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Abstract: The inverse problem is one of the four major problems in computational mathematics.
There is an inverse problem in medical image reconstruction and radiotherapy that is called the
multiple-sets split equality problem. The multiple-sets split equality problem is a unified form of
the split feasibility problem, split equality problem, and split common fixed point problem. In this
paper, we present two iterative algorithms for solving it. The suggested algorithms are based on the
gradient method with a selection technique. Based on this technique, we only need to calculate one
projection in each iteration.
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1. Introduction

The inverse problem is one of the four major problems in computational mathematics. The rapid
development of the inverse problem has been a feature of recent decades; it can be found in computer
vision, machine learning, statistics, geography, medical imaging, remote sensing, ocean acoustics,
tomography, aviation, physics, and other fields. There is an inverse problem in medical image
reconstruction and radiotherapy that can be expressed as a split feasibility problem [1–9], split equality
problem [10–13], and split common fixed point problem [14–19].

In this paper, we focus on a unified form of the split feasibility problem, split equality problem,
and split common fixed point problem that is called the multiple-sets split equality problem.

Let H1, H2, H3 be three real Hilbert spaces. r, t are positive integers, {Ci}r
i=1 and {Qj}t

j=1 are two
families of closed and convex subsets of H1 and H2, respectively. A : H1 → H3, B : H2 → H3 are two
bounded and linear operators. Then the multiple-sets split equality problem (MSSEP for short) can be
formulated as

f inding x ∈
r⋂

i=1

Ci, y ∈
t⋂

j=1

Qj such that Ax = By. (1)

It reduces to the split equality problem if r = t = 1; moreover, it is the split feasibility problem if
H2 = H3 and B is the identity operator on H2. In addition, it is the split common fixed point problem
if we take x ∈ Ci to x = PCi x, y ∈ Qj to y ∈ PQj where PCi , PQj are the metric projections on Ci, Qj.

In the problem (1), without loss of generality, we may assume that t ≥ r and let Cr+1 = Cr+2 =

· · · = Ct = H1. Then the problem (1) can be described equivalently as:

f inding x ∈
t⋂

i=1

Ci, y ∈
t⋂

j=1

Qj such that Ax = By. (2)
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Let Si = Ci ×Qi ⊆ H = H1× H2, i ∈ Λ = {1, 2, · · · , t}, G = [A,−B] : H → H3, G∗ be the adjoint
operator of G where H1 × H2 is the Cartesian product of H1 and H2. Then the original problem (1) can
be modified as

f inding w = (x, y) ∈
t⋂

i=1

Si such that Gw = 0. (3)

Assume the problem (3) is consistent and let Ω denote its solution set, that is, Ω is not empty. We
consider the proximity function

f (w) =
1
2

Σt
i=1αi‖w− PSi w‖

2 +
1
2
‖Gw‖2,

where αi, i = 1, · · · , t are positive real numbers and PSi , i = 1, · · · , t are metric projections from H onto
Si. Since Ci and Qi are closed convex, so are Si, and then PSi are well defined. Then problem (3) can be
transformed into the minimization problem

min
w∈⋂t

i=1 Si

f (w). (4)

Note that the proximity function f (w) is convex and differentiable with gradient

∇ f (w) = Σt
i=1αi(I − PSi )w + G∗Gw,

where I is the identity operator on H. The gradient function ∇ f (w) is L-Lipschitz continuous with
Lipschitz constant [20]

L = Σt
i=1αi + ‖G‖2.

To solve the minimization problem (4), a classical method is the gradient algorithm, which takes
the iterative issue

wn+1 = wn − γn∇ f (wn), (5)

where γn is the iterative step size in step n.
Note that in iteration (5), we need to calculate projections for t times in each step. On the other

hand, notice that w∗ ∈ Ω if and only if g(w∗) = 0, where

g(w) =
1
2
‖w− PSi(n)

w‖2 +
1
2
‖Gw‖2,

in which
i(n) ∈ {i| max

1≤i≤t
‖w− PSi w‖}.

Then we consider the iterative issue

wn+1 = wn − γn∇g(wn). (6)

In iteration (6), we only need to implement a projection once in each step. Motivated by this point,
we present Algorithms 1 and 2 in Section 3 to solve problem (3).

The general structure of this paper is as follows. In the next section, we go over some preliminaries.
In Section 3, we present the main algorithms and their convergence. In Section 4, several numerical
results are shown to confirm the effectiveness of the suggested algorithm. In the last section, there are
some conclusions.

2. Preliminaries

For convenience, note that H is a real Hilbert space and I denotes the identity operator on H. By
xn → x∗ and xn ⇀ x∗, the strong and weak convergence of sequence {xn} to a point x∗, respectively,
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and ωw(xn) denotes the set of weak cluster points of the sequence {xn}. PS is the projection from H
onto its closed and convex subset S.

Lemma 1 ([21]). Let S be a closed, convex, and nonempty subset of H, then for any x, y ∈ H and z ∈ S,

(i) 〈x− PSx, z− PSx〉 ≤ 0;
(ii) ‖PSx− PSy‖2 ≤ 〈PSx− PSy, x− y〉;
(iii) 〈x− PSx, x− z〉 ≥ ‖x− PSx‖2.

Lemma 2 ([22]). Let {an}, {αn}, {un} be sequences of non-negative real numbers with

{αn} ⊂ [0, 1], Σ∞
n=1αn = ∞, Σ∞

n=1un < ∞.

Let {tn} be a sequence of real numbers with lim supn→∞ tn ≤ 0 and

an+1 ≤ (1− αn)an + αntn + un.

Then limn→∞ an = 0.

Lemma 3 ([23]). Let S be a closed and convex subset of H, and T : S→ S be non-expansive, and {xn} ⊆ S.
If xn ⇀ x and limn→∞ ‖xn − Txn‖ = 0, then Tx = x.

Lemma 4 ([24]). Let S be a closed, convex, and nonempty subset of H and {xn} be a sequence in H. If

(i) limn→∞ ‖xn − x‖ exists for each x ∈ S;
(ii) ωw(xn) ⊆ S;
then {xn} converges weakly to a point in S.

3. Main Results

Assume that the problem (3) is consistent and let Ω denote its solution set. That is, Ω is not empty
and Ω := {w ∈ H : w ∈ ⋂t

i=1 Si, Gw = 0}.

Remark 1. wn is a solution of the problem (3) if and only if the equality (8) holds.

On the one hand, if ‖wn + qn − zn‖ = 0, then take z ∈ Ω. We have

0 = 〈wn + qn − zn, wn − z〉
= 〈wn + G∗Gwn − PSi(n)

wn, wn − z〉
= 〈wn − PSi(n)

wn, wn − z〉+ 〈Gwn, Gwn − Gz〉

≥ ‖wn − PSi(n)
wn‖2 + ‖Gwn‖2.

The first equality is from ‖wn + qn − zn‖ = 0, the second one is from the definition of qn and zn,
and the last inequality is from Lemma 1(iii) and Gz = 0. Then

‖wn − PSi(n)
wn‖ = 0 and ‖Gwn‖ = 0,

which implies that

‖wn − PSi wn‖ = 0, i ∈ Λ and ‖Gwn‖ = 0.

Hence wn ∈
⋂t

i=1 Si and Gwn = 0. Namely, wn ∈ Ω.
Conversely, if wn is a solution of the problem (3), that is wn ∈

⋂t
i=1 Si and Gwn = 0, then

qn = G∗Gwn = 0 and zn = PSi(n)
wn = wn, so wn + qn − zn = 0. That is, ‖wn + qn − zn‖ = 0.



Mathematics 2019, 7, 928 4 of 10

Next we discuss the convergence of the iterative sequence {wn} generated by Algorithm 1 if it
does not terminate in finite steps.

Algorithm 1: Gradient method 1
Take w0 ∈ H arbitrarily and compute

zn = PSi(n)
wn,

qn = G∗Gwn,
(7)

where n ≥ 0 and
i(n) ∈ {i|max

i∈Λ
‖wn − PSi wn‖, Λ = {1, 2, · · · , t}}.

If
‖wn + qn − zn‖ = 0, (8)

then stop. wn is the solution (based on Remark 1). Otherwise, calculate

wn+1 = wn − τn(wn + qn − zn), (9)

where

τn = λn
‖wn − zn‖2 + ‖Gwn‖2

2‖wn + qn − zn‖2 ,

in which λn ∈ (0, 4).

Theorem 1. If 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 4, taking initial point w0 ∈ H arbitrarily, then the
sequence {wn} generated by Algorithm 1 converges weakly to a solution of the problem (3).

Proof. First, we show the boundedness of {wn}. Take z ∈ Ω. Based on the inequality in the process of
Remark 1, we get

‖wn+1 − z‖2 = ‖wn − z− τn(wn + qn − zn)‖2

= ‖wn − z‖2 − 2τn〈wn + qn − zn, wn − z〉+ τ2
n‖wn + qn − zn‖2

≤ ‖wn − z‖2 − λn
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2

+
λ2

n
4

(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2

= ‖wn − z‖2 − λn(1−
λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 . (10)

This implies that limn→∞ ‖wn− z‖ exists. Thus the sequence {wn} is bounded and so are the sequences
{Gwn} and {PSi wn}, i ∈ Λ.
Next we show that ωw(wn) ⊂ Ω.
Since limn→∞ ‖wn − z‖ exists and

λn(1−
λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 ≤ ‖wn − z‖2 − ‖wn+1 − z‖2,

together with the boundedness of the sequence {wn + qn − zn} and the definition of λn, it follows that

lim
n→

(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 = 0,
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which implies that

lim
n→∞

‖wn − zn‖ = 0 and lim
n→∞

‖Gwn‖ = 0.

Hence,

lim
n→∞

‖wn − PSi wn‖ = 0, i ∈ Λ and lim
n→∞

‖Gwn‖ = 0.

Since {wn} is bounded, let w∗ be a weak cluster point of {wn} with subsequence {wni} weakly
convergent to it.

lim
n→∞

‖wni − PSi wni‖ = 0, i ∈ Λ and lim
n→∞

‖Gwni‖ = 0.

By Lemma 3, we get w∗ ∈ Ω, and by the arbitrariness of w∗ ∈ ωw(wn), we deduce that ωw(wn) ⊂ Ω.
Moreover, the conditions in Lemma 4 have also been satisfied, and the sequence {wn} generated by
the Algorithm 1 converges weakly to some solution of the problem (3). The proof is completed.

There is only weak convergence in Theorem 1. Next, we show a strong convergence theorem for
solving the problem (3).

Next, we discuss the convergence of the iterative sequence {wn} generated by Algorithm 2 if it
does not terminate in finite steps.

Algorithm 2: Gradient method 2
Take u ∈ H and initial point w0 ∈ H. Compute

zn = PSi(n)
wn,

qn = G∗Gwn,
(11)

where
i(n) = {i|max

i∈Λ
‖wn − PSi wn‖, Λ = {1, 2, · · · , t}}.

If
‖wn + qn − zn‖ = 0,

then stop. wn is the solution (by Remark 1). Otherwise, calculate

wn+1 = αnu + (1− αn)(wn − τn(wn + qn − zn)), (12)

where αn ∈ (0, 1), n ≥ 0 and

τn = λn
‖wn − zn‖2 + ‖Gwn‖2

2‖wn + qn − zn‖2 ,

in which λn ∈ (0, 4).

Theorem 2. Suppose that limn→∞ αn = 0, Σ∞
n=0αn = ∞, and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 4.

Taking u ∈ H and initial point w0 ∈ H arbitrarily, then the sequence {wn} generated by the Algorithm 2
converges strongly to z = PΩu.

Proof. Let un = wn − τn(wn + qn − zn), for n ≥ 0. From the process (10) in Theorem 1, we get

‖un − z‖2 ≤ ‖wn − z‖2 − λn(1−
λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 (13)
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by the definition of λn, that is, ‖un − z‖ ≤ ‖wn − z‖. Thus

‖wn+1 − z‖ = ‖αnu + (1− αn)un − z‖
≤ αn‖u− z‖+ (1− αn)‖un − z‖
≤ αn‖u− z‖+ (1− αn)‖wn − z‖
≤ max{‖wn − z‖, ‖u− z‖}.

By induction, we derive
‖wn+1 − z‖ ≤ max{‖w0 − z‖, ‖u− z‖},

which means that the sequence {wn} is bounded and so are the sequences {Gwn} and {PSi wn}, i ∈ Λ.
By a simple derivation,

‖wn+1 − z‖2 = ‖αn(u− z) + (1− αn)(un − z)‖2

≤ (1− αn)‖un − z‖2 + 2αn〈u− z, wn+1 − z〉.

Then by (13),

‖wn+1 − z‖2 ≤ (1− αn)‖wn − z‖2 + 2αn〈u− z, wn+1 − z〉

−(1− αn)λn(1−
λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2

= (1− αn)‖wn − z‖2 + αn[2〈u− z, wn+1 − z〉

− (1− αn)

αn
λn(1−

λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 ]. (14)

Let
θn = ‖wn − z‖2,

δn = 2〈u− z, wn+1 − z〉 − (1− αn)

αn
λn(1−

λn

4
)
(‖wn − zn‖2 + ‖Gwn‖2)2

‖wn + qn − zn‖2 .

Then the inequality (14) equals
θn+1 ≤ (1− αn)θn + αnδn, (15)

and also
0 ≤ θn+1 ≤ (1− αn)θn + αnδn, n ≥ 0.

It follows that
δn ≤ 2〈u− z, wn+1 − z〉 ≤ 2‖u− z‖‖wn+1 − z‖.

So
lim sup

n→∞
δn < ∞.

Next, we show that lim supn→∞ δn ≥ −1. Otherwise, if lim supn→∞ δn < −1, then by the definition of
the supremum, there exists m such that δn ≤ −1 for all n ≥ m. It follows that for all n ≥ m,

θn+1 ≤ (1− αn)θn + αnδn

= θn + αn(δn − θn)

≤ θn − αn.

Thus
θn+1 ≤ θm − Σn

i=mαi.
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Hence, taking lim sup as n→ ∞ in the above inequality, we obtain

0 ≤ lim sup
n→∞

θn+1 ≤ θm − lim sup Σn
i=mαi = −∞,

which is a contradiction. Therefore, lim supn→∞ δn ≥ −1, and it is finite. By the boundedness of {δn},
we can take a subsequence {nk} of {n} such that

lim sup
n→∞

δn = lim
k→∞

δnk

= lim
k→∞

[2〈u− z, wnk+1 − z〉

−
(1− αnk )

αnk

λnk (1−
λnk

4
)
(‖wnk − znk‖2 + ‖Gwnk‖2)2

‖wnk + qnk − znk‖2 ].

Since the sequence {wnk+1} is bounded, there exists a subsequence of {wnk+1}. Without loss of
generality, we may assume it’s {wnk+1} itself, such that limk→∞〈u− z, wnk+1− z〉 exists. Consequently,
the following limit exists:

lim
k→∞
−
(1− αnk )

αnk

λnk (1−
λnk

4
)
(‖wnk − znk‖2 + ‖Gwnk‖2)2

‖wnk + qnk − znk‖2 .

Together with the definitions of αn and λn, it shows that

lim
k→∞

(‖wnk − znk‖)2 + ‖Gwnk‖2

‖wnk + qnk − znk‖2 = 0,

which yields
lim
k→∞
‖wnk − znk‖ = 0 and lim

k→∞
‖Gwnk‖ = 0.

Following the proof procedure of Theorem 1, we conclude that ωw(wnk ) ⊂ Ω. Since

‖wnk+1 − wnk‖ = ‖αnk u + (1− αnk )unk − wnk‖
≤ αnk‖u− wnk‖+ (1− αnk )‖unk − wnk‖
= αnk‖u− wnk‖+ (1− αnk )τnk‖wnk + qnk − znk‖

= αnk‖u− wnk‖+ (1− αnk )λnk

‖wnk − znk‖2 + ‖Gwnk‖2

‖wnk + qnk − znk‖
→ 0,

assume that wnk+1 ⇀ w∗ ∈ Ω. Then

lim sup
n→∞

δn = lim
k→∞

δnk

= lim
k→∞

[2〈u− z, wnk+1 − z〉

−
(1− αnk )

αnk

λnk (1−
λnk

4
)
(‖wnk − znk‖2 + ‖Gwnk‖2)2

‖wnk + qnk − znk‖2 ]

≤ lim
k→∞

2〈u− z, wnk+1 − z〉

= 2〈u− z, w∗ − z〉
≤ 0,

due to the fact that z = PΩu and Lemma 1. Finally, applying Lemma 2 to (15), we conclude that
wn → z. The proof is completed.
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4. Numerical Experiments

In this section, we provide several numerical results of the MSSEP (2) to confirm the effectiveness
of the suggested Algorithm 1. The whole program was written in Wolfram Mathematica (version 9.0).
All of the numerical results were carried out on a personal Lenovo computer with Intel(R)Core(TM)
i5-6600 CPU 3.30 GHz and RAM 8.00 GB.

The MSSEP with C1 = {x ∈ R2|‖x − (−1, 1)‖ ≤ 5}, C2 = {x ∈ R2|‖x − (1, 1)‖ ≤ 5}, C3 =

{x ∈ R2|‖x− (0,−3)‖ ≤ 5}, Q1 = {y ∈ R3|‖y− (1, 1, 1)‖ ≤ 5}, Q2 = {y ∈ R3|‖y− (0, 0, 0)‖ ≤ 5},

Q3 = {y ∈ R3|‖y− (1, 0, 0)‖ ≤ 5}, A =

 1 2
0 3
5 2

, B =

 2 0 1
3 2 3
1 0 0

, Λ = {1, 2, 3}, λn = 0.6. We

choose two initial values x0 = (2, 2), y0 = (2, 2, 2) and x0 = (20, 20), y0 = (10, 10, 10) and take the
iterative steps n as the transverse axis and ‖Ax− By‖ as the vertical axis in the figures below (Figures 1
and 2). We considered using the Algorithm 1 to solve this MSSEP.

50 100 150 200 250 300
n

-25

-20

-15

-10

-5

logI±Ax
n
-By

n
µM

Figure 1. x0 = (2, 2), y0 = (2, 2, 2).

100 200 300 400 500 600 700
n

-30

-25

-20

-15

-10

-5

5

logI±Ax
n
-By

n
µM

Figure 2. x0 = (20, 20), y0 = (10, 10, 10).

The figures above confirm the effectiveness of the proposed Algorithm 1 and also show that there
is an approximately linear downward trend after finite steps, which means the convergence rate of the
proposed Algorithm 1 may be fast enough.
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