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Abstract: In this work, let X be Banach space with a uniformly convex and g-uniformly smooth
structure, where 1 < g < 2. We introduce and consider a generalized Mann-like viscosity implicit
rule for treating a general optimization system of variational inequalities, a variational inclusion
and a common fixed point problem of a countable family of nonexpansive mappings in X. The
generalized Mann-like viscosity implicit rule investigated in this work is based on the Korpelevich’s
extragradient technique, the implicit viscosity iterative method and the Mann’s iteration method.
We show that the iterative sequences governed by our generalized Mann-like viscosity implicit rule
converges strongly to a solution of the general optimization system.
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1. Introduction

Throughout this work, we always suppose that C is a non-empty, convex and closed subset of a
real Banach space X. X* will be used to present the dual space of space X. In this present work, we let
the norms of X and X* be presented by the denotation || - ||. Let T be a nonlinear self mapping with
fixed points defined on subset C.

One use (-, -) to denote the duality pairing. The possible set-valued normalized duality mapping
J : X — 2X" is defined by

J(x) = {p € X*: {p,x) = l|lp]* = [|x]*}, VxeX.

Banach space X is said to be a smooth space (has a Gateaux differentiable norm) if
lim; g+ w exists for all ||x|| = |ly]| = 1. ] is norm-to-weak® continuous single-valued
map in such a space. X is also said to be a uniformly smooth space (has a uniformly Fréchet
differentiable norm) if the above limit is attained uniformly for ||x|| = ||y|| = 1 and J is norm-to-norm
uniformly continuous on bounded sets in such a space. X is said to be a strictly convex space if
I(1—-A)x+Ay|| <1, VA € (0,1) for all ||x|| = ||y|| = 1. Space X is said to be uniformly convex

if, for each ¢ € (0,2], we have a constant § > 0 such that ||x2ﬂ|| >1—-0 = |x—y| < eforall
llx|| = |ly]] = 1. A uniformly convex Banach space yields a strictly convex Banach space. Under the

reflexive framework, X is strictly convex if and only if X* is smooth.
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Next, we suppose X is smooth, i.e., | is single-valued. Let A;, A : C — X be two nonlinear
single-valued mappings. One is concerned with the problem of approximating (x*,*) € C x C such
that

{ (X +mAy* -y, J(x" —x)) <0, VxeC, W
(y* + paArx* —x*,J(y* —x)) <0, VxeC,

with two real positive constants y1 and pp. This optimization system is called a general system of
variational inequalities (GSVI). In particular, in the case that X = H is Hilbert, then GSVI (1) is reduced
to the following GSVI of finding (x*,y*) € C x C such that

(X + Ay —y*,x*—x) >0, VxeC(C,
(y* 4+ ppAgx* —x*,y* —x) >0, VxeC,

with two real positive constants y1 and . This was introduced and studied in [1]. Additionally,
if A = A1 = A and x* = y*, then GSVI (1) becomes the variational problem of finding x* € C
such that (Ax*, J(x —x*)) > 0, Vx € C. In 2006, Aoyama, liduka and Takahashi [2] proposed
an iterative scheme of finding its approximate solutions and claimed the weak convergence of the
iterative sequences governed by the proposed algorithm. Recently, many researchers investigated the
variational inequality problem through gradient-based or splitting-based methods; see, e.g., [3-13].
Some stability results can be found at [14,15].

In 2013, Ceng, Latif and Yao [16] analyzed and introduced an implicit computing method by
using a double-step relaxed gradient idea in the setting of 2-uniformly smooth and uniformly convex
space X with 2-uniform smoothness coefficient x;. Let IIc : X — C be a retraction, which is both
sunny and nonexpansive. Let f : C — C be a contraction with constant § € (0,1). Let the mapping
A; : C — X be aj-inverse-strongly accretive for i = 1,2. Let {S,}_, be a countable family of
nonexpansive self single-valued mappings on C such that QO = N> Fix(S,) NGSVI(C, Ay, A2) # O,
where GSVI(C, Aj, Ay) stands for the set of fixed points the mapping G := ¢ (I — p1 A1) (I — paAz).
For a arbitrary initial xg € C, let {x,,} be the sequence generated by

Yn = anf(yn) + (1 = an)c(I = pr A (I — ppAz)xn,

Xn+1 = ﬁnxn + (1 - ﬁn)sn]/n/ Vn >0,
with 0 < p; < % fori = 1,2, where {a, } and {B,} are sequences of real numbers in (0, 1) satisfying
the restrictions: } ;7 &y = oo, lim, yeo &y = 0, limsup, . Bx < 1 and liminf, ;e By > 0. They got
convergence analysis of {x,} to x* € (), which treats the variational inequality: ((I — f)x*, J(x* —
p)) <0, Vp € Q. Recently, projection-like methods, including sunny nonexpansive retractions, have
largely studied in Hilbert and Banach spaces; see, e.g., [17-24] and the references therein.

2. Preliminaries

Next, we let X be a space with uniformly convex and g-uniformly smooth structures. Then the
following inequality holds:

e+ yll? < wgllyll” + 111" + 4(y, 34(x)),  Vx,y € E,

where Kq is the smoothness coefficient. Let I, A1, As, G, {Sn ZO:O be the same mappings as above.
Assume that O = N9 Fix(S,) N GSVI(C, A, A2) # @. Suppose that F : C — X is a 7-strongly

accretive operator with constants k, 7 > 0 and k-Lipschitzian, and f : C — X is L-Lipschitzian mapping.
Kq01 K )

1 oL
Assume 0 < p < (%)ﬂfl, 0<u < (%‘)'4*1,1' =1,2,and 0 < yL < 7, where T = p(y7 — 7



Mathematics 2019, 7, 933 30f18

Recently, Song and Ceng [25] proposed and considered a very general iterative scheme by the modified
relaxed extragradient method, i.e., for arbitrary initial xy € C, we generate {x, } by

Yn = (1= Bn)xn + Bullc(I — p1 A (I — paAz)xn,
Xp1 = He[((1 = yn)I — npF)Suyn + Yauf (xn) + YuXu], Vn >0,

where {a,}, {Bn}, {7vn} C (0,1) satisfying the conditions: (i) Y;—o&n = 00, Yo [n41 — tn| <
and &, — 0; (ii) limsup,_, yn < 1, iminfy, o ¥n > 0, Y7o [Yn41 — Y| < 00; and (iid) Yo [But1 —
Bn| < oo, liminf, ;e By > 0. The authors claimed convergence of {x,} to x* € ), which deals with
the variational inequality: ((oF —yf)x*, J(x* —p)) <0, Vp € Q.

On the other hand, Let A : X — X be an a-inverse-strongly accretive operator, B : X — 2% be an
m-accretive operator, f : X — X be a contraction with constant 6 € (0,1). Assume that the inclusion of
finding x* € X such that 0 € (A + B)x*, has a solution, i.e.,, Q = (A + B) 710 # @. In 2017, Chang et
al. [26] introduced and studied a generalized viscosity implicit rule, i.e., for arbitrary initial xy € X, we
generate {x, } by

X1 = (1— txn)])lf(l —AA) (tpxn + (1 — ty)xp41) +anf(xn), Yn >0,

where J® = (I+AB)~ %, {t,}, {ay} C [0,1] and A € (0, o0) satisfying the conditions: (i) Y57 &y = o0
and lim, oty = 0; (ii) Ypeg [nt1 — an| < o0; (iii) 0 < € < t, < ty4q < 1, Vu > 0; and (iv)
0<A< (%)ﬂ%l These authors studied and proved convergence of {x,} to x* € (), solving the
inequality: ((I — f)x*, J(x* —p)) <0, Vp € Q). For recent results, we refer the reader to [27-34]. The
purpose of this work is to approximate a common solution of GSVI (1), a variational inclusion and a
common fixed point problem of a countable family of nonexpansive mappings in spaces with uniformly
convex and g-uniformly smooth structures. This paper introduces and considers a generalized Mann
viscosity implicit rule, based on the Korpelevich’s extragradient method, the implicit approximation
method and the Mann's iteration method. We investigate norm convergence of the sequences generated
by the generalized Mann viscosity implicit rule to a common solution of the GSVI, VI and CFPP, which
solves a hierarchical variational inequality. Our results improve and extend the results reported
recently, e.g., Ceng et al. [16], Song and Ceng [25] and Chang et al. [26].

Next, for simplicity, we employ x;, — x (resp., x, — x) to present the weak (resp., strong)
convergence of the sequence {x,} to x. It is known that J(tx) = tJ(x) and J(—x) = —]J(x) for all
t > 0and x € X. Then the convex modulus of X is defined by dx(€) = inf{l — |2 (x +y)|| : x,y €
U, ||lx—yl|| > €}, Ve € ]0,2]. X is said to be uniformly convex if 6x(0) = 0, and dx(e) > 0 for each
€ € (0,2]. Let g be a fixed real number with g > 1. Then a Banach space X is said to be g-uniformly
convex if 5x (t) > ct1, Vt € (0,2], where ¢ > 0. Each Hilbert space H is 2-uniformly convex, while L?
and /;, spaces are max{2, p }-uniformly convex for each p > 1.

Proposition 1. [35] Let X be space with smooth and uniformly convex structures, and r > 0. Then g(0) =0
and g(||x = yll) < [[x[I* = 2(x, J(y)) + |y||* for all x,y € By = {y € X : [ly|| <7}, whereg: [0,2r] = R
is a continuous, strictly increasing, and convex function.

Let px : [0,00) — [0, 00) be the smooth modulus of X defined by

x+ty||+lx—y||—2
ox(t) = sup{ EFHFIMIZZ oy <y,

A Banach space X is said to be g-uniformly smooth if px(t) < ct7, Vt > 0, where ¢ > 0. It is
known that each Hilbert, L and ¢, spaces are uniformly smooth where p > 1. More precisely, each
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Hilbert space H is 2-uniformly smooth, while L? and £, spaces are min{2, p }-uniformly smooth for
eachp >1 Letg>1 J;: X — 2X", the duality mapping, is defined by

Jo(x) = {p € X*: (x,¢) = |[x]|? and [l = [|x]T71}, VxeX.

It is quite easy to see that J,(x) = J(x)||x||9~2, and if X = H, then ], = ] = I the identity mapping
of H.

Proposition 2. [35] Let q € (1,2] a given real number and let X be uniformly smooth with order q. Then
x4+ yll7 = q(y, J4(x)) < ||x||9 4+ x4lly||7, Vx,y € X, where k; is the real smooth constant. In particular, if X
is uniformly smooth with order 2, then ||x + y||> — 2y, J(x)) < ||x||*> + x2|ly||%, Vx,y € X.

Using the structures of subdifferentials, we obtain the following tool.

Lemma 1. Let g > 1 and X be a real normed space with the generalized duality mapping J,. Then, for any
given x,y € X, ||lx +yl| —q{y, jy(x +y)) < [[x[1%, ¥jg(x +y) € Jo(x +y).

Let D be a set in set C and let IT map C into D. We say that ITis sunny if IT(x) = IT[t(x — II(x)) +
I1(x)], whenever IT(x) + t(x — I1(x)) € C for x € C and t > 0. We say I1 is a retraction if IT = IT2.
We say that a subset D of C is a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

Proposition 3. [36] Let X be smooth, D be a non-empty set in C and 11 be a retraction onto D. (i) Il is
nonexpansive sunny; (i) (x —y, J(I1(x) — T(y))) > ||TI(x) — T1(y)||%, Vx,y € C; (iii) (x — T1(x), J(y —
I1(x))) <0,Vx € C,y € D. Then the above relations are equivalent to each other.

Let A : C — 2% be a set-valued operator with Ax # @, Vx € C. Let g > 1. An operator A is
accretive if for each x,y € C, there exists j;(x —y) € J;(x —y) such that {(j;(x —y),u —v) > 0,Vu €
Ax,v € Ay. An accretive operator A is inverse-strongly accretive of order g, i.e., a-inverse-strongly
accretive, if for each x,y € C, there exist & > 0 such that (u —v,j;(x —y)) > «a||Ax — Ay|l,
Vu € Ax,v € Ay, where j;(x —y) € J;(x —y). In a Hilbert space H, A : C — H is called
a-inverse-strongly monotone.

Operator A is said to be m-accretive if and only if (I + AA)C = X for all A > 0 and A is accretive.
One defines the mapping J4 : (I +AA)C — Cby J{ = (I + AA)~! with real constant A > 0. Such J{!
is called the resolvent mapping of A for each A > 0.

Lemma 2. [37] The following statements hold:

(i) the resolvent identity: J{x = J,(kx+ (1 —5)J{x), VA, u >0, x € X;
(ii)  if J{ is aresolvent of A for A > 0, then J4 is a single-valued nonexpansive mapping with Fix(J) = A~10,
where A710 = {x € C: 0 € Ax};
(iii)  in a Hilbert space H, an operator A is maximal monotone iff it is m-accretive.

Let A : C — X be an a-inverse-strongly accretive mapping and B : C — 2% be an
m-accretive operator. In the sequel, one will use the notation T := J¥(I — AA) = (I + AB) (I —
AA), YA > 0. The following statements (see [38]) hold:

(i) Fix(Ty) = (A+B)~10, VA > 0;
(i) lx— Tax|| <2[x — Tsx|| for0 < A < sand x € X.
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Proposition 4. [38] Let X be a Banach space with the uniformly convex and q-uniformly smooth structures
with 1l < q < 2. Assume that A : C — X is a a-inverse-strongly accretive single-valued mapping and
B : C — 2% is an m-accretive operator. Then

I Tax = Tayll? < Jlx =yl = Aag — A7 xg) | Ax — Ay|lT — @ ([|(1 = JF) (I = AA)x = (1= JR)(I = AA)yl)),

forall x,y € B, := {x € C: ||x|| < r}, where p : RT — RT with ¢(0) = 0 is a convex, strictly increasing
and continuous function, A and r two positive real constants, x, is the real smooth constant of X, and Ty and | B

1
are resolvent operators defined as above. In particular, if 0 < A < (%Z) -1, then T) is nonexpansive.

Lemma 3. [39] Let X be uniformly smooth, T be single-valued nonexpansivitity on C with Fix(T) # @, and
f : C — C be a any contraction. For each t € (0,1), one employs z; € C to present the unique fixed point of
the new contraction C > z — tf(z) + (1 —t)Tzon C, i.e., z = (1 — t) Tz + tf(z¢). Then {z:} converges to
x* € Fix(T) in norm, which deals with the variational inequality: ((I — f)x*,J(x* — p)) <0, Vp € Fix(T).

Lemma 4. [25] Let X be a uniformly smooth with order q. Suppose that I1¢ is a sunny nonexpansive retraction
from X onto C. Let the mapping A; : C — X be a;-inverse-strongly accretive of order q for i = 1,2. Let the

1
mapping G : C — C be defined as Gx := Il (I — p1 A1) (I — ppAz), Vx € C. If0 < p; < (%)ﬁfor
i=1,2, then G : C — C is nonexpansive. For given (x*,y*) € C x C, (x*,y*) is a solution of GSVI (1) if
and only if x* = Ic(y* — u1 Ary*) where y* = e (x* — up Apx™), ice., x* = Gx™.

Lemma 5. [40] Let {S,,}5>, be a mapping sequence on C. Suppose that Y7° ; sup{||Syx — S,_1x| : x €
C} < oo. Then {S,x} converges to some point of C in norm for each x € C. Besides, we present S, a
self-mapping, on C by Sx = limy,_,c0 Spx, Vx € C. Then limy, e sup{||Syx — Sx|| : x € C} = 0.

Lemma 6. [41] Let X be Banach space. Let {a,} be a real sequence in (0,1) with limsup, , a, < 1and
liminf, ety > 0. Let X1 = Xy + (1 — an)yn, Yn > 0and limsup, ., (||vn — Yut1ll = || %011 —
xu||) <0, where {x,} and {y,} be bounded sequences in X. Then lim,_c0 ||yn — xn|| = 0.

Lemma 7. [42] Let X be strictly convex, and {Ty, }5;_, be a sequence of nonexpansive mappings on C. Suppose
that NS Fix(Ty,;) # @. Let {A,} be a sequence of positive numbers with y3° o Ay = 1. Then a mapping S on
C defined by Sx = Yo AnTux for x € C is defined well, nonexpansive and Fix(S) = N5 Fix(T,) holds.

Lemma 8. [43] Let {a,} be a non-negative number sequence of with a, 1 < a,(1 — Ap) + Apyn, ¥n > 1,
where {7y, } and {A,} are sequences such that (a) Y51 [Anyn| < oo (or limsup, . vn < 0) and (b)
{An} C[0,1] and Y57 1 Ay = co. Then ay, goes to zero as n goes to the infinity.

Lemma 9. [7,35] Let X be uniformly convex, and the ball B, = {x € X : ||x|| <r}, r > 0. Then

llacx + By + vyl + apg(llx = yll) < allxl* + Bllyl* +v]1z]>

forall x,y,z € Byand a, B,y € [0,1] with « + B+ v = 1, where g : [0,00) — [0,00) is a convex, continuous
and strictly increasing function.

3. Iterative Algorithms and Convergence Criteria

Space X presents a real Banach space and its topological dual is X*, and C is a non-empty convex
and closed set in space X. We are now ready to state and prove the main results in this paper.

Theorem 1. Let X be uniformly convex and uniformly smooth with the constant 1 < q < 2. Let Ilc bea
nonexpansive sunny retraction from X onto C. Assume that the mappings A, A; : C — X are inverse-strongly
accretive of order q and a;-inverse-strongly accretive of order q, respectively for i = 1,2. Let B : C — 2X be an
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m-accretive operator, and let {S, }5_ be a countable family of nonexpansive single-valued self-mappings on

C such that Q = N%_,Fix(S,) NGSVI(C, A1, A2) N (A + B) 710 # @ where GSVI(C, Ay, Ay) is the fixed
1

point set of G := Ilc(I — u1 A1)Ic(I — upAz) with 0 < p; < (%‘;)‘7Tl fori=1,2. Let f:C — Cbea

contraction with constant § € (0,1). For arbitrary initial xy € C, {x,} is a sequence generated by

Yn = anf(yn) + 'Ynff,,(l = AnA) (tnxn + (1 —tn)yn) + BuXn,
vn = He(I — p1 A (Yn — p2A2vn),
Xn+1 = (1 - (Sn)snvn +0uxy, n >0,

where {A,} C (0, (%)‘1%1) and {an },{Bn}, {1n}, {0n}, {tn} C (0,1) satisfy

(i) Yooy =00 limy sty =0anday +PBn+vn =1
(i) limyeo |,Bn - ﬁn—l‘ = limy se0 |’)/n - ')/n—1| =0;
(iii)  limp—yeo |tn — ty—1| = 0 and iminf, e yn(1 — t,) > 0;
(iv) liminf, e Buyn > 0, limsup, 6y < 1land liminf, .« d, > 0;

- _1
(W) 0<A<A, Vn>0andlimyeodn =A< (%)H.

Assume that y_5"_y sup...p ||(Sn — Sy—1)x|| < oo for any bounded set D, which is subset of C and let S be a
self-mapping Sx = lim, e Syx, Vx € C and suppose that Fix(S) = N5 Fix(Sy). Then x, — x* € Q,
which solves (I — f)x*,J(x* —p)) <0, Vp € Q uniquely.

Proof. Set u, = Ilc(yn — p2A2yn). It is not hard to find that our scheme can be re-written by

{ Yn = txnf(]/n) + Bnxn + '}’nTn(tnxn + (1 - tn)]/ﬂ)/ )

Xp+1 = (1 - 5n>SnG]/n +6uxy, n2>0,

where T, := ]| )lfn (I —AyA), Vn > 0. By condition (v) and Proposition 4, one observes that T, : C — C
is a nonexpansive mapping for each n > 0. Since a;, + B + v» = 1, we know that

0+ (1 —ty) +Bn+Yutn =and+vn+Pn=1—a,(1-9), VYn>0.

One first claims that the sequence {x, } generated by (2) is well defined. Indeed, for each fixed
xy € C, one defines a mapping F,, : C — C by F,(x) = anf(x) 4+ Bnxn + YnTn(tnxn + (1 — ty)x), Vx €
C. Then, one gets, for any x,y € C,

1Fa () = Ea ()| < anll f(x) = F@I A+ 7| T (bnxn + (1= ) x) = T (bnn + (1 = £a)y) |
< andx =yl + (1= tu)lx = yll = (@nd + yn(1 = ta))[[x —yl| < (1 = an(1-9))[lx = y.

This implies that F; is a strictly contraction operator. Hence the Banach fixed-point theorem
ensures that there is a unique fixed point y,, € C satisfying

Yn = &nf(Yn) + Buxn + YnTn(tnxn + (1 — tn)yn).

Next, one claims that {x, } is bounded. Indeed, arbitrarily take a fixed p € Q0 = N> Fix(S,) N
GSVI(C, A1, A7) N (A + B)~10. One knows that S,p = p, Gp = p and T,p = p. Moreover, by using
the nonexpansivity of T, we have

lyn —pll < an(llf(yn) — F(OI + £ () = pI) + Bullxn — pll + Yull Tu(tnxn + (1 = tu)yn) — pl|
< an(Sllyn — pll + 1 £(p) = pI) + Bullxn — pll + vultullxn — pll + (1 = ta) lyn — pll]
= (and + (L= t))lyn — pll + (Bn + Yutn) lxn — pll + anllp — f(P),
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which hence implies that

lyn —pll - < it pll+Wl\f() pl

it Bl tl) |12 — pll + ey £ () — 6)

=(1- %)HM pll + WXWHJC(P) - pll-

Thus, from (2) and (3), we have

%1 = pll < Gullxn = pll + (1 = 2)lISnGyn — pll < (1 =) llyn — pll + nllxn — pll

< dullxn = pll + (1= 6){(1 — 2ty 1 — Pl + =iy 1 () — I}

1-0,)(1—-6 1—-6,)(1—6 _
=1~ m“”]”x” —pl+ 1—((vcn5+')yi(l—)tn))“” fprl,

By induction, we get that {x,} is bounded. Please note that G is non-expansive thanks to
Lemma 4. Using (3) and the nonexpansivity of I — 1 A1, I — u2Az, Sy, T,y and G, it is guaranteed that
{un}, {vn},{yn}, {Gyn}, {Snvn} and {T,z,} are bounded too, where u, := I1c(I — upA2)yn, vn =
IIc(I — u1Aq)uy and zy, == tyx, + (1 — )y, for all n > 0. Thanks to (2), we have

Zn = tn(xn - }/n) + Yn,
Zp—1 = tnfl(xnfl _]/nfl) +yu—1, Vn>1,

and
Yn = &nf (Yn) + BnXn + YnTnzn,
Yn—1= “nflf(]/nfl) =+ ﬁnflxnfl +Yn-1Th—1zp-1, Vn2>1,

Simple calculations show that

Zn —2Zp—1 = (tn — th—1) (Xn—1 — Yn—1) + (1 = t0) (Yn — Yn—1) + tu(xn — x—1),

and
Yn—Yn-1 = (@n —an-1)f(Yn-1) +@n(f(Yn) — fWn-1)) + Bn(xn — xu-1) 4)
+ (,Bn - ,Bn—l)xn—l + 'Yn(TnZn - Tn—lzn—l) + (’)/n Yn— 1) n—12n—1-

It follows from the resolvent identity that

| Twzn — Tu-1zn-1ll < | Tuzn — Tuzn—1|| + [ Tuzn- 1 Tu-1Zn—1|

< ||Zn_zn71|| + H])]fn(l_)\nA)Zn 1— ]/\ 1( A lA)Zn l”

<lzn—zuall + 15, (= AnA)zn1 = J§ (1= 2AnA)zy]|
U, (1= M)z = I8, (1A LAYz

ozl I8 (T (1= 52018 ) (T AyA)z 1 — I8 (1= M)z )
+H]}i71(l_}\n )Zn 1= ]A 1( n 1A)Zn 1”

< tullxn — Xn—all + |tn — 1l Xn—1 — yu—1ll + (1= tn) [[yn — yu—1ll
+ 1= 2278 (1= AA)zy 1 = (I = AnA)zu 1] + [An = A1l Azn 1|

< thxn - xn—l” + |tn - tn—1|||xn—1 _]/n—1|| + (1 - tn)”yﬂ _yn—ln + ‘/\ﬂ - )\n—llMlz

where 5 ( ) |
I (I —AA)zy1 — (I — AA)zyq
sup( Il =2t ZUZ Aol ey <

n>1
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for some M; > 0. This together with (4), implies that

yn —yn-1ll < lan —analllf(yu-0) | + Bullxn—1 — xull + anll f(yn) — f(Yu-1)l
+ Yl Tuzn — To1zn—1ll + [vn — Va1l Toc1za—all + [Bu—1 — Bulllxn—1]|
< and||yn — yn-a |l + lan — an—1 [l f (yu-1)Il + Bullxn — xn—1]|
+1Bn = Bu-alllxu—1ll + vnltullxn — xpall + tn — tu1lllxn—1 — yu-1ll
+ (L =t)llyn — Ynall + A = Aua M1} + [vn — Yaal | Tuo1zn||
< (@nd + (L= ta)[[yn — Yn-1ll + (Bn + vutu)[[xn — xn-1ll + (lan — 1]
+ |'7n—1 - '7n| + |:8n—1 - ﬁn| + |tn - tn—1| + ‘/\ﬂ - An—ll)ML

where
Sg}g{llf(yn)H + 1 xull + llynll + M1+ [|Tuznl|} < Ma
nz

for some M, > 0. So it follows that
lyn = ynall < b2t st — %all + iy (12 —
+ |,Bn - /37171‘ =+ |'Yn71 - 'Yn| + ‘tn —ty1| + |/\n - )\n71|)M2
=(1- %)H%—l — x| + m(h"n — 1|
+ |,Bn - ﬁnfl‘ + |'Yn - ')/n71| + ‘tn - tn71| + Mn - An71|)M2
< lxn — xpall + mﬂ% —ap_1| +|Bn — Bu-1l

+ 71— Yal + [tn = taal + [An — Aua[) Mo
Hence we get

||SnG]/n - Sn—lcyn—ln < ”Sncyn - SnG]/n—1H + Hsn—lcyn—l - SnGyn—lH
< lyn = ynall + 152GYn-1 = Su-1GYn-ll
< lxn — xpall + Wﬂﬁn 1= Bnl + lan — ap 1|

+ |7n - 7n—1| + |tn—1 - tn| + |)\ - An—1|)M2 + ||SnGyn—1 - Sn—lG]/n—ln-

Consequently,

151Gyn — Sn-1Gyu-1ll — [lxn — 241 < mqan — ay—1| + [Bn — Bu-1l
"H'Yn - 'Yn71| + |tVl - tn71| + |/\n - An71|)M2 + HSnGynfl - 5n71Gyn71||-

Since Y7 1 sup,cp || (Sn — Su—1)x|| < oo for bounded subset D = {Gy, : n > 0} of C (due to
the assumption), we know that limy, e ||(SG — S;,_1G)y,,—1|| = 0. Please note that limy, e a0y =
0, lim, e Ay = A and liminf, ;00 ¥4 (1 — t,) > 0. Thus, from |8, — By—1] = 0, |vn — ¥n—1] — Oand
|th — t,—1| — 0as n — oo (due to conditions (ii), (iii)), we get

limsup([|$nGyn — Sn-1Gyn-1l = [lxn = xu1]) <0

n—o0
So it follows from condition (iv) and Lemma 6 that lim,, ;e ||S, Gy, — x4 || = 0. Hence we obtain
nlgr.}o [xn41 = xall = nlgro‘o(l = 0n)[1SnGyn — x| = 0. (6)

Let p := Ilc(I — upAz)p. Please note that u, = Ilc(I — upAz)yn and v, = Ilc(I — p1Aq)uy
Then v, = Gy;,. From Proposition 4 (see also Lemma 2.13 in [25]), we have

lun —pll7 = Tc(I — p2A2)yn — (I — p2Az)p||?
< (I = p2Az)yn — (I— 2A2)p||'7 ?)
< lyn — pll7 — p2(qas — kgud )| Aoy — Aspll?,
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and

[TTc (I — p1Ar)un — (I — p1 Ag)pl|7

(I — 1 Ar)uy — (I — M1A1)1ﬁ||" 8)
lun — pIT — pa(qay — sgp] )| Aqun — Ag 1.

[0 = pl?

IAN A

Substituting (7) to (8), we obtain

-1
lon —pll7 < llyn —pll7— ﬂz(qtfz — K13 )| A2y — Asp||? ©)
— 1 (qay — xgud )| Ayun — Aqpl|9.

According to Proposition 4, we obtain from (2) that ||z, — p||7 < tu||x, — p||7+ (1 — tu)|lyn — p||7,
and hence

lyn = pIIT = 1Bn(p — xn) + an(f(p) = f(¥n)) + (P — Tuzn) +an(p — f(p))I7

< lwn(f(yn) = f(p)) + Bu(xn — p) + Yu(Tuzn — p) 7 + qau(f(p) — p, Jg(yn — p))

< anllf(yn) = F(PT + Bullxn — PN+ YullTazn — P17 + qan(f(p) — P, Jg(yn — P))

< andllyn — pll7 + Bullxn — 7+ vultullxn — pl|7 4+ (1 — ta) lyn — p||Y]
+qanllf(p) = pllllyn — plI771,

which immediately yields

ay(1—9)

o _
wid =gy P L £ P) Pl pl?

1= (and +yn(1—ty))

—pll1 < (1—
lyn =plI" < (0= 3=
This, together with the convexity of || - ||7 and (9), leads to

11 = pl7 = [16n(xn — p) + (1 = 64) (SnGyn — p)I|7
< onllxn — pl|7+ (1 = 0u)[|Snvn — pl|7 )
< Onllxn —pll7+ (11— Sn){Ilyn — pI|7 — pa(qea — xqud ) || Aoy — Aap||7
— w1 (qay — kgud ) || Aqun — Aqp||7} 1
n 1_5 _ n— q7
< Gullxn = 1T+ (1= 6){ (1 — oyl — 19 + LRl w0

— g0 = kqpid )| Az — Aop|[? = pur (qar = xqped )| Aviey — A1}
_ n(1-0,)(1-0 (1=0n) [ f(p)—Pllyn—plT~
=(1- %)HM —pll+ i p(i,fmf(lgtn)f fn

-1 -1 =
— (1= 6n) [p2(qa2 — wqp3 )| Ay — Aap |7+ pa (g1 — gl )| Aquen — Arpl|7]
<lxn—pl7—(1 —fn)[uz(qaz —Kgid )| Azyn — Aap|?
+ pa(qag — kgpd ) || Ay — Aqp||] + 2y Ms,

where

Sup{l_ q(l_‘sn)

n>0 (Dénf5+7n(1_tn))”f(i’)—P||||}/n—p||‘7‘1} < M;

for some M3 > 0. So it follows from (10) and Proposition 2 that

-1 -1 _
(1= 8n) [p2(gaz — xqpd )| Agyn — AopllT + pa (ger — xqp] )| Aguen — A1 p||7]
<|lxn = pl|7 = |xp+1 — pl|7 + anM3
< qllxn = xpa | 1xn1 — P71 + g0 — Xnsa (|7 + an Ms.

1
Since 0 < p; < (%")4*1 for i = 1,2, from conditions (i), (iv) and (6) we get

lim || Agyn — Azp|| =0 and  lim [|Ayuy — Ay pl| = 0. (11)
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Using Proposition 1, we have

|un — pl1? = T (I — p2Az)yn — He (I — paA2)plf?

<A((I = p2A2)yn — (I — p2A2)p, J(un — P))
= (Yn — p,J(un — P)) + p2(A2p — Agyn, ] (in — P))
< 3llyn p||2+|!un ﬁllz—gﬂ\lyn—un—( = P)ID] + m2llAap — Aoy llllun — 1,

where g1 is given by Proposition 1. This yields
1tn =PI < llyn — pII* = 81(lyn — 1n — (p = D)) + 22| Azp — Agyulll|un — pl|- (12)
In the same way, we derive

lon —plI* =TI — prAr)un — Tc(I - pAr)p|?

<{(I- ﬂlAl)”n —(I=mA)p, J(vn — p))
= (un — p, —p)) + H1{A1p — Arun, J(vn — p))
< 3l P||2 + [lon = plI* = g2(llun — vu + (p = P)ID] + 41l A1f — Avuin|[lon — pll,

where g is given by Proposition 1. This yields

lon = plI* < llun = pII* = g2(llun — on + (p = P)) + 201 Arp — Arunll|on — pll. (13)

Substituting (12) for (13), we get

lon =Pl < llyn = plI* = 81(Iyn — tw = (p = D)) — 82(llta — vu + (p — P)) (14)
+ 2p2|[ Aap — Aaynl[[un — pll + 2p1[| Arp — Avutn [ [[on = pll-

Please note that || - ||? is convex. Using Proposition 1, Lemmas 1 and 9, one concludes

lyn — PHZ < |1Bu(p — xn) +an(f(p) = f(yn)) +vn(p — Tnzn)HZ +2an(f(p) — P, J(yn — p))
<l f(p) = Fyn) I + Bullxn — plI* + vull Tuzn — plI* = Buyngs([|xn — Tuzall)
+ 20, (f(p) — . J(yn — p))
< aydllp — ynHz + Bullxn — P”z + yn(tnllxn — P”z + (1 =ta)llyn — PHZ)
+2an|[ f(p) — Pl = yull = Bavnga(llxn — Tuzall),

which immediately sends

Xn (1 _5) 20,

lyn — P||2 <(1- m)”xn - PH2+ m”ﬂp) = plllyn = pl

- ey ga (= Tuzal))-
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This together with (2) and (14) leads to

[xn41 = plI> = 162 (xn — p) + (1 = 62) (SuGyn — p)|I?

S‘Sn”lg_xn”Z (1_‘571)”511071_7””2

< Sullp — %l + (1= 8u){llyn — pl12 = g1(llys = tn — (p = P) ) = g2(ln — 0u + (p = P))
+ 22| Aap — Agyullllun — Pl +2p41 ]| Arp — Avuall]low — plI}

< Sallx = pIP + (1= 8){(1 = ) [l — p2

+ sy L () = Plllyn — pll — =l yy85 (1 %n — Tuzall)

= &1(llyn —un — (p = P)II) — 2(lun —on + (p — D))

+ 2002 Aap — Agy 1 = Pl + 23| A1 = Avta [0 — pll}
< (1 (20 2ICD ) 3 — pI2 + st =y 1 (P) = Pl v — p

— (1= o) [frtassllaTuznl) o o, |y, —w, — (p— p)]) + 8a(llttn — o+ (p — P) )]
+ 24| Aap = Azl = pl| +2p1 ]| A1p — Agst||[0n — p
< Jlxu = pl2 = (1= &) [t Do) 4y (lyn — un — (p = P)I)
+ 8a(llun = on + (p = P) D] + 22| A2p — Ayl — Pl + 24111l Arp — Avtall[}0n — p|
+ s £ (p) = pllllyn — pll,

which immediately yields

(1= g [BrmssleaTeznll) o, 1y — iy — (p = P)I) + 2l — 00 + (p = P)])]
<l = PH; = [lxns1 = plI? +2p2)| Aop — Apyullllun — pll + 2p1[| Arp — Avun | [on — pl|
+ m”ﬂp) = pllllyn —pll
< (Ip = xull + lp = xp1 ) 120 — X041 J2r2ﬂzHAzp — Agyn||[lun — Pl
+2ml|Arp — Avunllllon = pll + =mmta=my 1 £ () — Pllllya = pll-

Using (6) and (11), from lim inf, ;e Bnyn > 0, and liminf, (1 — J,) > 0, we have
1im g1 ([ =t = (p = P)I) = lim ga(lles = 00+ (p = p) ) = lim gal(lxa — Tuza ) =0

Using the properties of g1, g2 and g3, we deduce that

nlgrolo lyn —un—(p—P)Il = nlglgo un —vn+(p—P)Il = nlgrolo |24 — Tuzn|| = 0. (15)
From (15) we get

1y = Gynll = llyn = oall < llyn =t = (p = P + llun — v+ (p =) = 0 (2 = c0).  (16)

Meantime, again from (2) we have v, — x, = a4 (f(yn) — Xn) + Yn(Tuzn — x»). Hence from (15)
we get ||yn — xXn|| < aul|f(yn) — xul| + || Tuzn — xn|| = 0 (n — o0). This together with (16), implies that

lxn = Gxull < [|xn — yall + lyn — Gynll + [|Gyn — Gxu|

17
< 1y — Goull +2]xn — Yl =0 (1 — ). {17)

Next, one claims that ||x, — Sx,|| — 0, ||x, — TAx,|| — 0 and ||x, — Wx,|| — 0as n — oo, where
Sx = limy—oo Spx, Vx € C, T) = ]E(I — AA) and Wx = 015x 4 0,Gx + 63T x, Vx € C for constants
61,602,605 € (0,1) satisfying 67 + 6, + 63 = 1. Indeed, since x,,11 = duxy + (1 — 6,)Sn Gy, leads to
1SnGyn — x4 = ﬁ |xn41 — xx||, we deduce from (17), lim inf, (1 — 6,,) > 0 and x, — v, — O that

[Snxn — xull < [1Snxn — SuGxal| + 1SnGxn — SuGyull + |SnGyn — x|
< 2w = Gxull + 1x0 = yll + 25 [1Xn 11 — Xall = 0 (1 — o0),
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which implies that
1Sxn — x| < ||Sxn — Snxnl| + ||Snxn — xu|| = 0 (n — o0). (18)
Furthermore, using the similar arguments to those of (5), we obtain

[Tnzn — Tazal| < [1-— )\%HU/E\BH(I = AnA)zn — (I = AnA)zn|| + [An — All| Az |
=[1- )\%|||Tnzn — (I = AnA)zall + [An = A[[| Az |

Since limy, e Ay = A and the sequences {z, }, {Tnzn }, { Az, } are bounded, we get

Taking into account condition (v), i.e,, 0 < A < Ay, Vi > 0 and limy e Ay = A < (L )W, we

- 1
know that 0 < A < A < (%) -1 So it follows from Proposition 4 that Fix(T)) = (A + B) 10 and
T) : C — Cis nonexpansive. Therefore, we deduce from (15), (19) and x, — y, — 0 that

[Taxn —xnll - < 1Taxn — Tazall + 1 Tazn — Tuznll + [ Tuzn — x|
< lxn = znll + | Tazn — Tuzall + | Tuzn — xn| (20)
< ||xn - yn” + ||T)\Zn - TnZnH + ||TnZn — XnH —0 (1’[ — OO)

We now define the mapping Wx = 6;5x + 6,Gx + 03T, x, Vx € C for constants 61, 6,,63 € (0,1)
satisfying 61 + 6, + 03 = 1. So by using Lemma 7, we know that Fix(W) = Fix(S) NFix(G) NFix(T,) =
Q. One observes that

Hxn - Wan = H91 (xn - an) + 92(x71 - Gxn) + 93(xn - T)\xn)H (21)
< 01||xn — Sxnl| + 02]|xn — Gxpl| + 63]|xn — Trxn].
From (17), (18), (20) and (21), we get
lim [|x, — Wx,|| = 0.
n—oo
The next step is to claim
lim sup(J(x, — x*), f(x*) —x*) <0, (22)

n—oo

with x* =s-limy,_;« x¢, where x; is a fixed point of x — tf(x) + (1 — t)Wx for each t € (0,1). Please
note that the existence of x* (x* € Fix(W)) is from Lemma 3. Indeed, the Banach contraction mapping
principle guarantees that for each t € (0,1), x; satifies x; = tf(x;) + (1 — t)Wx;. Hence we have
llxe — xu|| = [|(Wxr — x4) (1 — t) + (f(x¢) — x)t]|. Using the known subdifferential inequality (see [7]),
we conclude that

lln = xel|? < 28(xn — f(x2), (o = 22)) + (1= £)2[Waxr — 0|2
< 20y — f(x), ] (xn = 2¢)) + (1= > ([[Waw — 2| + [ Wy — Wy [])? (23)
< 2t<xn fCe), J(xtn = x0)) + (1= )2 ([l — x| + [0 — Woxal])?
|

t
= (=2t +1)|locn — x>+ 2t(xr — f(x2), J(xn — x0)) + fun(t) + 2|20 — 2],

where
fa(t) = (xn = Watn|| +2]| 20 — )10 — Wy | (1= £)> =0 (n — o0). (24)
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It follows from (23) that

(31 = £ (), T = x)) < 500 = 0l o ). 25)

Using both (25) and (24), we derive

1imsup<xt — f(xt),](xt — xn)> < M4, (26)

£
n—00 2
where sup{||x; — x,||?: t € (0,1) and n > 0} < My for some My > 0. Taking t — 0 in (26), we have

lim sup limsup(f (x¢) — x¢, [ (xn — x¢)) < 0.

t—0 n—ro0

On the other hand, we have

(f(x*) = x*, J(xn — x°)) = (f(x*) = &, J(xn — x%)) — (f(x*) — ", J(xn — x1))
+ (f(x ) X, J(on — xe)) = (F (%) = xp, J(xn — x0)) + (f(x*) — xp, ] (xn — X))
= (f(xt) = xe, J(xn — x1)) + (f(x) —x1, J (0 — x1))
= (f(x*) =, J(oxn — x*) = J(xn — x¢)) + (xr — x%, ] (xn — x¢))
+ (xe = f(xe), J(xe = xn)) + (f(x) = f(xe), J(xn — x1)).-

So it follows that
limsup(f(x*) — x*, J(x, — x*)) < lmsup(f(x*) —x*, J(xn — x*) — J(xn — x¢))

+(1+0)|xr — x*|[limsup||x, — x¢|| + Lmsup(f (x¢) — x¢, J(xn — x¢)).
n—oo n—oo
Taking into account that x; — x* yield

limsup(f(x*) — x*, J(x, — x*)) = limsup limsup(f (x*) — x*, J(x,, — x*))

n—00 t—0 n—o00

<limsuplimsup(f(x*) — x*, J(xp — x*) — J(xy — x¢)).

t—0 n—oo

Using the property on nonlinear mapping | yields (22). Please note that x, — v, — 0 implies
J(yn — x*) — J(xn — x*) — 0. Thus, we conclude from (22) that

limsup (f(x*) = x*, J(yn — x*)) = limsup(f(x*) — x*, J(xn — x7)) <0. (27)

n—o0 n—o0

One observes that

lyn — x ||2 lan (f (yn) = £(x*)) + Bu(xn — x*) + Yu(Tuzn — x*) + an(f(x*) — x*)Hz
< | f (yn) = FOP A+ Bullxn — x* (2 + Y|z — 2|2 + 2000 {f (x*) — 2%, ] (yn — x*))
< @ndllyn — x*1* + Bullxn — x* 12 4 v (bnlln — x>+ (1= ta) lyn — x*[|?)

+ 20 (f(x*) = X%, ] (yn — X)),

which hence yields

lyn =517 < (1= ity — X112 + gy () — 2 T (g — x*)). - (28)
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By the convexity of || - [|?, the nonexpansivity of S,G and (28), we get

261 = 21 = || (xn — %) + (S Gyn — x*)(1 = 8|2

< Ballxn — 212+ (1= 8:){(1 = ittt ) e — 2 2
e () — %, (- x))} )

= (1 2l ) v — x 12 + st Aol ),

Since lim inf, e % >0, {%} C (0,1) and Y° &y = oo, we know

that {%} C (0,1)and Y5 % = 0. Using (27) and Lemma 8, we conclude
from (29) that ||x, — x*|| — 0 as n — oo. This proof is now complete. [

Remark 1. From the related associated results in Ceng et al. [16], Song and Ceng [25], our obtained results
extend and improve and them in the following ways:

(i) The approximating problem of N:°_,Fix(S,) N GSVI(C, Ay, Ay) in [[16], Theorem 3.1] is moved to
devise our approximating problem N%_ Fix(S,) N GSVI(C, A1, A2) N (A + B) 710 where (A + B)~10 is
the solution set of the VI: 0 € (A + B)x. The implicit (two-step) relaxed extragradient method in [[16],
Theorem 3.1] is extended to develop our generalized Mann viscosity implicit rule in Theorem 1. That is,
two iterative steps vy, = (1 — ay)Gxy + anf (yn) and x,11 = (1 — Bn)SnYn + Bnxn in [[16], Theorem
3.1] is refined to develop our two iterative steps Yo = anf(Yn) + BnXn + YnTu(tnxn + (1 — tn)yy) and
Xp+1 = OnXn + (1 — 6,)SnGyy, where Ty, = ]fn (I — ApA). In addition, uniformly convex and 2-uniformly
smooth restructures in [[16], Theorem 3.1] is generalized to the structures of uniformly convex and q-uniformly
smooth for1 < g < 2.

(ii) The problem of finding an element of NS> Fix(S,) N GSVI(C, Ay, Ay) in [[25], Theorem 3.1] is
generalized to devise our approximating problem on the element in N;_,Fix(S,) N GSVI(C, A1, Ay) N (A +
B)~10, where (A + B)~10 is the solution set of the VI: 0 € (A + B)x. The modified relaxed extragradient
method in [[25], Theorem 3.1] is extended to develop our generalized Mann viscosity implicit rule in Theorem
1. That is, two iterative steps Y, = (1 — Bn)xXn + BnGxy and x, 11 = e lanyf(x0) + Ynxn + (1 — yn)I —
anpF)Snyn| in [[25], Theorem 3.1] is extended to develop our two iterative steps yn = &nf(Yn) + BnXn +
YnTn(bnxn + (1 — ty)yn) and x,11 = 6nxn + (1 — 6,) Sy Gyp, where T, = ]Eﬂ([ — ARA).

Next, Theorem 1 is applied to solve the GSVI, VIP and FPP in an illustrating example. Let C =
[—2,2] and H = R with the inner product (a,b) = ab and induced norm || - || = | - |. The initial point
xo is randomly chosen in C. We define f(x) = %x, Sx =sinxand Ajx = Ayx = Ax = %x + %sinx for
all x € C. Then f is 1-contraction, S is a nonexpansive self-mapping on C with Fix(S) = {0} and A is

4 -Lipschitzian and 5-strongly monotone mapping. Indeed, we observe that

2 1, . . 2
lAx — Ayl < Zllx =yl + g [[sinx —siny|| < (3 + )le —yll = ||x vl
and
2 1 2 1 5
(Ax — Ay, x —y) = S(x—y,x —y) + gsinx —siny,x —y) > (3 = Plx —y[> = llx—y*
This ensures that (Ax — Ay,x —y) > & HAx Ay||?>. So it follows that Ay, = A, = A is
%-inverse-strongly monotone, and hence a7 = a, = a = %. Therefore, it is easy to see

that Q = Fix(S)ﬁGSVI(C,Al,Az)ﬂVI(C,A) = {0} # @. Letyuy = pp = a = . Putting

&y = 5 n+2 Bn = 13— (nlﬂ) 'yn:%,(%l:%, tn:%and)\n /_\:a:%,weknowthatthe
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conditions (i)~(v) on the parameter sequences {A, } C (0,2«) and {a, }, {Bn}, {¥n}, {n}, {tn} C (0,1)
all are satisfied. In this case, the iterative scheme in Theorem 1 can be rewritten as follows:

1 n+ n
{ Yn = 2(n+2) 2]/71 +( (,H_z))xn + PC(I - 121A)(x ! ),
_ x3+SGyy
Xntl = =7

£-A)Pc(I — £ A). Then, by Theorem 1, we know that {x,} converges to

where G := Pc(I —
) NGSVI(C, A1, A2) NVI(C, A).

0 € Q) =Fix(S

4. Applications

In this section, we will apply the main result of this paper for solving some important optimization
problems in the setting of Hilbert spaces.

4.1. Variational Inequality Problems

Let A : C — H be a single-valued nonself mapping. Recall the monotone variational inequality of
getting the desired vector x* € C with (Ax*, x — x*) > 0, Vx € C, whose solution set of is VI(C, A).
Let I be an indicator operator of C given by

_ 0 ifyeC,
Icy_{ o ify ¢ C.

We denote the normal cone of C at u by N¢(u), i.e., Nc(u) is a set consists of such points which
solve (w,v —u) < 0, Yo € C. It is known that I is a convex, lower semi-continuous and proper
function and the subdifferential dI¢ is maximally monotone. For A > 0, the resolvent mapping of 9l
is denoted by ]aIC, ie., aIC = (I + AdI¢)~'. Please note that

dlc(u) ={we H:Ic(v)+ (w,v—u) <Ic(u), Vo € C}
={weH: {(wv—u)<0VveC}=Nc(u), VueC.

So we know that u = ]aIC( ) © x—u€ANc(u) & (x—u,v—u) <0, Vo€ C & u= Pc(x).
Hence we get (A +9Ic) =10 = VI(C, A).
Next, putting B = dI¢ in Theorem 1, we can obtain the following result.

Theorem 2. Let non-empty set C be a convex close in a Hilbert space X stated as Theorem 1. Fori = 1,2,
mappings A, A; : C — H are -inverse-strongly monotone and a;-inverse-strongly monotone, respectively. Let
S be a nonexpansive singled-valued self-mapping on C. Suppose Q) = Fix(S) NGSVI(C, A1, A2) NVI(C, A) #
@, where GSVI(C, A1, Ap) is the fixed-point set of G := Pc(I — py A1) Pc(I — ppAy) with 0 < y; < 2u; for
i=1,2. Let f : C — C be a strictly contraction with constant 6 € (0,1). For arbitrary initial xo € C, define
{xn} by

Yn = &nf(Yn) + vuPc(I — AnA)(tuxn + (1 — tu)yn) + BuXn,

Xpi1 = (1 —=64)SGyn + duxn, n >0,

where 0 < A < Ay, Vn > 0and limy_e0 Ay = A < 20, and {ay }, {Bn}, {7n}, {6n}, {tn} C (0,1) satisfy
conditions (i)—(iii) as in Theorem 1 in Section 2. Then x, — x* € O, which is the unique solution to the
variational inequality: ((I — f)x*,x* —p) <0, Vp € Q.

4.2. Convex Minimization Problems

Letg: H — Rand h : H — R be two functions, where g is convex smooth and / is proper convex
and lower semicontinuous. The associated minima problem is to find x* € H such that

§(x") +h(x") = min{g(x) + h(x)}. (30)
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By Fermat’s rule, we know that the problem (30) is equivalent to the fact that finds x* € H such that
0 € Vg(x*) 4+ oh(x*) with Vg being the gradient of function g and o being the subdifferential function
of function . It is also known that if Vg is 1-Lipschitz continuous, then it is also a-inverse-strongly
monotone. Next, putting A = Vg and B = dh in Theorem 1, we can obtain the following result.

Theorem 3. Let ¢ : H — R be a convex and differentiable function whose gradient Vg is i-Lipschitz
continuous and h : H — R be a convex and lower semi-continuous function. A; : C — H are supposed to be
w;-inverse-strongly monotone for i = 1,2. Let S be a nonexpansive single-valued self-mapping on C such that
Q = Fix(S) NGSVI(C, A1, A2) N (Vg + 0h)~10 # @ where (Vg + 0h) 10 is the set of minima attained by
g+ h, and GSVI(C, A1, Ap) is the fixed point set of G := Pc(I — p1.A1)Pc(I — paAz) with 0 < p; < 2a; for
i=1,2. Let f : C — C be a strictly contraction with constant 6 € (0,1). For arbitrary initial xo € C, define
{xn} by

Yn = anf(yn) + ’Yn]iﬁ(l = A V) (tnxn + (1 = tn)yn) + BnXn,

Xpi1 = (1= 64)SGyy + 0uxn, n >0,

where 0 < A < Ay, Vn > 0and limy_e0 Ay = A < 20, and {a }, {Bn}, {7n}, {6n}, {tn} C (0,1) satisfy
conditions (i)—(iii) as in Theorem 1 in Section 2. Then x, — x* € Q, which uniquely solves ((I — f)x*, x* —
p) <0, VpeQ.

4.3. Split Feasibility Problems

Let C and Q be non-empty convex closed sets in Hilbert spaces H; and H», respectively. Let
T : Hi — Hj be a linearly bounded operator with its adjoint T*. Consider the split feasibility problem
(SFP) of obtaining a desired point x* € C and Tx* € Q. The SFP can be borrowed to model the
radiation therapy. It is clear that the set of solutions of the SFP is C N T-1 Q. To solve the SFP, we can
rewrite it as the following convexly constrained minimization problem:
min g(x) := 1||Tx — PoTx|%
xeC 2
Please note that the function g is differentiable convex whose Lipschitz gradient is given by
Vg = T*(I — Pg)T. Furthermore, Vg is ﬁ—inverse—strongly monotone, where || T||? is the spectral
radius of T*T. Thus, x* solves the SFP if and only if x* € Hj such that

0€ Vg(x*)+0Ic(x*) & x*—AVg(x*) € (I+Adlc)x*
& xf = ]ilc (x* —AVg(x*))
& x* = Pe(x* — AVg(x")).

Next, putting A = Vg and B = dI¢ in Theorem 1, we can obtain the following result:

Theorem 4. Let C and Q be nonempty closed convex subsets of Hy and Hy, respectively. Let T : Hj — Hp
be a bounded linear operator with its adjoint T*. Let the mapping A; : C — Hj be aj-inverse-strongly
monotone for i = 1,2. Let S be a nonexpansive self-mapping on C such that Q) = Fix(S) N GSVI(C, A1, A2) N
(CNT1Q) # @ where GSVI(C, A1, Ay) is the fixed point set of G := Pc(I — u1A1)Pc(I — ppAy) with
0 < p; <2ajfori=1,2. Let f: C — C bea é-contraction with constant § € (0,1). For arbitrarily given
xo € C, let {x,} be a sequence generated by

Yn = tnf(Yn) + 1nPe(l = AnT*(I = Po)T)(tnxn + (1= tn)yn) + PuXn,
Xpt1 = OnXn + (1 —6,)SGyy, n >0,

where 0 < A < Ay, V> 0and limy—eo Ay = A < W, and {on }, {Bn}, {vn}, {0n}, {tn} C (0,1) satisfy

conditions (i)—(iii) as in Theorem 1 in Section 2. Then x, — x* € Q, which uniquely solves ((I — f)x*, x* —
p) <0, VpeQ.
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