The Generalized Solutions of the nth Order Cauchy–Euler Equation
Abstract
:1. Introduction
2. Preliminaries
- (i)
- for all ;
- (ii)
- there exists a real number c such that is absolutely integrable over .
- (i)
- f is a right-sided distribution, that is, .
- (ii)
- There exists a real number c for which is a tempered distribution.
- (i)
- , .
- (ii)
- , .
- (iii)
- , .
- (iv)
- , .
- (v)
- , .
3. Main Results
- (i)
- If there exists a non-negative integer k such that
- (ii)
- If there exists a non-negative integer k less than or equal to n such that
- (iii)
- If there exists a positive integer k such that
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyce, W.E.; DiPrima, R.C. Elementary Differential Equations and Boundary Value Problems, 9th ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Kohler, W.; Johnson, L. Elementary Differential Equations, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2006. [Google Scholar]
- Kanwal, R.P. Generalized Functions: Theory and Technique, 3rd ed.; Springer Science & Business Media: New York, NY, USA, 2004. [Google Scholar]
- Wiener, J. Generalized-function solutions of differential and functional differential equations. J. Math. Anal. Appl. 1982, 88, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, L. Theorie des Distributions; Actualite’s Scientifiques et Industrial: Paris, France, 1959. [Google Scholar]
- Zemanian, A.H. Distribution Theory and Transform Analysis; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Wiener, J.; Shah, S.M. Distributional and entire solutions of ordinary differential and functional differential equations. Int. J. Math. Sci. 1983, 6, 243–270. [Google Scholar]
- Cooke, K.L.; Wiener, J. Distributional and analytic solutions of functional differential equations. J. Math. Anal. Appl. 1984, 98, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Littlejohn, L.L.; Kawal, R.P. Distributional solutions of the hypergeometric differential equation. J. Math. Anal. Appl. 1987, 122, 325–345. [Google Scholar] [CrossRef] [Green Version]
- Wiener, J.; Cooke, K.L. Coexistence of analytic and distributional solutions for linear differential equations I. J. Math. Anal. Appl. 1990, 148, 390–421. [Google Scholar] [CrossRef]
- Wiener, J.; Cooke, K.L.; Shah, S.M. Coexistence of analytic and distributional solutions for linear differential equations II. J. Math. Anal. Appl. 1991, 159, 271–289. [Google Scholar] [CrossRef]
- Hernandezurena, L.G.; Estrada, R. Solution of ordinary differential equations by series of delta functions. J. Math. Anal. Appl. 1995, 191, 40–55. [Google Scholar] [CrossRef]
- Kananthai, A. Distribution solutions of the third order Euler equation. Southeast Asian Bull. Math. 1999, 23, 627–631. [Google Scholar]
- Liangprom, A.; Nonlaopon, K. On the generalized solutions of a certain fourth order Euler equations. J. Nonlinear Sci. Appl. 2017, 10, 4077–4084. [Google Scholar] [CrossRef] [Green Version]
- Sangsuwan, A.; Nonlaopon, K.; Orankitjaroen, S. The generalized solutions of a certain nth order Cauchy–Euler equation. Asian-Eur. J. Math. 2018, 13. [Google Scholar] [CrossRef]
- Jodnok, P.; Nonlaopon, K. On the generalized Solutions of the fifth order Euler equations. Far East J. Math. Sci. 2018, 106, 59–74. [Google Scholar] [CrossRef]
- Nanta, S. Distribution Solution of the nth Order Euler Equation; Chiang Mai University: Chiang Mai, Thailand, 2015. [Google Scholar]
- Bhattacharyya, P.K. Distributions: Generalized Functions with Applications in Sobolev Spaces; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Liverman, T.P.G. Generalized Functions and Direct Operational Methods; Prentice Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangsuwan, A.; Nonlaopon, K.; Orankitjaroen, S.; Mirumbe, I. The Generalized Solutions of the nth Order Cauchy–Euler Equation. Mathematics 2019, 7, 932. https://doi.org/10.3390/math7100932
Sangsuwan A, Nonlaopon K, Orankitjaroen S, Mirumbe I. The Generalized Solutions of the nth Order Cauchy–Euler Equation. Mathematics. 2019; 7(10):932. https://doi.org/10.3390/math7100932
Chicago/Turabian StyleSangsuwan, Amornrat, Kamsing Nonlaopon, Somsak Orankitjaroen, and Ismail Mirumbe. 2019. "The Generalized Solutions of the nth Order Cauchy–Euler Equation" Mathematics 7, no. 10: 932. https://doi.org/10.3390/math7100932
APA StyleSangsuwan, A., Nonlaopon, K., Orankitjaroen, S., & Mirumbe, I. (2019). The Generalized Solutions of the nth Order Cauchy–Euler Equation. Mathematics, 7(10), 932. https://doi.org/10.3390/math7100932