reconstruction and radiotherapy that is called the multiple-sets split equality problem. The multiple-sets split equality problem is a unified form of the split feasibility problem, split equality problem, and split common fixed point problem. In this paper, we present two iterative algorithms for solving it. The suggested algorithms are based on the gradient method with a selection technique. Based on this technique, we only need to calculate one projection in each iteration.
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1. Introduction


The inverse problem is one of the four major problems in computational mathematics. The rapid development of the inverse problem has been a feature of recent decades; it can be found in computer vision, machine learning, statistics, geography, medical imaging, remote sensing, ocean acoustics, tomography, aviation, physics, and other fields. There is an inverse problem in medical image reconstruction and radiotherapy that can be expressed as a split feasibility problem [1,2,3,4,5,6,7,8,9], split equality problem [10,11,12,13], and split common fixed point problem [14,15,16,17,18,19].



In this paper, we focus on a unified form of the split feasibility problem, split equality problem, and split common fixed point problem that is called the multiple-sets split equality problem.



Let    H 1  ,  H 2  ,  H 3    be three real Hilbert spaces.   r , t   are positive integers,    {  C i  }   i = 1  r   and    {  Q j  }   j = 1  t   are two families of closed and convex subsets of   H 1   and   H 2  , respectively.   A :  H 1  →  H 3   ,   B :  H 2  →  H 3    are two bounded and linear operators. Then the multiple-sets split equality problem (MSSEP for short) can be formulated as


  f i n d i n g  x ∈  ⋂  i = 1  r   C i  ,  y ∈  ⋂  j = 1  t   Q j   s u c h  t h a t  A x = B y .   



(1)







It reduces to the split equality problem if   r = t = 1  ; moreover, it is the split feasibility problem if    H 2  =  H 3    and B is the identity operator on   H 2  . In addition, it is the split common fixed point problem if we take   x ∈  C i    to   x =  P  C i   x  ,   y ∈  Q j    to   y ∈  P  Q j     where    P  C i   ,  P  Q j     are the metric projections on    C i  ,  Q j   .



In the problem (1), without loss of generality, we may assume that   t ≥ r   and let    C  r + 1   =  C  r + 2   = ⋯ =  C t  =  H 1   . Then the problem (1) can be described equivalently as:


  f i n d i n g  x ∈  ⋂  i = 1  t   C i  ,  y ∈  ⋂  j = 1  t   Q j   s u c h  t h a t  A x = B y .   



(2)







Let    S i  =  C i  ×  Q i  ⊆ H =  H 1  ×  H 2   ,   i ∈ Λ = { 1 , 2 , ⋯ , t }  ,   G =  [ A , − B ]  : H →  H 3   ,   G *   be the adjoint operator of G where    H 1  ×  H 2    is the Cartesian product of   H 1   and   H 2  . Then the original problem (1) can be modified as


  f i n d i n g  w =  ( x , y )  ∈  ⋂  i = 1  t   S i   s u c h  t h a t  G w = 0 .   



(3)







Assume the problem (3) is consistent and let  Ω  denote its solution set, that is,  Ω  is not empty. We consider the proximity function


  f  ( w )  =  1 2   Σ  i = 1  t   α i   ∥ w −   P  S i     w ∥  2  +  1 2    ∥ G w ∥  2  ,  








where    α i  , i = 1 , ⋯ , t   are positive real numbers and    P  S i   , i = 1 , ⋯ , t   are metric projections from H onto   S i  . Since   C i   and   Q i   are closed convex, so are   S i  , and then   P  S i    are well defined. Then problem (3) can be transformed into the minimization problem


   min  w ∈  ⋂  i = 1  t   S i    f  ( w )  .   



(4)







Note that the proximity function   f ( w )   is convex and differentiable with gradient


  ∇ f  ( w )  =  Σ  i = 1  t   α i   ( I −  P  S i   )  w +  G *  G w ,  








where I is the identity operator on H. The gradient function   ∇ f ( w )   is L-Lipschitz continuous with Lipschitz constant [20]


  L =  Σ  i = 1  t   α i  +   ∥ G ∥  2  .  











To solve the minimization problem (4), a classical method is the gradient algorithm, which takes the iterative issue


   w  n + 1   =  w n  −  γ n  ∇ f  (  w n  )  ,   



(5)




where   γ n   is the iterative step size in step n.



Note that in iteration (5), we need to calculate projections for t times in each step. On the other hand, notice that    w *  ∈ Ω   if and only if   g (  w *  ) = 0  , where


  g  ( w )  =  1 2   ∥ w −   P  S  i ( n )      w ∥  2  +  1 2    ∥ G w ∥  2  ,  








in which


  i  ( n )  ∈ { i |  max  1 ≤ i ≤ t   ∥ w −  P  S i   w ∥ } .  











Then we consider the iterative issue


   w  n + 1   =  w n  −  γ n  ∇ g  (  w n  )  .   



(6)







In iteration (6), we only need to implement a projection once in each step. Motivated by this point, we present Algorithms 1 and 2 in Section 3 to solve problem (3).



The general structure of this paper is as follows. In the next section, we go over some preliminaries. In Section 3, we present the main algorithms and their convergence. In Section 4, several numerical results are shown to confirm the effectiveness of the suggested algorithm. In the last section, there are some conclusions.




2. Preliminaries


For convenience, note that H is a real Hilbert space and I denotes the identity operator on H. By    x n  →  x *    and    x n  ⇀  x *   , the strong and weak convergence of sequence   {  x n  }   to a point   x *  , respectively, and    ω w   (  x n  )    denotes the set of weak cluster points of the sequence   {  x n  }  .   P S   is the projection from H onto its closed and convex subset S.



Lemma 1

([21]). Let S be a closed, convex, and nonempty subset of H, then for any   x , y ∈ H   and   z ∈ S  ,



(i)   〈 x −  P S  x , z −  P S  x 〉 ≤ 0  ;



(ii)    ∥   P S  x −  P S    y ∥  2  ≤  〈  P S  x −  P S  y , x − y 〉   ;



(iii)    〈 x −  P S  x , x − z 〉  ≥   ∥ x −  P S  x ∥  2   .





Lemma 2

([22]). Let    {  a n  }  ,   {  α n  }  ,   {  u n  }    be sequences of non-negative real numbers with


   {  α n  }  ⊂  [ 0 , 1 ]  ,   Σ  n = 1  ∞   α n  = ∞ ,   Σ  n = 1  ∞   u n  < ∞ .  











Let   {  t n  }   be a sequence of real numbers with    lim sup  n → ∞    t n  ≤ 0   and


    a  n + 1   ≤  ( 1 −  α n  )   a n  +  α n   t n  +  u n  .   











Then    lim  n → ∞    a n  = 0  .





Lemma 3

([23]). Let S be a closed and convex subset of H, and   T : S → S   be non-expansive, and   {  x n  } ⊆ S  . If    x n  ⇀ x   and    lim  n → ∞    ∥  x n  − T  x n  ∥  = 0  , then   T x = x  .





Lemma 4

([24]). Let S be a closed, convex, and nonempty subset of H and   {  x n  }   be a sequence in H. If



(i)    lim  n → ∞    ∥  x n  − x ∥    exists for each   x ∈ S  ;



(ii)    ω w   (  x n  )  ⊆ S  ;



then   {  x n  }   converges weakly to a point in S.






3. Main Results


Assume that the problem (3) is consistent and let  Ω  denote its solution set. That is,  Ω  is not empty and   Ω : = { w ∈ H : w ∈  ⋂  i = 1  t   S i  , G w = 0 }  .



Remark 1.

  w n   is a solution of the problem (3) if and only if the equality (8) holds.





On the one hand, if    ∥   w n  +  q n  −  z n   ∥ = 0   , then take   z ∈ Ω  . We have


    0   =    〈  w n  +  q n  −  z n  ,  w n  − z 〉       =    〈  w n  +  G *  G  w n  −  P  S  i ( n )     w n  ,  w n  − z 〉       =     〈  w n  −  P  S  i ( n )     w n  ,  w n  − z 〉  +  〈 G  w n  , G  w n  − G z 〉        ≥     ∥   w n  −  P  S  i ( n )     w n    ∥  2  +   ∥ G  w n  ∥  2  .     











The first equality is from    ∥   w n  +  q n  −  z n   ∥ = 0   , the second one is from the definition of   q n   and   z n  , and the last inequality is from Lemma 1  ( i i i )   and   G z = 0  . Then


      ∥   w n  −  P  S  i ( n )     w n   ∥ = 0  a n d  ∥ G   w n   ∥ = 0 ,      








which implies that


      ∥   w n  −  P  S i    w n   ∥ = 0 , i ∈ Λ  a n d  ∥ G   w n   ∥ = 0 .      











Hence    w n  ∈  ⋂  i = 1  t   S i    and   G  w n  = 0  . Namely,    w n  ∈ Ω  .



Conversely, if   w n   is a solution of the problem (3), that is    w n  ∈  ⋂  i = 1  t   S i    and   G  w n  = 0  , then    q n  =  G *  G  w n  = 0   and    z n  =  P  S  i ( n )     w n  =  w n   , so    w n  +  q n  −  z n  = 0  . That is,    ∥   w n  +  q n  −  z n   ∥ = 0   .



Next we discuss the convergence of the iterative sequence   {  w n  }   generated by Algorithm 1 if it does not terminate in finite steps.








	Algorithm 1: Gradient method 1



	Take    w 0  ∈ H   arbitrarily and compute


       z n  =  P  S  i ( n )     w n  ,        q n  =  G *  G  w n  ,       



(7)




where   n ≥ 0   and


  i  ( n )  ∈ { i |  max  i ∈ Λ   ∥  w n  −  P  S i    w n  ∥ , Λ =  { 1 , 2 , ⋯ , t }  } .  








If


   ∥   w n  +  q n  −  z n   ∥ = 0 ,    



(8)




then stop.   w n   is the solution (based on Remark 1). Otherwise, calculate


   w  n + 1   =  w n  −  τ n   (  w n  +  q n  −  z n  )  ,   



(9)




where


   τ n  =  λ n     ∥   w n  −  z n    ∥  2  +   ∥ G  w n  ∥  2     2 ∥   w n  +  q n  −  z n    ∥  2    ,  








in which    λ n  ∈  ( 0 , 4 )   .






Theorem 1.

If   0 <  lim inf  n → ∞    λ n  ≤  lim sup  n → ∞    λ n  < 4  , taking initial point    w 0  ∈ H   arbitrarily, then the sequence   {  w n  }   generated by Algorithm 1 converges weakly to a solution of the problem (3).





Proof. 

First, we show the boundedness of   {  w n  }  . Take   z ∈ Ω  . Based on the inequality in the process of Remark 1, we get


      ∥   w  n + 1     − z ∥  2     =     ∥   w n  − z −  τ n   (  w n  +  q n  −  z n  )    ∥  2        =     ∥   w n    − z ∥  2  − 2  τ n   〈  w n  +  q n  −  z n  ,  w n  − z 〉  +  τ n 2    ∥  w n  +  q n  −  z n  ∥  2        ≤     ∥   w n    − z ∥  2  −  λ n     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2            +   λ n 2  4     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2          =     ∥   w n    − z ∥  2  −  λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2    .     



(10)







This implies that    lim  n → ∞    ∥  w n  − z ∥    exists. Thus the sequence   {  w n  }   is bounded and so are the sequences   { G  w n  }   and   {  P  S i    w n  }  ,   i ∈ Λ  .



Next we show that    ω w   (  w n  )  ⊂ Ω  .



Since    lim  n → ∞    ∥  w n  − z ∥    exists and


      λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2     ≤ ∥   w n    − z ∥  2  −   ∥  w  n + 1   − z ∥  2  ,     








together with the boundedness of the sequence   {  w n  +  q n  −  z n  }   and the definition of   λ n  , it follows that


      lim  n →      ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2    = 0 ,     








which implies that


      lim  n → ∞    ∥   w n  −  z n   ∥ = 0  a n d    lim  n → ∞    ∥ G  w n  ∥  = 0 .     











Hence,


      lim  n → ∞    ∥   w n  −  P  S i    w n   ∥ = 0 , i ∈ Λ  a n d    lim  n → ∞    ∥ G  w n  ∥  = 0 .     











Since   {  w n  }   is bounded, let   w *   be a weak cluster point of   {  w n  }   with subsequence   {  w  n i   }   weakly convergent to it.


      lim  n → ∞    ∥   w  n i   −  P  S i    w  n i    ∥ = 0 , i ∈ Λ  a n d    lim  n → ∞    ∥ G  w  n i   ∥  = 0 .     











By Lemma 3, we get    w *  ∈ Ω  , and by the arbitrariness of    w *  ∈  ω w   (  w n  )   , we deduce that    ω w   (  w n  )  ⊂ Ω  . Moreover, the conditions in Lemma 4 have also been satisfied, and the sequence   {  w n  }   generated by the Algorithm 1 converges weakly to some solution of the problem (3). The proof is completed. □





There is only weak convergence in Theorem 1. Next, we show a strong convergence theorem for solving the problem (3).



Next, we discuss the convergence of the iterative sequence   {  w n  }   generated by Algorithm 2 if it does not terminate in finite steps.








	Algorithm 2: Gradient method 2



	Take   u ∈ H   and initial point    w 0  ∈ H  . Compute


       z n  =  P  S  i ( n )     w n  ,        q n  =  G *  G  w n  ,       



(11)




where


  i  ( n )  = { i |  max  i ∈ Λ   ∥  w n  −  P  S i    w n  ∥ , Λ =  { 1 , 2 , ⋯ , t }  } .  








If


   ∥   w n  +  q n  −  z n   ∥ = 0 ,   








then stop.   w n   is the solution (by Remark 1). Otherwise, calculate


   w  n + 1   =  α n  u +  ( 1 −  α n  )   (  w n  −  τ n   (  w n  +  q n  −  z n  )  )  ,   



(12)




where    α n  ∈  ( 0 , 1 )   ,   n ≥ 0   and


   τ n  =  λ n     ∥   w n  −  z n    ∥  2  +   ∥ G  w n  ∥  2     2 ∥   w n  +  q n  −  z n    ∥  2    ,  








in which    λ n  ∈  ( 0 , 4 )   .






Theorem 2.

Suppose that    lim  n → ∞    α n  = 0  ,    Σ  n = 0  ∞   α n  = ∞  , and   0 <  lim inf  n → ∞    λ n  ≤  lim sup  n → ∞    λ n  < 4  . Taking   u ∈ H   and initial point    w 0  ∈ H   arbitrarily, then the sequence   {  w n  }   generated by the Algorithm 2 converges strongly to   z =  P Ω  u  .





Proof. 

Let    u n  =  w n  −  τ n   (  w n  +  q n  −  z n  )   , for   n ≥ 0  . From the process (10) in Theorem 1, we get


   ∥   u n    − z ∥  2  ≤   ∥  w n  − z ∥  2  −  λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2      



(13)




by the definition of   λ n  , that is,    ∥   u n   − z ∥ ≤ ∥   w n   − z ∥   . Thus


      ∥   w  n + 1    − z ∥     =     ∥   α n  u +  ( 1 −  α n  )   u n   − z ∥        ≤     α n   ∥ u − z ∥ +   ( 1 −  α n  )   ∥  u n  − z ∥        ≤     α n   ∥ u − z ∥ +   ( 1 −  α n  )   ∥  w n  − z ∥        ≤    max { ∥  w n  − z ∥ , ∥ u − z ∥ } .     











By induction, we derive


   ∥   w  n + 1    − z ∥ ≤ max { ∥   w 0  −  z ∥ , ∥ u  −  z ∥ } ,   








which means that the sequence   {  w n  }   is bounded and so are the sequences   { G  w n  }   and   {  P  S i    w n  }  ,   i ∈ Λ  . By a simple derivation,


      ∥   w  n + 1     − z ∥  2     =     ∥   α n   ( u − z )  +  ( 1 −  α n  )   (  u n  − z )    ∥  2        ≤     ( 1 −  α n  )    ∥  u n  − z ∥  2  + 2  α n   〈 u − z ,  w  n + 1   − z 〉  .     











Then by (13),


      ∥   w  n + 1     − z ∥  2     ≤     ( 1 −  α n  )    ∥  w n  − z ∥  2  + 2  α n   〈 u − z ,  w  n + 1   − z 〉            −  ( 1 −  α n  )   λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2          =     ( 1 −  α n  )   ∥   w n  − z   ∥ 2  +  α n  [  2  〈 u − z ,  w  n + 1   − z 〉            −   ( 1 −  α n  )   α n    λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2     ] .      



(14)







Let


   θ n  =   ∥  w n  − z ∥  2  ,  










   δ n  = 2  〈 u − z ,  w  n + 1   − z 〉  −   ( 1 −  α n  )   α n    λ n   ( 1 −   λ n  4  )     ( ∥   w n  −  z n    ∥  2   + ∥ G   w n     ∥ 2  )  2     ∥   w n  +  q n  −  z n    ∥  2    .  











Then the inequality (14) equals


   θ  n + 1   ≤  ( 1 −  α n  )   θ n  +  α n   δ n  ,   



(15)




and also


  0 ≤  θ  n + 1   ≤  ( 1 −  α n  )   θ n  +  α n   δ n  , n ≥ 0 .  











It follows that


   δ n  ≤ 2  〈 u − z ,  w  n + 1   − z 〉  ≤  2 ∥ u − z ∥ ∥   w  n + 1    − z ∥ .   











So


   lim sup  n → ∞    δ n  < ∞ .  











Next, we show that    lim sup  n → ∞    δ n  ≥ − 1  . Otherwise, if    lim sup  n → ∞    δ n  < − 1  , then by the definition of the supremum, there exists m such that    δ n  ≤ − 1   for all   n ≥ m  . It follows that for all   n ≥ m  ,


     θ  n + 1     ≤     ( 1 −  α n  )   θ n  +  α n   δ n        =     θ n  +  α n   (  δ n  −  θ n  )        ≤     θ n  −  α n  .     











Thus


   θ  n + 1   ≤  θ m  −  Σ  i = m  n   α i  .  











Hence, taking lim sup as   n → ∞   in the above inequality, we obtain


  0 ≤  lim sup  n → ∞    θ  n + 1   ≤  θ m  − lim sup  Σ  i = m  n   α i  = − ∞ ,  








which is a contradiction. Therefore,    lim sup  n → ∞    δ n  ≥ − 1  , and it is finite. By the boundedness of   {  δ n  }  , we can take a subsequence   {  n k  }   of   { n }   such that


      lim sup  n → ∞    δ n     =     lim  k → ∞    δ  n k         =     lim  k → ∞    [ 2   〈 u − z ,  w   n k  + 1   − z 〉            −   ( 1 −  α  n k   )   α  n k     λ  n k    ( 1 −   λ  n k   4  )     ( ∥   w  n k   −  z  n k     ∥  2   + ∥ G   w  n k      ∥ 2  )  2     ∥   w  n k   +  q  n k   −  z  n k     ∥  2     ] .      











Since the sequence   {  w   n k  + 1   }   is bounded, there exists a subsequence of   {  w   n k  + 1   }  . Without loss of generality, we may assume it’s   {  w   n k  + 1   }   itself, such that    lim  k → ∞    〈 u − z ,  w   n k  + 1   − z 〉    exists. Consequently, the following limit exists:


   lim  k → ∞   −   ( 1 −  α  n k   )   α  n k     λ  n k    ( 1 −   λ  n k   4  )     ( ∥   w  n k   −  z  n k     ∥  2   + ∥ G   w  n k      ∥ 2  )  2     ∥   w  n k   +  q  n k   −  z  n k     ∥  2    .  











Together with the definitions of   α n   and   λ n  , it shows that


   lim  k → ∞      ( ∥   w  n k   −  z  n k     ∥ )  2  +   ∥ G  w  n k   ∥  2     ∥   w  n k   +  q  n k   −  z  n k     ∥  2    = 0 ,  








which yields


   lim  k → ∞    ∥   w  n k   −  z  n k    ∥ = 0  a n d    lim  k → ∞    ∥ G  w  n k   ∥  = 0 .  











Following the proof procedure of Theorem 1, we conclude that    ω w   (  w  n k   )  ⊂ Ω  . Since


      ∥   w   n k  + 1   −  w  n k    ∥     =     ∥   α  n k   u +  ( 1 −  α  n k   )   u  n k   −  w  n k    ∥        ≤     α  n k    ∥ u −   w  n k    ∥ +   ( 1 −  α  n k   )   ∥  u  n k   −  w  n k   ∥        =     α  n k    ∥ u −   w  n k    ∥ +   ( 1 −  α  n k   )   τ  n k    ∥  w  n k   +  q  n k   −  z  n k   ∥        =     α  n k    ∥ u −  w  n k   ∥  +  ( 1 −  α  n k   )   λ  n k      ∥   w  n k   −  z  n k     ∥  2  +   ∥ G  w  n k   ∥  2     ∥   w  n k   +  q  n k   −  z  n k    ∥          →    0 ,     








assume that    w   n k  + 1   ⇀  w *  ∈ Ω  . Then


      lim sup  n → ∞    δ n     =     lim  k → ∞    δ  n k         =     lim  k → ∞    [ 2   〈 u − z ,  w   n k  + 1   − z 〉            −   ( 1 −  α  n k   )   α  n k     λ  n k    ( 1 −   λ  n k   4  )     ( ∥   w  n k   −  z  n k     ∥  2   + ∥ G   w  n k      ∥ 2  )  2     ∥   w  n k   +  q  n k   −  z  n k     ∥  2     ]        ≤     lim  k → ∞   2  〈 u − z ,  w   n k  + 1   − z 〉        =    2 〈 u − z ,  w *  − z 〉       ≤    0 ,     








due to the fact that   z =  P Ω  u   and Lemma 1. Finally, applying Lemma 2 to (15), we conclude that    w n  → z  . The proof is completed. □






4. Numerical Experiments


In this section, we provide several numerical results of the MSSEP (2) to confirm the effectiveness of the suggested Algorithm 1. The whole program was written in Wolfram Mathematica (version 9.0). All of the numerical results were carried out on a personal Lenovo computer with Intel(R)Core(TM) i5-6600 CPU 3.30 GHz and RAM 8.00 GB.



The MSSEP with    C 1   = { x ∈   R 2   | ∥ x −  ( − 1 , 1 )  ∥ ≤ 5 }   ,    C 2   = { x ∈   R 2   | ∥ x −  ( 1 , 1 )  ∥ ≤ 5 }   ,    C 3   = { x ∈   R 2   | ∥ x −  ( 0 , − 3 )  ∥ ≤ 5 }   ,    Q 1   = { y ∈   R 3   | ∥ y −  ( 1 , 1 , 1 )  ∥ ≤ 5 }   ,    Q 2   = { y ∈   R 3   | ∥ y −  ( 0 , 0 , 0 )  ∥ ≤ 5 }   ,    Q 3   = { y ∈   R 3   | ∥ y −  ( 1 , 0 , 0 )  ∥ ≤ 5 }   ,   A =     1   2     0   3     5   2      ,   B =     2   0   1     3   2   3     1   0   0      ,   Λ = { 1 , 2 , 3 }  ,    λ n  = 0.6  . We choose two initial values    x 0  =  ( 2 , 2 )   ,    y 0  =  ( 2 , 2 , 2 )    and    x 0  =  ( 20 , 20 )   ,    y 0  =  ( 10 , 10 , 10 )    and take the iterative steps n as the transverse axis and   ∥ A x − B y ∥   as the vertical axis in the figures below (Figure 1 and Figure 2). We considered using the Algorithm 1 to solve this MSSEP.



The figures above confirm the effectiveness of the proposed Algorithm 1 and also show that there is an approximately linear downward trend after finite steps, which means the convergence rate of the proposed Algorithm 1 may be fast enough.
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Figure 1.    x 0  =  ( 2 , 2 )  ,  y 0  =  ( 2 , 2 , 2 )   . 






Figure 1.    x 0  =  ( 2 , 2 )  ,  y 0  =  ( 2 , 2 , 2 )   .
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Figure 2.    x 0  =  ( 20 , 20 )  ,  y 0  =  ( 10 , 10 , 10 )   . 






Figure 2.    x 0  =  ( 20 , 20 )  ,  y 0  =  ( 10 , 10 , 10 )   .



[image: Mathematics 07 00928 g002]








© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png


nav.xhtml


  mathematics-07-00928


  
    		
      mathematics-07-00928
    


  




  





media/file0.png


media/file2.png


media/file3.jpg


media/file1.jpg


