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Abstract: In this work, let X be Banach space with a uniformly convex and q-uniformly smooth
structure, where 1 < q ≤ 2. We introduce and consider a generalized Mann-like viscosity implicit
rule for treating a general optimization system of variational inequalities, a variational inclusion
and a common fixed point problem of a countable family of nonexpansive mappings in X. The
generalized Mann-like viscosity implicit rule investigated in this work is based on the Korpelevich’s
extragradient technique, the implicit viscosity iterative method and the Mann’s iteration method.
We show that the iterative sequences governed by our generalized Mann-like viscosity implicit rule
converges strongly to a solution of the general optimization system.
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1. Introduction

Throughout this work, we always suppose that C is a non-empty, convex and closed subset of a
real Banach space X. X∗ will be used to present the dual space of space X. In this present work, we let
the norms of X and X∗ be presented by the denotation ‖ · ‖. Let T be a nonlinear self mapping with
fixed points defined on subset C.

One use 〈·, ·〉 to denote the duality pairing. The possible set-valued normalized duality mapping
J : X → 2X∗ is defined by

J(x) := {φ ∈ X∗ : 〈φ, x〉 = ‖φ‖2 = ‖x‖2}, ∀x ∈ X.

Banach space X is said to be a smooth space (has a Gâteaux differentiable norm) if
limt→0+

‖x+ty‖−‖x‖
t exists for all ‖x‖ = ‖y‖ = 1. J is norm-to-weak∗ continuous single-valued

map in such a space. X is also said to be a uniformly smooth space (has a uniformly Fréchet
differentiable norm) if the above limit is attained uniformly for ‖x‖ = ‖y‖ = 1 and J is norm-to-norm
uniformly continuous on bounded sets in such a space. X is said to be a strictly convex space if
‖(1− λ)x + λy‖ < 1, ∀λ ∈ (0, 1) for all ‖x‖ = ‖y‖ = 1. Space X is said to be uniformly convex
if, for each ε ∈ (0, 2], we have a constant δ > 0 such that ‖ x+y

2 ‖ > 1− δ ⇒ ‖x − y‖ < ε for all
‖x‖ = ‖y‖ = 1. A uniformly convex Banach space yields a strictly convex Banach space. Under the
reflexive framework, X is strictly convex if and only if X∗ is smooth.
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Next, we suppose X is smooth, i.e., J is single-valued. Let A1, A2 : C → X be two nonlinear
single-valued mappings. One is concerned with the problem of approximating (x∗, y∗) ∈ C× C such
that {

〈x∗ + µ1 A1y∗ − y∗, J(x∗ − x)〉 ≤ 0, ∀x ∈ C,
〈y∗ + µ2 A2x∗ − x∗, J(y∗ − x)〉 ≤ 0, ∀x ∈ C,

(1)

with two real positive constants µ1 and µ2. This optimization system is called a general system of
variational inequalities (GSVI). In particular, in the case that X = H is Hilbert, then GSVI (1) is reduced
to the following GSVI of finding (x∗, y∗) ∈ C× C such that{

〈x∗ + µ1 A1y∗ − y∗, x∗ − x〉 ≥ 0, ∀x ∈ C,
〈y∗ + µ2 A2x∗ − x∗, y∗ − x〉 ≥ 0, ∀x ∈ C,

with two real positive constants µ1 and µ2. This was introduced and studied in [1]. Additionally,
if A = A1 = A2 and x∗ = y∗, then GSVI (1) becomes the variational problem of finding x∗ ∈ C
such that 〈Ax∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C. In 2006, Aoyama, Iiduka and Takahashi [2] proposed
an iterative scheme of finding its approximate solutions and claimed the weak convergence of the
iterative sequences governed by the proposed algorithm. Recently, many researchers investigated the
variational inequality problem through gradient-based or splitting-based methods; see, e.g., [3–13].
Some stability results can be found at [14,15].

In 2013, Ceng, Latif and Yao [16] analyzed and introduced an implicit computing method by
using a double-step relaxed gradient idea in the setting of 2-uniformly smooth and uniformly convex
space X with 2-uniform smoothness coefficient κ2. Let ΠC : X → C be a retraction, which is both
sunny and nonexpansive. Let f : C → C be a contraction with constant δ ∈ (0, 1). Let the mapping
Ai : C → X be αi-inverse-strongly accretive for i = 1, 2. Let {Sn}∞

n=0 be a countable family of
nonexpansive self single-valued mappings on C such that Ω = ∩∞

n=0Fix(Sn) ∩GSVI(C, A1, A2) 6= ∅,
where GSVI(C, A1, A2) stands for the set of fixed points the mapping G := ΠC(I−µ1 A1)ΠC(I−µ2 A2).
For a arbitrary initial x0 ∈ C, let {xn} be the sequence generated by{

yn = αn f (yn) + (1− αn)ΠC(I − µ1 A1)ΠC(I − µ2 A2)xn,
xn+1 = βnxn + (1− βn)Snyn, ∀n ≥ 0,

with 0 < µi <
2αi
κ2

for i = 1, 2, where {αn} and {βn} are sequences of real numbers in (0, 1) satisfying
the restrictions: ∑∞

n=0 αn = ∞, limn→∞ αn = 0, lim supn→∞ βn < 1 and lim infn→∞ βn > o. They got
convergence analysis of {xn} to x∗ ∈ Ω, which treats the variational inequality: 〈(I − f )x∗, J(x∗ −
p)〉 ≤ 0, ∀p ∈ Ω. Recently, projection-like methods, including sunny nonexpansive retractions, have
largely studied in Hilbert and Banach spaces; see, e.g., [17–24] and the references therein.

2. Preliminaries

Next, we let X be a space with uniformly convex and q-uniformly smooth structures. Then the
following inequality holds:

‖x + y‖q ≤ κq‖y‖q + ‖x‖q + q〈y, Jq(x)〉, ∀x, y ∈ E,

where κq is the smoothness coefficient. Let ΠC, A1, A2, G, {Sn}∞
n=0 be the same mappings as above.

Assume that Ω = ∩∞
n=0Fix(Sn) ∩ GSVI(C, A1, A2) 6= ∅. Suppose that F : C → X is a η-strongly

accretive operator with constants k, η > 0 and k-Lipschitzian, and f : C → X is L-Lipschitzian mapping.

Assume 0 < ρ < ( qη
κqkq )

1
q−1 , 0 < µi < ( qαi

κq
)

1
q−1 , i = 1, 2, and 0 ≤ γL < τ, where τ = ρ(η − κqρq−1kq

q ).
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Recently, Song and Ceng [25] proposed and considered a very general iterative scheme by the modified
relaxed extragradient method, i.e., for arbitrary initial x0 ∈ C, we generate {xn} by{

yn = (1− βn)xn + βnΠC(I − µ1 A1)ΠC(I − µ2 A2)xn,
xn+1 = ΠC[((1− γn)I − αnρF)Snyn + γαn f (xn) + γnxn], ∀n ≥ 0,

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the conditions: (i) ∑∞
n=0 αn = ∞, ∑∞

n=0 |αn+1 − αn| < ∞
and αn → 0; (ii) lim supn→∞ γn < 1, lim infn→∞ γn > 0, ∑∞

n=0 |γn+1 − γn| < ∞; and (iii) ∑∞
n=0 |βn+1 −

βn| < ∞, lim infn→∞ βn > 0. The authors claimed convergence of {xn} to x∗ ∈ Ω, which deals with
the variational inequality: 〈(ρF− γ f )x∗, J(x∗ − p)〉 ≤ 0, ∀p ∈ Ω.

On the other hand, Let A : X → X be an α-inverse-strongly accretive operator, B : X → 2X be an
m-accretive operator, f : X → X be a contraction with constant δ ∈ (0, 1). Assume that the inclusion of
finding x∗ ∈ X such that 0 ∈ (A + B)x∗, has a solution, i.e., Ω = (A + B)−10 6= ∅. In 2017, Chang et
al. [26] introduced and studied a generalized viscosity implicit rule, i.e., for arbitrary initial x0 ∈ X, we
generate {xn} by

xn+1 = (1− αn)JB
λ (I − λA)(tnxn + (1− tn)xn+1) + αn f (xn), ∀n ≥ 0,

where JB
λ = (I + λB)−1, {tn}, {αn} ⊂ [0, 1] and λ ∈ (0, ∞) satisfying the conditions: (i) ∑∞

n=0 αn = ∞
and limn→∞ αn = 0; (ii) ∑∞

n=0 |αn+1 − αn| < ∞; (iii) 0 < ε ≤ tn ≤ tn+1 < 1, ∀n ≥ 0; and (iv)

0 < λ ≤ ( αq
κq
)

1
q−1 . These authors studied and proved convergence of {xn} to x∗ ∈ Ω, solving the

inequality: 〈(I − f )x∗, J(x∗ − p)〉 ≤ 0, ∀p ∈ Ω. For recent results, we refer the reader to [27–34]. The
purpose of this work is to approximate a common solution of GSVI (1), a variational inclusion and a
common fixed point problem of a countable family of nonexpansive mappings in spaces with uniformly
convex and q-uniformly smooth structures. This paper introduces and considers a generalized Mann
viscosity implicit rule, based on the Korpelevich’s extragradient method, the implicit approximation
method and the Mann’s iteration method. We investigate norm convergence of the sequences generated
by the generalized Mann viscosity implicit rule to a common solution of the GSVI, VI and CFPP, which
solves a hierarchical variational inequality. Our results improve and extend the results reported
recently, e.g., Ceng et al. [16], Song and Ceng [25] and Chang et al. [26].

Next, for simplicity, we employ xn ⇀ x (resp., xn → x) to present the weak (resp., strong)
convergence of the sequence {xn} to x. It is known that J(tx) = tJ(x) and J(−x) = −J(x) for all
t > 0 and x ∈ X. Then the convex modulus of X is defined by δX(ε) = inf{1− ‖ 1

2 (x + y)‖ : x, y ∈
U, ‖x− y‖ ≥ ε}, ∀ε ∈ [0, 2]. X is said to be uniformly convex if δX(0) = 0, and δX(ε) > 0 for each
ε ∈ (0, 2]. Let q be a fixed real number with q > 1. Then a Banach space X is said to be q-uniformly
convex if δX(t) ≥ ctq, ∀t ∈ (0, 2], where c > 0. Each Hilbert space H is 2-uniformly convex, while Lp

and `p spaces are max{2, p}-uniformly convex for each p > 1.

Proposition 1. [35] Let X be space with smooth and uniformly convex structures, and r > 0. Then g(0) = 0
and g(‖x− y‖) ≤ ‖x‖2 − 2〈x, J(y)〉+ ‖y‖2 for all x, y ∈ Br = {y ∈ X : ‖y‖ ≤ r}, where g : [0, 2r] → R
is a continuous, strictly increasing, and convex function.

Let ρX : [0, ∞)→ [0, ∞) be the smooth modulus of X defined by

ρX(t) = sup{‖x + y‖+ ‖x− y‖ − 2
2

: ‖x‖ = 1, ‖y‖ ≤ t}.

A Banach space X is said to be q-uniformly smooth if ρX(t) ≤ ctq, ∀t > 0, where c > 0. It is
known that each Hilbert, Lp and `p spaces are uniformly smooth where p > 1. More precisely, each



Mathematics 2019, 7, 933 4 of 18

Hilbert space H is 2-uniformly smooth, while Lp and `p spaces are min{2, p}-uniformly smooth for
each p > 1. Let q > 1. Jq : X → 2X∗ , the duality mapping, is defined by

Jq(x) := {φ ∈ X∗ : 〈x, φ〉 = ‖x‖q and ‖φ‖ = ‖x‖q−1}, ∀x ∈ X.

It is quite easy to see that Jq(x) = J(x)‖x‖q−2, and if X = H, then J2 = J = I the identity mapping
of H.

Proposition 2. [35] Let q ∈ (1, 2] a given real number and let X be uniformly smooth with order q. Then
‖x + y‖q − q〈y, Jq(x)〉 ≤ ‖x‖q + κq‖y‖q, ∀x, y ∈ X, where κq is the real smooth constant. In particular, if X
is uniformly smooth with order 2, then ‖x + y‖2 − 2〈y, J(x)〉 ≤ ‖x‖2 + κ2‖y‖2, ∀x, y ∈ X.

Using the structures of subdifferentials, we obtain the following tool.

Lemma 1. Let q > 1 and X be a real normed space with the generalized duality mapping Jq. Then, for any
given x, y ∈ X, ‖x + y‖q − q〈y, jq(x + y)〉 ≤ ‖x‖q, ∀jq(x + y) ∈ Jq(x + y).

Let D be a set in set C and let Π map C into D. We say that Π is sunny if Π(x) = Π[t(x−Π(x)) +
Π(x)], whenever Π(x) + t(x−Π(x)) ∈ C for x ∈ C and t ≥ 0. We say Π is a retraction if Π = Π2.
We say that a subset D of C is a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

Proposition 3. [36] Let X be smooth, D be a non-empty set in C and Π be a retraction onto D. (i) Π is
nonexpansive sunny; (ii) 〈x− y, J(Π(x)−Π(y))〉 ≥ ‖Π(x)−Π(y)‖2, ∀x, y ∈ C; (iii) 〈x−Π(x), J(y−
Π(x))〉 ≤ 0, ∀x ∈ C, y ∈ D. Then the above relations are equivalent to each other.

Let A : C → 2X be a set-valued operator with Ax 6= ∅, ∀x ∈ C. Let q > 1. An operator A is
accretive if for each x, y ∈ C, there exists jq(x− y) ∈ Jq(x− y) such that 〈jq(x− y), u− v〉 ≥ 0, ∀u ∈
Ax, v ∈ Ay. An accretive operator A is inverse-strongly accretive of order q, i.e., α-inverse-strongly
accretive, if for each x, y ∈ C, there exist α > 0 such that 〈u − v, jq(x − y)〉 ≥ α‖Ax − Ay‖q,
∀u ∈ Ax, v ∈ Ay, where jq(x − y) ∈ Jq(x − y). In a Hilbert space H, A : C → H is called
α-inverse-strongly monotone.

Operator A is said to be m-accretive if and only if (I + λA)C = X for all λ > 0 and A is accretive.
One defines the mapping JA

λ : (I + λA)C → C by JA
λ = (I + λA)−1 with real constant λ > 0. Such JA

λ

is called the resolvent mapping of A for each λ > 0.

Lemma 2. [37] The following statements hold:

(i) the resolvent identity: JA
λ x = Jµ(

µ
λ x + (1− µ

λ )JA
λ x), ∀λ, µ > 0, x ∈ X;

(ii) if JA
λ is a resolvent of A for λ > 0, then JA

λ is a single-valued nonexpansive mapping with Fix(JA
λ ) = A−10,

where A−10 = {x ∈ C : 0 ∈ Ax};
(iii) in a Hilbert space H, an operator A is maximal monotone iff it is m-accretive.

Let A : C → X be an α-inverse-strongly accretive mapping and B : C → 2X be an
m-accretive operator. In the sequel, one will use the notation Tλ := JB

λ (I − λA) = (I + λB)−1(I −
λA), ∀λ > 0. The following statements (see [38]) hold:

(i) Fix(Tλ) = (A + B)−10, ∀λ > 0;
(ii) ‖x− Tλx‖ ≤ 2‖x− Tsx‖ for 0 < λ ≤ s and x ∈ X.
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Proposition 4. [38] Let X be a Banach space with the uniformly convex and q-uniformly smooth structures
with 1 < q ≤ 2. Assume that A : C → X is a α-inverse-strongly accretive single-valued mapping and
B : C → 2X is an m-accretive operator. Then

‖Tλx−Tλy‖q ≤ ‖x− y‖q−λ(αq−λq−1κq)‖Ax−Ay‖q−φ(‖(I− JB
λ )(I−λA)x− (I− JB

λ )(I−λA)y‖),

for all x, y ∈ B̃r := {x ∈ C : ‖x‖ ≤ r}, where φ : R+ → R+ with φ(0) = 0 is a convex, strictly increasing
and continuous function, λ and r two positive real constants, κq is the real smooth constant of X, and Tλ and JB

λ

are resolvent operators defined as above. In particular, if 0 < λ ≤ ( αq
κq
)

1
q−1 , then Tλ is nonexpansive.

Lemma 3. [39] Let X be uniformly smooth, T be single-valued nonexpansivitity on C with Fix(T) 6= ∅, and
f : C → C be a any contraction. For each t ∈ (0, 1), one employs zt ∈ C to present the unique fixed point of
the new contraction C 3 z 7→ t f (z) + (1− t)Tz on C, i.e., zt = (1− t)Tzt + t f (zt). Then {zt} converges to
x∗ ∈ Fix(T) in norm, which deals with the variational inequality: 〈(I − f )x∗, J(x∗ − p)〉 ≤ 0, ∀p ∈ Fix(T).

Lemma 4. [25] Let X be a uniformly smooth with order q. Suppose that ΠC is a sunny nonexpansive retraction
from X onto C. Let the mapping Ai : C → X be αi-inverse-strongly accretive of order q for i = 1, 2. Let the

mapping G : C → C be defined as Gx := ΠC(I − µ1 A1)ΠC(I − µ2 A2), ∀x ∈ C. If 0 < µi ≤ ( qαi
κq
)

1
q−1 for

i = 1, 2, then G : C → C is nonexpansive. For given (x∗, y∗) ∈ C× C, (x∗, y∗) is a solution of GSVI (1) if
and only if x∗ = ΠC(y∗ − µ1 A1y∗) where y∗ = ΠC(x∗ − µ2 A2x∗), i.e., x∗ = Gx∗.

Lemma 5. [40] Let {Sn}∞
n=0 be a mapping sequence on C. Suppose that ∑∞

n=1 sup{‖Snx − Sn−1x‖ : x ∈
C} < ∞. Then {Snx} converges to some point of C in norm for each x ∈ C. Besides, we present S, a
self-mapping, on C by Sx = limn→∞ Snx, ∀x ∈ C. Then limn→∞ sup{‖Snx− Sx‖ : x ∈ C} = 0.

Lemma 6. [41] Let X be Banach space. Let {αn} be a real sequence in (0, 1) with lim supn→∞ αn < 1 and
lim infn→∞ αn > 0. Let xn+1 = αnxn + (1− αn)yn, ∀n ≥ 0 and lim supn→∞(‖yn − yn+1‖ − ‖xn+1 −
xn‖) ≤ 0, where {xn} and {yn} be bounded sequences in X. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 7. [42] Let X be strictly convex, and {Tn}∞
n=0 be a sequence of nonexpansive mappings on C. Suppose

that ∩∞
n=0Fix(Tn) 6= ∅. Let {λn} be a sequence of positive numbers with ∑∞

n=0 λn = 1. Then a mapping S on
C defined by Sx = ∑∞

n=0 λnTnx for x ∈ C is defined well, nonexpansive and Fix(S) = ∩∞
n=0Fix(Tn) holds.

Lemma 8. [43] Let {an} be a non-negative number sequence of with an+1 ≤ an(1− λn) + λnγn, ∀n ≥ 1,
where {γn} and {λn} are sequences such that (a) ∑∞

n=1 |λnγn| < ∞ (or lim supn→∞ γn ≤ 0 ) and (b)
{λn} ⊂ [0, 1] and ∑∞

n=1 λn = ∞. Then an goes to zero as n goes to the infinity.

Lemma 9. [7,35] Let X be uniformly convex, and the ball Br = {x ∈ X : ‖x‖ ≤ r}, r > 0. Then

‖αx + βy + γy‖2 + αβg(‖x− y‖) ≤ α‖x‖2 + β‖y‖2 + γ‖z‖2

for all x, y, z ∈ Br and α, β, γ ∈ [0, 1] with α + β + γ = 1, where g : [0, ∞)→ [0, ∞) is a convex, continuous
and strictly increasing function.

3. Iterative Algorithms and Convergence Criteria

Space X presents a real Banach space and its topological dual is X∗, and C is a non-empty convex
and closed set in space X. We are now ready to state and prove the main results in this paper.

Theorem 1. Let X be uniformly convex and uniformly smooth with the constant 1 < q ≤ 2. Let ΠC be a
nonexpansive sunny retraction from X onto C. Assume that the mappings A, Ai : C → X are inverse-strongly
accretive of order q and αi-inverse-strongly accretive of order q, respectively for i = 1, 2. Let B : C → 2X be an
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m-accretive operator, and let {Sn}∞
n=0 be a countable family of nonexpansive single-valued self-mappings on

C such that Ω = ∩∞
n=0Fix(Sn) ∩GSVI(C, A1, A2) ∩ (A + B)−10 6= ∅ where GSVI(C, A1, A2) is the fixed

point set of G := ΠC(I − µ1 A1)ΠC(I − µ2 A2) with 0 < µi < ( qαi
κq
)

1
q−1 for i = 1, 2. Let f : C → C be a

contraction with constant δ ∈ (0, 1). For arbitrary initial x0 ∈ C, {xn} is a sequence generated by
yn = αn f (yn) + γn JB

λn
(I − λn A)(tnxn + (1− tn)yn) + βnxn,

vn = ΠC(I − µ1 A1)ΠC(yn − µ2 A2yn),
xn+1 = (1− δn)Snvn + δnxn, n ≥ 0,

where {λn} ⊂ (0, ( qα
κq
)

1
q−1 ) and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1) satisfy

(i) ∑∞
n=0 αn = ∞, limn→∞ αn = 0 and αn + βn + γn = 1;

(ii) limn→∞ |βn − βn−1| = limn→∞ |γn − γn−1| = 0;
(iii) limn→∞ |tn − tn−1| = 0 and lim infn→∞ γn(1− tn) > 0;
(iv) lim infn→∞ βnγn > 0, lim supn→∞ δn < 1 and lim infn→∞ δn > 0;

(v) 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < ( qα
κq
)

1
q−1 .

Assume that ∑∞
n=1 supx∈D ‖(Sn − Sn−1)x‖ < ∞ for any bounded set D, which is subset of C and let S be a

self-mapping Sx = limn→∞ Snx, ∀x ∈ C and suppose that Fix(S) = ∩∞
n=0Fix(Sn). Then xn → x∗ ∈ Ω,

which solves 〈(I − f )x∗, J(x∗ − p)〉 ≤ 0, ∀p ∈ Ω uniquely.

Proof. Set un = ΠC(yn − µ2 A2yn). It is not hard to find that our scheme can be re-written by{
yn = αn f (yn) + βnxn + γnTn(tnxn + (1− tn)yn),
xn+1 = (1− δn)SnGyn + δnxn, n ≥ 0,

(2)

where Tn := JB
λn
(I − λn A), ∀n ≥ 0. By condition (v) and Proposition 4, one observes that Tn : C → C

is a nonexpansive mapping for each n ≥ 0. Since αn + βn + γn = 1, we know that

αnδ + γn(1− tn) + βn + γntn = αnδ + γn + βn = 1− αn(1− δ), ∀n ≥ 0.

One first claims that the sequence {xn} generated by (2) is well defined. Indeed, for each fixed
xn ∈ C, one defines a mapping Fn : C → C by Fn(x) = αn f (x) + βnxn + γnTn(tnxn + (1− tn)x), ∀x ∈
C. Then, one gets, for any x, y ∈ C,

‖Fn(x)− Fn(y)‖ ≤ αn‖ f (x)− f (y)‖+ γn‖Tn(tnxn + (1− tn)x)− Tn(tnxn + (1− tn)y)‖
≤ αnδ‖x− y‖+ γn(1− tn)‖x− y‖ = (αnδ + γn(1− tn))‖x− y‖ ≤ (1− αn(1− δ))‖x− y‖.

This implies that Fn is a strictly contraction operator. Hence the Banach fixed-point theorem
ensures that there is a unique fixed point yn ∈ C satisfying

yn = αn f (yn) + βnxn + γnTn(tnxn + (1− tn)yn).

Next, one claims that {xn} is bounded. Indeed, arbitrarily take a fixed p ∈ Ω = ∩∞
n=0Fix(Sn) ∩

GSVI(C, A1, A2) ∩ (A + B)−10. One knows that Sn p = p, Gp = p and Tn p = p. Moreover, by using
the nonexpansivity of Tn, we have

‖yn − p‖ ≤ αn(‖ f (yn)− f (p)‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖Tn(tnxn + (1− tn)yn)− p‖
≤ αn(δ‖yn − p‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn[tn‖xn − p‖+ (1− tn)‖yn − p‖]
= (αnδ + γn(1− tn))‖yn − p‖+ (βn + γntn)‖xn − p‖+ αn‖p− f (p)‖,



Mathematics 2019, 7, 933 7 of 18

which hence implies that

‖yn − p‖ ≤ γntn+βn
1−(αnδ+γn(1−tn))

‖xn − p‖+ αn
1−(αnδ+γn(1−tn))

‖ f (p)− p‖
= 1−αn(1−δ)−(αnδ+γn(1−tn))

1−(αnδ+γn(1−tn))
‖xn − p‖+ αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖

= (1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − p‖+ αn
1−(αnδ+γn(1−tn))

‖ f (p)− p‖.
(3)

Thus, from (2) and (3), we have

‖xn+1 − p‖ ≤ δn‖xn − p‖+ (1− δn)‖SnGyn − p‖ ≤ (1− δn)‖yn − p‖+ δn‖xn − p‖
≤ δn‖xn − p‖+ (1− δn){(1− αn(1−δ)

1−(αnδ+γn(1−tn))
)‖xn − p‖+ αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖}

= [1− (1−δn)(1−δ)
1−(αnδ+γn(1−tn))

αn]‖xn − p‖+ (1−δn)(1−δ)
1−(αnδ+γn(1−tn))

αn
‖ f (p)−p‖

1−δ .

By induction, we get that {xn} is bounded. Please note that G is non-expansive thanks to
Lemma 4. Using (3) and the nonexpansivity of I − µ1 A1, I − µ2 A2, Sn, Tn and G, it is guaranteed that
{un}, {vn}, {yn}, {Gyn}, {Snvn} and {Tnzn} are bounded too, where un := ΠC(I − µ2 A2)yn, vn :=
ΠC(I − µ1 A1)un and zn := tnxn + (1− tn)yn for all n ≥ 0. Thanks to (2), we have{

zn = tn(xn − yn) + yn,
zn−1 = tn−1(xn−1 − yn−1) + yn−1, ∀n ≥ 1,

and {
yn = αn f (yn) + βnxn + γnTnzn,
yn−1 = αn−1 f (yn−1) + βn−1xn−1 + γn−1Tn−1zn−1, ∀n ≥ 1,

Simple calculations show that

zn − zn−1 = (tn − tn−1)(xn−1 − yn−1) + (1− tn)(yn − yn−1) + tn(xn − xn−1),

and
yn − yn−1 = (αn − αn−1) f (yn−1) + αn( f (yn)− f (yn−1)) + βn(xn − xn−1)

+ (βn − βn−1)xn−1 + γn(Tnzn − Tn−1zn−1) + (γn − γn−1)Tn−1zn−1.
(4)

It follows from the resolvent identity that

‖Tnzn − Tn−1zn−1‖ ≤ ‖Tnzn − Tnzn−1‖+ ‖Tnzn−1 − Tn−1zn−1‖
≤ ‖zn − zn−1‖+ ‖JB

λn
(I − λn A)zn−1 − JB

λn−1
(I − λn−1 A)zn−1‖

≤ ‖zn − zn−1‖+ ‖JB
λn
(I − λn A)zn−1 − JB

λn−1
(I − λn A)zn−1‖

+ ‖JB
λn−1

(I − λn A)zn−1 − JB
λn−1

(I − λn−1 A)zn−1‖
= ‖zn − zn−1‖+ ‖JB

λn−1
( λn−1

λn
I + (1− λn−1

λn
)JB

λn
)(I − λn A)zn−1 − JB

λn−1
(I − λn A)zn−1‖

+ ‖JB
λn−1

(I − λn A)zn−1 − JB
λn−1

(I − λn−1 A)zn−1‖
≤ tn‖xn − xn−1‖+ |tn − tn−1|‖xn−1 − yn−1‖+ (1− tn)‖yn − yn−1‖
+ |1− λn−1

λn
|‖JB

λn
(I − λn A)zn−1 − (I − λn A)zn−1‖+ |λn − λn−1|‖Azn−1‖

≤ tn‖xn − xn−1‖+ |tn − tn−1|‖xn−1 − yn−1‖+ (1− tn)‖yn − yn−1‖+ |λn − λn−1|M1,

(5)

where

sup
n≥1
{
‖JB

λn
(I − λn A)zn−1 − (I − λn A)zn−1‖

λ̄
+ ‖Azn−1‖} ≤ M1
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for some M1 > 0. This together with (4), implies that

‖yn − yn−1‖ ≤ |αn − αn−1|‖ f (yn−1)‖+ βn‖xn−1 − xn‖+ αn‖ f (yn)− f (yn−1)‖
+ γn‖Tnzn − Tn−1zn−1‖+ |γn − γn−1|‖Tn−1zn−1‖+ |βn−1 − βn|‖xn−1‖
≤ αnδ‖yn − yn−1‖+ |αn − αn−1|‖ f (yn−1)‖+ βn‖xn − xn−1‖
+ |βn − βn−1|‖xn−1‖+ γn{tn‖xn − xn−1‖+ |tn − tn−1|‖xn−1 − yn−1‖
+ (1− tn)‖yn − yn−1‖+ |λn − λn−1|M1}+ |γn − γn−1|‖Tn−1zn−1‖
≤ (αnδ + γn(1− tn))‖yn − yn−1‖+ (βn + γntn)‖xn − xn−1‖+ (|αn − αn−1|
+ |γn−1 − γn|+ |βn−1 − βn|+ |tn − tn−1|+ |λn − λn−1|)M2,

where
sup
n≥0
{‖ f (yn)‖+ ‖xn‖+ ‖yn‖+ M1 + ‖Tnzn‖} ≤ M2

for some M2 > 0. So it follows that

‖yn − yn−1‖ ≤ βn+γntn
1−(αnδ+γn(1−tn))

‖xn−1 − xn‖+ 1
1−(αnδ+γn(1−tn))

(|αn − αn−1|
+ |βn − βn−1|+ |γn−1 − γn|+ |tn − tn−1|+ |λn − λn−1|)M2

= (1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn−1 − xn‖+ 1
1−(αnδ+γn(1−tn))

(|αn − αn−1|
+ |βn − βn−1|+ |γn − γn−1|+ |tn − tn−1|+ |λn − λn−1|)M2

≤ ‖xn − xn−1‖+ 1
1−(αnδ+γn(1−tn))

(|αn − αn−1|+ |βn − βn−1|
+ |γn−1 − γn|+ |tn − tn−1|+ |λn − λn−1|)M2.

Hence we get

‖SnGyn − Sn−1Gyn−1‖ ≤ ‖SnGyn − SnGyn−1‖+ ‖Sn−1Gyn−1 − SnGyn−1‖
≤ ‖yn − yn−1‖+ ‖SnGyn−1 − Sn−1Gyn−1‖
≤ ‖xn − xn−1‖+ 1

1−(αnδ+γn(1−tn))
(|βn−1 − βn|+ |αn − αn−1|

+ |γn − γn−1|+ |tn−1 − tn|+ |λn − λn−1|)M2 + ‖SnGyn−1 − Sn−1Gyn−1‖.

Consequently,

‖SnGyn − Sn−1Gyn−1‖ − ‖xn − xn−1‖ ≤ 1
1−(αnδ+γn(1−tn))

(|αn − αn−1|+ |βn − βn−1|
+|γn − γn−1|+ |tn − tn−1|+ |λn − λn−1|)M2 + ‖SnGyn−1 − Sn−1Gyn−1‖.

Since ∑∞
n=1 supx∈D ‖(Sn − Sn−1)x‖ < ∞ for bounded subset D = {Gyn : n ≥ 0} of C (due to

the assumption), we know that limn→∞ ‖(SnG − Sn−1G)yn−1‖ = 0. Please note that limn→∞ αn =

0, limn→∞ λn = λ and lim infn→∞ γn(1− tn) > 0. Thus, from |βn − βn−1| → 0, |γn − γn−1| → 0 and
|tn − tn−1| → 0 as n→ ∞ (due to conditions (ii), (iii)), we get

lim sup
n→∞

(‖SnGyn − Sn−1Gyn−1‖ − ‖xn − xn−1‖) ≤ 0.

So it follows from condition (iv) and Lemma 6 that limn→∞ ‖SnGyn − xn‖ = 0. Hence we obtain

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− δn)‖SnGyn − xn‖ = 0. (6)

Let p̄ := ΠC(I − µ2 A2)p. Please note that un = ΠC(I − µ2 A2)yn and vn = ΠC(I − µ1 A1)un.
Then vn = Gyn. From Proposition 4 (see also Lemma 2.13 in [25]), we have

‖un − p̄‖q = ‖ΠC(I − µ2 A2)yn −ΠC(I − µ2 A2)p‖q

≤ ‖(I − µ2 A2)yn − (I − µ2 A2)p‖q

≤ ‖yn − p‖q − µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q,

(7)
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and
‖vn − p‖q = ‖ΠC(I − µ1 A1)un −ΠC(I − µ1 A1) p̄‖q

≤ ‖(I − µ1 A1)un − (I − µ1 A1) p̄‖q

≤ ‖un − p̄‖q − µ1(qα1 − κqµ
q−1
1 )‖A1un − A1 p̄‖q.

(8)

Substituting (7) to (8), we obtain

‖vn − p‖q ≤ ‖yn − p‖q − µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q

− µ1(qα1 − κqµ
q−1
1 )‖A1un − A1 p̄‖q.

(9)

According to Proposition 4, we obtain from (2) that ‖zn − p‖q ≤ tn‖xn − p‖q + (1− tn)‖yn − p‖q,
and hence

‖yn − p‖q = ‖βn(p− xn) + αn( f (p)− f (yn)) + γn(p− Tnzn) + αn(p− f (p))‖q

≤ ‖αn( f (yn)− f (p)) + βn(xn − p) + γn(Tnzn − p)‖q + qαn〈 f (p)− p, Jq(yn − p)〉
≤ αn‖ f (yn)− f (p)‖q + βn‖xn − p‖q + γn‖Tnzn − p‖q + qαn〈 f (p)− p, Jq(yn − p)〉
≤ αnδ‖yn − p‖q + βn‖xn − p‖q + γn[tn‖xn − p‖q + (1− tn)‖yn − p‖q]

+ qαn‖ f (p)− p‖‖yn − p‖q−1,

which immediately yields

‖yn − p‖q ≤ (1− αn(1− δ)

1− (αnδ + γn(1− tn))
)‖xn − p‖q +

qαn

1− (αnδ + γn(1− tn))
‖ f (p)− p‖‖yn − p‖q−1.

This, together with the convexity of ‖ · ‖q and (9), leads to

‖xn+1 − p‖q = ‖δn(xn − p) + (1− δn)(SnGyn − p)‖q

≤ δn‖xn − p‖q + (1− δn)‖Snvn − p‖q

≤ δn‖xn − p‖q + (1− δn){‖yn − p‖q − µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q

− µ1(qα1 − κqµ
q−1
1 )‖A1un − A1 p̄‖q}

≤ δn‖xn − p‖q + (1− δn){(1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − p‖q + q‖ f (p)−p‖‖yn−p‖q−1

1−(αnδ+γn(1−tn))
αn

− µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q − µ1(qα1 − κqµ

q−1
1 )‖A1un − A1 p̄‖q}

= (1− αn(1−δn)(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − p‖q + q(1−δn)‖ f (p)−p‖‖yn−p‖q−1

1−(αnδ+γn(1−tn))
αn

− (1− δn)[µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q + µ1(qα1 − κqµ

q−1
1 )‖A1un − A1 p̄‖q]

≤ ‖xn − p‖q − (1− δn)[µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q

+ µ1(qα1 − κqµ
q−1
1 )‖A1un − A1 p̄‖q] + αn M3,

(10)

where

sup
n≥0
{ q(1− δn)

1− (αnδ + γn(1− tn))
‖ f (p)− p‖‖yn − p‖q−1} ≤ M3

for some M3 > 0. So it follows from (10) and Proposition 2 that

(1− δn)[µ2(qα2 − κqµ
q−1
2 )‖A2yn − A2 p‖q + µ1(qα1 − κqµ

q−1
1 )‖A1un − A1 p̄‖q]

≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn M3

≤ q‖xn − xn+1‖‖xn+1 − p‖q−1 + κq‖xn − xn+1‖q + αn M3.

Since 0 < µi < ( qαi
κq
)

1
q−1 for i = 1, 2, from conditions (i), (iv) and (6) we get

lim
n→∞

‖A2yn − A2 p‖ = 0 and lim
n→∞

‖A1un − A1 p̄‖ = 0. (11)
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Using Proposition 1, we have

‖un − p̄‖2 = ‖ΠC(I − µ2 A2)yn −ΠC(I − µ2 A2)p‖2

≤ 〈(I − µ2 A2)yn − (I − µ2 A2)p, J(un − p̄)〉
= 〈yn − p, J(un − p̄)〉+ µ2〈A2 p− A2yn, J(un − p̄)〉
≤ 1

2 [‖yn − p‖2 + ‖un − p̄‖2 − g1(‖yn − un − (p− p̄)‖)] + µ2‖A2 p− A2yn‖‖un − p̄‖,

where g1 is given by Proposition 1. This yields

‖un − p̄‖2 ≤ ‖yn − p‖2 − g1(‖yn − un − (p− p̄)‖) + 2µ2‖A2 p− A2yn‖‖un − p̄‖. (12)

In the same way, we derive

‖vn − p‖2 = ‖ΠC(I − µ1 A1)un −ΠC(I − µ1 A1) p̄‖2

≤ 〈(I − µ1 A1)un − (I − µ1 A1) p̄, J(vn − p)〉
= 〈un − p̄, J(vn − p)〉+ µ1〈A1 p̄− A1un, J(vn − p)〉
≤ 1

2 [‖un − p̄‖2 + ‖vn − p‖2 − g2(‖un − vn + (p− p̄)‖)] + µ1‖A1 p̄− A1un‖‖vn − p‖,

where g2 is given by Proposition 1. This yields

‖vn − p‖2 ≤ ‖un − p̄‖2 − g2(‖un − vn + (p− p̄)‖) + 2µ1‖A1 p̄− A1un‖‖vn − p‖. (13)

Substituting (12) for (13), we get

‖vn − p‖2 ≤ ‖yn − p‖2 − g1(‖yn − un − (p− p̄)‖)− g2(‖un − vn + (p− p̄)‖)
+ 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖. (14)

Please note that ‖ · ‖2 is convex. Using Proposition 1, Lemmas 1 and 9, one concludes

‖yn − p‖2 ≤ ‖βn(p− xn) + αn( f (p)− f (yn)) + γn(p− Tnzn)‖2 + 2αn〈 f (p)− p, J(yn − p)〉
≤ αn‖ f (p)− f (yn)‖2 + βn‖xn − p‖2 + γn‖Tnzn − p‖2 − βnγng3(‖xn − Tnzn‖)
+ 2αn〈 f (p)− p, J(yn − p)〉
≤ αnδ‖p− yn‖2 + βn‖xn − p‖2 + γn(tn‖xn − p‖2 + (1− tn)‖yn − p‖2)

+ 2αn‖ f (p)− p‖‖p− yn‖ − βnγng3(‖xn − Tnzn‖),

which immediately sends

‖yn − p‖2 ≤ (1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − p‖2 + 2αn
1−(αnδ+γn(1−tn))

‖ f (p)− p‖‖yn − p‖
− βnγn

1−(αnδ+γn(1−tn))
g3(‖xn − Tnzn‖).
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This together with (2) and (14) leads to

‖xn+1 − p‖2 = ‖δn(xn − p) + (1− δn)(SnGyn − p)‖2

≤ δn‖p− xn‖2 + (1− δn)‖Snvn − p‖2

≤ δn‖p− xn‖2 + (1− δn){‖yn − p‖2 − g1(‖yn − un − (p− p̄)‖)− g2(‖un − vn + (p− p̄)‖)
+ 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖}
≤ δn‖xn − p‖2 + (1− δn){(1− αn(1−δ)

1−(αnδ+γn(1−tn))
)‖xn − p‖2

+ 2αn
1−(αnδ+γn(1−tn))

‖ f (p)− p‖‖yn − p‖ − βnγn
1−(αnδ+γn(1−tn))

g3(‖xn − Tnzn‖)
− g1(‖yn − un − (p− p̄)‖)− g2(‖un − vn + (p− p̄)‖)
+ 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖}
≤ (1− αn(1−δn)(1−δ)

1−(αnδ+γn(1−tn))
)‖xn − p‖2 + 2αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖‖yn − p‖

− (1− δn)[
βnγng3(‖xn−Tnzn‖)
1−(αnδ+γn(1−tn))

+ g1(‖yn − un − (p− p̄)‖) + g2(‖un − vn + (p− p̄)‖)]
+ 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖
≤ ‖xn − p‖2 − (1− δn)[

βnγng3(‖xn−Tnzn‖)
1−(αnδ+γn(1−tn))

+ g1(‖yn − un − (p− p̄)‖)
+ g2(‖un − vn + (p− p̄)‖)] + 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖
+ 2αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖‖yn − p‖,

which immediately yields

(1− δn)[
βnγng3(‖xn−Tnzn‖)
1−(αnδ+γn(1−tn))

+ g1(‖yn − un − (p− p̄)‖) + g2(‖un − vn + (p− p̄)‖)]
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2µ2‖A2 p− A2yn‖‖un − p̄‖+ 2µ1‖A1 p̄− A1un‖‖vn − p‖
+ 2αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖‖yn − p‖

≤ (‖p− xn‖+ ‖p− xn+1‖)‖xn − xn+1‖+ 2µ2‖A2 p− A2yn‖‖un − p̄‖
+ 2µ1‖A1 p̄− A1un‖‖vn − p‖+ 2αn

1−(αnδ+γn(1−tn))
‖ f (p)− p‖‖yn − p‖.

Using (6) and (11), from lim infn→∞ βnγn > 0, and lim infn→∞(1− δn) > 0, we have

lim
n→∞

g1(‖yn − un − (p− p̄)‖) = lim
n→∞

g2(‖un − vn + (p− p̄)‖) = lim
n→∞

g3(‖xn − Tnzn‖) = 0.

Using the properties of g1, g2 and g3, we deduce that

lim
n→∞

‖yn − un − (p− p̄)‖ = lim
n→∞

‖un − vn + (p− p̄)‖ = lim
n→∞

‖xn − Tnzn‖ = 0. (15)

From (15) we get

‖yn − Gyn‖ = ‖yn − vn‖ ≤ ‖yn − un − (p− p̄)‖+ ‖un − vn + (p− p̄)‖ → 0 (n→ ∞). (16)

Meantime, again from (2) we have yn − xn = αn( f (yn)− xn) + γn(Tnzn − xn). Hence from (15)
we get ‖yn − xn‖ ≤ αn‖ f (yn)− xn‖+ ‖Tnzn − xn‖ → 0 (n→ ∞). This together with (16), implies that

‖xn − Gxn‖ ≤ ‖xn − yn‖+ ‖yn − Gyn‖+ ‖Gyn − Gxn‖
≤ ‖yn − Gyn‖+ 2‖xn − yn‖ → 0 (n→ ∞).

(17)

Next, one claims that ‖xn − Sxn‖ → 0, ‖xn − Tλxn‖ → 0 and ‖xn −Wxn‖ → 0 as n→ ∞, where
Sx = limn→∞ Snx, ∀x ∈ C, Tλ = JB

λ (I − λA) and Wx = θ1Sx + θ2Gx + θ3Tλx, ∀x ∈ C for constants
θ1, θ2, θ3 ∈ (0, 1) satisfying θ1 + θ2 + θ3 = 1. Indeed, since xn+1 = δnxn + (1− δn)SnGyn leads to
‖SnGyn − xn‖ = 1

1−δn
‖xn+1 − xn‖, we deduce from (17), lim infn→∞(1− δn) > 0 and xn − yn → 0 that

‖Snxn − xn‖ ≤ ‖Snxn − SnGxn‖+ ‖SnGxn − SnGyn‖+ ‖SnGyn − xn‖
≤ ‖xn − Gxn‖+ ‖xn − yn‖+ 1

1−δn
‖xn+1 − xn‖ → 0 (n→ ∞),
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which implies that

‖Sxn − xn‖ ≤ ‖Sxn − Snxn‖+ ‖Snxn − xn‖ → 0 (n→ ∞). (18)

Furthermore, using the similar arguments to those of (5), we obtain

‖Tnzn − Tλzn‖ ≤ |1− λ
λn
|‖JB

λn
(I − λn A)zn − (I − λn A)zn‖+ |λn − λ|‖Azn‖

= |1− λ
λn
|‖Tnzn − (I − λn A)zn‖+ |λn − λ|‖Azn‖.

Since limn→∞ λn = λ and the sequences {zn}, {Tnzn}, {Azn} are bounded, we get

lim
n→∞

‖Tnzn − Tλzn‖ = 0. (19)

Taking into account condition (v), i.e., 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < ( qα
κq
)

1
q−1 , we

know that 0 < λ̄ ≤ λ < ( qα
κq
)

1
q−1 . So it follows from Proposition 4 that Fix(Tλ) = (A + B)−10 and

Tλ : C → C is nonexpansive. Therefore, we deduce from (15), (19) and xn − yn → 0 that

‖Tλxn − xn‖ ≤ ‖Tλxn − Tλzn‖+ ‖Tλzn − Tnzn‖+ ‖Tnzn − xn‖
≤ ‖xn − zn‖+ ‖Tλzn − Tnzn‖+ ‖Tnzn − xn‖
≤ ‖xn − yn‖+ ‖Tλzn − Tnzn‖+ ‖Tnzn − xn‖ → 0 (n→ ∞).

(20)

We now define the mapping Wx = θ1Sx + θ2Gx + θ3Tλx, ∀x ∈ C for constants θ1, θ2, θ3 ∈ (0, 1)
satisfying θ1 + θ2 + θ3 = 1. So by using Lemma 7, we know that Fix(W) = Fix(S)∩Fix(G)∩Fix(Tλ) =

Ω. One observes that

‖xn −Wxn‖ = ‖θ1(xn − Sxn) + θ2(xn − Gxn) + θ3(xn − Tλxn)‖
≤ θ1‖xn − Sxn‖+ θ2‖xn − Gxn‖+ θ3‖xn − Tλxn‖.

(21)

From (17), (18), (20) and (21), we get

lim
n→∞

‖xn −Wxn‖ = 0.

The next step is to claim

lim sup
n→∞

〈J(xn − x∗), f (x∗)− x∗〉 ≤ 0, (22)

with x∗ =s-limn→∞ xt, where xt is a fixed point of x 7→ t f (x) + (1− t)Wx for each t ∈ (0, 1). Please
note that the existence of x∗ (x∗ ∈ Fix(W)) is from Lemma 3. Indeed, the Banach contraction mapping
principle guarantees that for each t ∈ (0, 1), xt satifies xt = t f (xt) + (1− t)Wxt. Hence we have
‖xt − xn‖ = ‖(Wxt − xn)(1− t) + ( f (xt)− xn)t‖. Using the known subdifferential inequality (see [7]),
we conclude that

‖xn − xt‖2 ≤ 2t〈xn − f (xt), J(xn − xt)〉+ (1− t)2‖Wxt − xn‖2

≤ 2t〈xn − f (xt), J(xn − xt)〉+ (1− t)2(‖Wxn − xn‖+ ‖Wxt −Wxn‖)2

≤ 2t〈xn − f (xt), J(xn − xt)〉+ (1− t)2(‖xn − xt‖+ ‖xn −Wxn‖)2

= (t2 − 2t + 1)‖xn − xt‖2 + 2t〈xt − f (xt), J(xn − xt)〉+ fn(t) + 2t‖xn − xt‖2,

(23)

where
fn(t) = (‖xn −Wxn‖+ 2‖xn − xt‖)‖xn −Wxn‖(1− t)2 → 0 (n→ ∞). (24)
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It follows from (23) that

〈xt − f (xt), J(xt − xn)〉 ≤
t
2
‖xt − xn‖2 +

1
2t

fn(t). (25)

Using both (25) and (24), we derive

lim sup
n→∞

〈xt − f (xt), J(xt − xn)〉 ≤
t
2

M4, (26)

where sup{‖xt − xn‖2 : t ∈ (0, 1) and n ≥ 0} ≤ M4 for some M4 > 0. Taking t→ 0 in (26), we have

lim sup
t→0

lim sup
n→∞

〈 f (xt)− xt, J(xn − xt)〉 ≤ 0.

On the other hand, we have

〈 f (x∗)− x∗, J(xn − x∗)〉 = 〈 f (x∗)− x∗, J(xn − x∗)〉 − 〈 f (x∗)− x∗, J(xn − xt)〉
+ 〈 f (x∗)− x∗, J(xn − xt)〉 − 〈 f (x∗)− xt, J(xn − xt)〉+ 〈 f (x∗)− xt, J(xn − xt)〉
− 〈 f (xt)− xt, J(xn − xt)〉+ 〈 f (xt)− xt, J(xn − xt)〉

= 〈 f (x∗)− x∗, J(xn − x∗)− J(xn − xt)〉+ 〈xt − x∗, J(xn − xt)〉
+ 〈xt − f (xt), J(xt − xn)〉+ 〈 f (x∗)− f (xt), J(xn − xt)〉.

So it follows that

lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)〉 ≤ lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)− J(xn − xt)〉

+(1 + δ)‖xt − x∗‖lim sup
n→∞

‖xn − xt‖+ lim sup
n→∞

〈 f (xt)− xt, J(xn − xt)〉.

Taking into account that xt → x∗ yield

lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)〉 = lim sup
t→0

lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)〉

≤ lim sup
t→0

lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)− J(xn − xt)〉.

Using the property on nonlinear mapping J yields (22). Please note that xn − yn → 0 implies
J(yn − x∗)− J(xn − x∗)→ 0. Thus, we conclude from (22) that

lim sup
n→∞

〈 f (x∗)− x∗, J(yn − x∗)〉 = lim sup
n→∞

〈 f (x∗)− x∗, J(xn − x∗)〉 ≤ 0. (27)

One observes that

‖yn − x∗‖2 = ‖αn( f (yn)− f (x∗)) + βn(xn − x∗) + γn(Tnzn − x∗) + αn( f (x∗)− x∗)‖2

≤ αn‖ f (yn)− f (x∗)‖2 + βn‖xn − x∗‖2 + γn‖zn − x∗‖2 + 2αn〈 f (x∗)− x∗, J(yn − x∗)〉
≤ αnδ‖yn − x∗‖2 + βn‖xn − x∗‖2 + γn(tn‖xn − x∗‖2 + (1− tn)‖yn − x∗‖2)

+ 2αn〈 f (x∗)− x∗, J(yn − x∗)〉,

which hence yields

‖yn − x∗‖2 ≤ (1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − x∗‖2 + 2αn
1−(αnδ+γn(1−tn))

〈 f (x∗)− x∗, J(yn − x∗)〉. (28)



Mathematics 2019, 7, 933 14 of 18

By the convexity of ‖ · ‖2, the nonexpansivity of SnG and (28), we get

‖xn+1 − x∗‖2 = ‖(xn − x∗)δn + (SnGyn − x∗)(1− δn)‖2

≤ δn‖xn − x∗‖2 + (1− δn){(1− αn(1−δ)
1−(αnδ+γn(1−tn))

)‖xn − x∗‖2

+ 2αn
1−(αnδ+γn(1−tn))

〈 f (x∗)− x∗, J(yn − x∗)〉}
=
(
1− αn(1−δn)(1−δ)

1−(αnδ+γn(1−tn))

)
‖xn − x∗‖2 + αn(1−δn)(1−δ)

1−(αnδ+γn(1−tn))
· 2〈 f (x∗)−x∗ ,J(yn−x∗)〉

1−δ .

(29)

Since lim infn→∞
(1−δn)(1−δ)

1−(αnδ+γn(1−tn))
> 0, { αn(1−δ)

1−(αnδ+γn(1−tn))
} ⊂ (0, 1) and ∑∞

n=0 αn = ∞, we know

that { αn(1−δn)(1−δ)
1−(αnδ+γn(1−tn))

} ⊂ (0, 1) and ∑∞
n=0

αn(1−δn)(1−δ)
1−(αnδ+γn(1−tn))

= ∞. Using (27) and Lemma 8, we conclude
from (29) that ‖xn − x∗‖ → 0 as n→ ∞. This proof is now complete.

Remark 1. From the related associated results in Ceng et al. [16], Song and Ceng [25], our obtained results
extend and improve and them in the following ways:

(i) The approximating problem of ∩∞
n=0Fix(Sn) ∩GSVI(C, A1, A2) in [[16], Theorem 3.1] is moved to

devise our approximating problem ∩∞
n=0Fix(Sn) ∩ GSVI(C, A1, A2) ∩ (A + B)−10 where (A + B)−10 is

the solution set of the VI: 0 ∈ (A + B)x. The implicit (two-step) relaxed extragradient method in [[16],
Theorem 3.1] is extended to develop our generalized Mann viscosity implicit rule in Theorem 1. That is,
two iterative steps yn = (1 − αn)Gxn + αn f (yn) and xn+1 = (1 − βn)Snyn + βnxn in [[16], Theorem
3.1] is refined to develop our two iterative steps yn = αn f (yn) + βnxn + γnTn(tnxn + (1 − tn)yn) and
xn+1 = δnxn + (1− δn)SnGyn, where Tn = JB

λn
(I − λn A). In addition, uniformly convex and 2-uniformly

smooth restructures in [[16], Theorem 3.1] is generalized to the structures of uniformly convex and q-uniformly
smooth for 1 < q ≤ 2.

(ii) The problem of finding an element of ∩∞
n=0Fix(Sn) ∩ GSVI(C, A1, A2) in [[25], Theorem 3.1] is

generalized to devise our approximating problem on the element in ∩∞
n=0Fix(Sn) ∩GSVI(C, A1, A2) ∩ (A +

B)−10, where (A + B)−10 is the solution set of the VI: 0 ∈ (A + B)x. The modified relaxed extragradient
method in [[25], Theorem 3.1] is extended to develop our generalized Mann viscosity implicit rule in Theorem
1. That is, two iterative steps yn = (1− βn)xn + βnGxn and xn+1 = ΠC[αnγ f (xn) + γnxn + ((1− γn)I −
αnρF)Snyn] in [[25], Theorem 3.1] is extended to develop our two iterative steps yn = αn f (yn) + βnxn +

γnTn(tnxn + (1− tn)yn) and xn+1 = δnxn + (1− δn)SnGyn, where Tn = JB
λn
(I − λn A).

Next, Theorem 1 is applied to solve the GSVI, VIP and FPP in an illustrating example. Let C =

[−2, 2] and H = R with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |. The initial point
x0 is randomly chosen in C. We define f (x) = 1

2 x, Sx = sin x and A1x = A2x = Ax = 2
3 x + 1

4 sin x for
all x ∈ C. Then f is 1

2 -contraction, S is a nonexpansive self-mapping on C with Fix(S) = {0} and A is
11
12 -Lipschitzian and 5

12 -strongly monotone mapping. Indeed, we observe that

‖Ax− Ay‖ ≤ 2
3
‖x− y‖+ 1

4
‖ sin x− sin y‖ ≤ (

2
3
+

1
4
)‖x− y‖ = 11

12
‖x− y‖,

and

〈Ax− Ay, x− y〉 = 2
3
〈x− y, x− y〉+ 1

4
〈sin x− sin y, x− y〉 ≥ (

2
3
− 1

4
)‖x− y‖2 =

5
12
‖x− y‖2.

This ensures that 〈Ax − Ay, x − y〉 ≥ 60
121‖Ax − Ay‖2. So it follows that A1 = A2 = A is

60
121 -inverse-strongly monotone, and hence α1 = α2 = α = 60

121 . Therefore, it is easy to see
that Ω = Fix(S) ∩ GSVI(C, A1, A2) ∩ VI(C, A) = {0} 6= ∅. Let µ1 = µ2 = α = 60

121 . Putting
αn = 1

2(n+2) , βn = 1
2 −

1
2(n+2) , γn = 1

2 , δn = 1
2 , tn = 1

2 and λn = λ̄ = α = 60
121 , we know that the
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conditions (i)–(v) on the parameter sequences {λn} ⊂ (0, 2α) and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1)
all are satisfied. In this case, the iterative scheme in Theorem 1 can be rewritten as follows:{

yn = 1
2(n+2) ·

1
2 yn + ( 1

2 −
1

2(n+2) )xn +
1
2 PC(I − 60

121 A)( xn+yn
2 ),

xn+1 = xn+SGyn
2 ,

where G := PC(I − 60
121 A)PC(I − 60

121 A). Then, by Theorem 1, we know that {xn} converges to
0 ∈ Ω = Fix(S) ∩GSVI(C, A1, A2) ∩VI(C, A).

4. Applications

In this section, we will apply the main result of this paper for solving some important optimization
problems in the setting of Hilbert spaces.

4.1. Variational Inequality Problems

Let A : C → H be a single-valued nonself mapping. Recall the monotone variational inequality of
getting the desired vector x∗ ∈ C with 〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C, whose solution set of is VI(C, A).
Let IC be an indicator operator of C given by

ICy =

{
0 if y ∈ C,
∞ if y 6∈ C.

We denote the normal cone of C at u by NC(u), i.e., NC(u) is a set consists of such points which
solve 〈w, v − u〉 ≤ 0, ∀v ∈ C. It is known that IC is a convex, lower semi-continuous and proper
function and the subdifferential ∂IC is maximally monotone. For λ > 0, the resolvent mapping of ∂IC
is denoted by J∂IC

λ , i.e., J∂IC
λ = (I + λ∂IC)

−1. Please note that

∂IC(u) = {w ∈ H : IC(v) + 〈w, v− u〉 ≤ IC(u), ∀v ∈ C}
= {w ∈ H : 〈w, v− u〉 ≤ 0 ∀v ∈ C} = NC(u), ∀u ∈ C.

So we know that u = J∂IC
λ (x) ⇔ x − u ∈ λNC(u) ⇔ 〈x − u, v− u〉 ≤ 0, ∀v ∈ C ⇔ u = PC(x).

Hence we get (A + ∂IC)
−10 = VI(C, A).

Next, putting B = ∂IC in Theorem 1, we can obtain the following result.

Theorem 2. Let non-empty set C be a convex close in a Hilbert space X stated as Theorem 1. For i = 1, 2,
mappings A, Ai : C → H are α-inverse-strongly monotone and αi-inverse-strongly monotone, respectively. Let
S be a nonexpansive singled-valued self-mapping on C. Suppose Ω = Fix(S)∩GSVI(C, A1, A2)∩VI(C, A) 6=
∅, where GSVI(C, A1, A2) is the fixed-point set of G := PC(I − µ1 A1)PC(I − µ2 A2) with 0 < µi < 2αi for
i = 1, 2. Let f : C → C be a strictly contraction with constant δ ∈ (0, 1). For arbitrary initial x0 ∈ C, define
{xn} by {

yn = αn f (yn) + γnPC(I − λn A)(tnxn + (1− tn)yn) + βnxn,
xn+1 = (1− δn)SGyn + δnxn, n ≥ 0,

where 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < 2α, and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1) satisfy
conditions (i)–(iii) as in Theorem 1 in Section 2. Then xn → x∗ ∈ Ω, which is the unique solution to the
variational inequality: 〈(I − f )x∗, x∗ − p〉 ≤ 0, ∀p ∈ Ω.

4.2. Convex Minimization Problems

Let g : H → R and h : H → R be two functions, where g is convex smooth and h is proper convex
and lower semicontinuous. The associated minima problem is to find x∗ ∈ H such that

g(x∗) + h(x∗) = min
x∈H
{g(x) + h(x)}. (30)
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By Fermat’s rule, we know that the problem (30) is equivalent to the fact that finds x∗ ∈ H such that
0 ∈ ∇g(x∗)+ ∂h(x∗) with∇g being the gradient of function g and ∂h being the subdifferential function
of function h. It is also known that if ∇g is 1

α -Lipschitz continuous, then it is also α-inverse-strongly
monotone. Next, putting A = ∇g and B = ∂h in Theorem 1, we can obtain the following result.

Theorem 3. Let g : H → R be a convex and differentiable function whose gradient ∇g is 1
α -Lipschitz

continuous and h : H → R be a convex and lower semi-continuous function. Ai : C → H are supposed to be
αi-inverse-strongly monotone for i = 1, 2. Let S be a nonexpansive single-valued self-mapping on C such that
Ω = Fix(S) ∩GSVI(C, A1, A2) ∩ (∇g + ∂h)−10 6= ∅ where (∇g + ∂h)−10 is the set of minima attained by
g + h, and GSVI(C, A1, A2) is the fixed point set of G := PC(I − µ1 A1)PC(I − µ2 A2) with 0 < µi < 2αi for
i = 1, 2. Let f : C → C be a strictly contraction with constant δ ∈ (0, 1). For arbitrary initial x0 ∈ C, define
{xn} by {

yn = αn f (yn) + γn J∂h
λn
(I − λn∇g)(tnxn + (1− tn)yn) + βnxn,

xn+1 = (1− δn)SGyn + δnxn, n ≥ 0,

where 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < 2α, and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1) satisfy
conditions (i)–(iii) as in Theorem 1 in Section 2. Then xn → x∗ ∈ Ω, which uniquely solves 〈(I − f )x∗, x∗ −
p〉 ≤ 0, ∀p ∈ Ω.

4.3. Split Feasibility Problems

Let C and Q be non-empty convex closed sets in Hilbert spaces H1 and H2, respectively. Let
T : H1 → H2 be a linearly bounded operator with its adjoint T∗. Consider the split feasibility problem
(SFP) of obtaining a desired point x∗ ∈ C and Tx∗ ∈ Q. The SFP can be borrowed to model the
radiation therapy. It is clear that the set of solutions of the SFP is C ∩ T−1Q. To solve the SFP, we can
rewrite it as the following convexly constrained minimization problem:

min
x∈C

g(x) :=
1
2
‖Tx− PQTx‖2.

Please note that the function g is differentiable convex whose Lipschitz gradient is given by
∇g = T∗(I − PQ)T. Furthermore, ∇g is 1

‖T‖2 -inverse-strongly monotone, where ‖T‖2 is the spectral
radius of T∗T. Thus, x∗ solves the SFP if and only if x∗ ∈ H1 such that

0 ∈ ∇g(x∗) + ∂IC(x∗) ⇔ x∗ − λ∇g(x∗) ∈ (I + λ∂IC)x∗

⇔ x∗ = J∂IC
λ (x∗ − λ∇g(x∗))

⇔ x∗ = PC(x∗ − λ∇g(x∗)).

Next, putting A = ∇g and B = ∂IC in Theorem 1, we can obtain the following result:

Theorem 4. Let C and Q be nonempty closed convex subsets of H1 and H2, respectively. Let T : H1 → H2

be a bounded linear operator with its adjoint T∗. Let the mapping Ai : C → H1 be αi-inverse-strongly
monotone for i = 1, 2. Let S be a nonexpansive self-mapping on C such that Ω = Fix(S) ∩GSVI(C, A1, A2) ∩
(C ∩ T−1Q) 6= ∅ where GSVI(C, A1, A2) is the fixed point set of G := PC(I − µ1 A1)PC(I − µ2 A2) with
0 < µi < 2αi for i = 1, 2. Let f : C → C be a δ-contraction with constant δ ∈ (0, 1). For arbitrarily given
x0 ∈ C, let {xn} be a sequence generated by{

yn = αn f (yn) + γnPC(I − λnT∗(I − PQ)T)(tnxn + (1− tn)yn) + βnxn,
xn+1 = δnxn + (1− δn)SGyn, n ≥ 0,

where 0 < λ̄ ≤ λn, ∀n ≥ 0 and limn→∞ λn = λ < 2
‖T‖2 , and {αn}, {βn}, {γn}, {δn}, {tn} ⊂ (0, 1) satisfy

conditions (i)–(iii) as in Theorem 1 in Section 2. Then xn → x∗ ∈ Ω, which uniquely solves 〈(I − f )x∗, x∗ −
p〉 ≤ 0, ∀p ∈ Ω.
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