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Abstract: In this article, we consider an inverse problem to determine an unknown source term
in a space-time-fractional diffusion equation. The inverse problems are often ill-posed. By an
example, we show that this problem is NOT well-posed in the Hadamard sense, i.e., this problem
does not satisfy the last condition-the solution’s behavior changes continuously with the input data.
It leads to having a regularization model for this problem. We use the Tikhonov method to solve the
problem. In the theoretical results, we also propose a priori and a posteriori parameter choice rules and
analyze them.

Keywords: fractional diffusion-wave equation; fractional derivative; ill-posed problem; Tikhonov
regularization method
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1. Introduction

Let Q be a bounded domain in R? with sufficiently smooth boundary dQ), 8 € (1,2). In this paper,
we consider the inverse source problem of the time-fractional diffusion-wave equation:

8§+u(x,t) = Au(x,t)+E(x), (x,t)eQx(0,T),

u(x,t) =0, (x,t) € 0O x (0, T],

u(x,0) = f(x), xeq, 1)
u(x,0) = g(x), xeQ,

u(x, T) = h(x), xeQ,

where 8§+ u(x, t) is the Caputo fractional derivative of order § defined as [1]

't 32
1 /t o“u(x,s) ds 1< <2, )

B _
80+M(X,f) - F(Z—a) 0 aSZ (t_s)ﬁ_l/

where T'(.) is the Gamma function.
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It is known that the inverse source problem mentioned above is ill-posed in general, i.e., a solution
does not always exist and, in the case of existence of a solution, it does not depend continuously on
the given data. In fact, from a small noise of physical measurement, for example, (1, f, g) is noised by
observation data (h“1, g2, h*3) with order of 1 > 0,&5 > 0, and &3 > 0.

|h— hsl”cZ(Q) < &, Hf_fQHﬁ(Q) < &, and Hg—g“ch@ S &3 ®)

In all functions f(x), g(x), and h(x) are given data. It is well-known that if €1, €5, and €3 are small
enough, the sought solution Z(x) may have a large error. The backward problem is to find E(x) from
E® and g° which satisfies (3), where [| - || z2(y) denotes the L2 norm.

It is known that the inverse source problem mentioned above is ill-posed in general, i.e., a solution
does not always exist, and in the case of existence of a solution, it does not depend continuously on
the given data. In fact, from a small noise of physical measurement, the corresponding solutions may
have a large error. Hence, a regularization is required. Inverse source problems for a time-fractional
diffusion equation for 0 < B < 1 have been studied. Tuan et al. [2] used the Tikhonov regularization
method to solve the inverse source problem with the later time and show the estimation for the exact
solution and regularized solution by a priori and a posteriori parameter choices rules. Wei et al. [3-5]
studied an inverse source problem in a spatial fractional diffusion equation by quasi-boundary value
and truncation methods. Fan Yang et al., see [6], used the Landweber iteration regularization method
for determining the unknown source for the modified Helmholtz equation. Nevertheless, to our
best knowledge, Salir Tarta et al. [7] used these properties and analytic Fredholm theorem to prove
that the inverse source problem is well-posed, i.e., f(t, x) can be determined uniquely and depends
continuously on additional data u(T,x), x € Q, see [8,9]—the authors studied the inverse source
problem in the case of nonlocal inverse problem in a one-dimensional time-space and numerical
algorithm. Furthermore, the research of backward problems for the diffusion-wave equation is an
open problem and still receives attention. In 2017, Tuan et al. [10] considered

P (1) =~ (s ) T hOF), (6 € On,

oth

u(—1, )-u(lt)zO, 0<t<T, (4)
u(x,0) = xeQ,

u(x,T) = (), xeq,

where Q1 = (—1,1) x (0,T); r > 01is a parameter; h € C[0, T] is a given function; p € (0,1); a« € (1,2)
are fractional order of the time and the space derivatives, respectively; and T > 0 is a final time.
The function u = u(x, ) denotes a concentration of contaminant at a position x and time ¢ with (—A)2
as the fractional Laplacian. If « tends to 2, the fractional Laplacian tends to the Laplacian normal
operator, see [1,2,7-16]. In this paper, we use the fractional Tikhonov regularization method to solve
the identification of source term of the fractional diffusion-wave equation inverse source problem
with variable coefficients in a general bounded domain. However, a fractional Tikhonov is not a new
method for mathematicians in the world. In [16], Zhi Quan and Xiao Li Feng used this method for
considering the Helmholtz equation. Here, we estimate a convergence rate under an a priori bound
assumption of the exact solution and a priori parameter choice rule and estimate a convergence rate
under the a posteriori parameter choice rule.

In several papers, many authors have shown that the fractional diffusion-wave equation plays
a very important role in describing physical phenomena, such as the diffusion process in media
with fractional geometry, see [17]. Nowadays, fractional calculus receives increasing attention
in the scientific community, with a growing number of applications in physics, electrochemistry,
biophysics, viscoelasticity, biomedicine, control theory, signal processing, etc., see [18]. In a lot of
papers, the Mittag-Leffler function and its properties are researched and the results are used to model
the different physical phenomena, see [19,20].

The rest of this article is organized as follows. In Section 2, we introduce some preliminary results.
The ill-posedness of the fractional inverse source problem (1) and conditional stability are provided in
Section 3. We propose a Tikhonov regularization method and give two convergence estimates under
an a priori assumption for the exact solution and two regularization parameter choice rules: Section 4
(a priori parameter choice) and Section 5 (a posteriori parameter choice).
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2. Preliminary Results

In this section, we introduce a few properties of the eigenvalues of the operator (—A), see [21].
Definition 1 (Eigenvalues of the Laplacian operator).

1. Each eigenvalues of (—A) is real. The family of eigenvalues {b;}% , satisfy 0 < by < by < b3 < ..., and
bj — coasi — oo.

2. We take {b;,e;} the eigenvalues and corresponding eigenvectors of the fractional Laplacian operator in ()
with Dirichlet boundary conditions on 0C):

—Aei(x) = bei(x), x€Q, 5)
ei(x) =0, onaQ}
fori=1,2,.... Then, we define the operator (—A) by
—Au =) ci(—Aei(x Z cibiei(x (6)
i=0

which maps H§(QY) into L(Q)). Let 0 # x < oo. By H*(Q)), we denote the space of all functions
g € Lo(Q)) with the property

Y (145 gi]* < o, ?)
i=1

where g; = [, g(x)e;(x)dx. Then, we also define ||g||HK \/Zfiﬂl +Ei)2"|gi|2. Ifx = 0, then
H*(Q) is L,(Q)).

Definition 2 (See [1]). The Mittag—Leffler function is:
00 i

E
pal2 ;)Fﬁwv)

ze€C,

where B > 0 and v € R are arbitrary constants.

Lemma 1 (See [21]). For1 < f <2,y € R, and w > 0, we get

Epy(—w) = = o +o(= : 7), @ oo ®)

T(y—B

Lemma 2 (See [1]). If B < 2and v € R, suppose { satisfies %‘B < ¢ <min{m, p}, { < |arg(y)| < 7.

Then, there exists a constant A as follows:

E < ©)
| ﬁfv(yﬂ T+ yl
Lemma 3 (See [22]). The following equality holds for b > 0, & > 0 and m € N
m ~ ~
T Ena (= btY) = —bt* " Egp_man (—btY), t>0. (10)

Lemma 4. Forb; > 0, B > 0, and positive integer i € N, we have

(1) 2 (tEpaBtP)) = Ega(-TitP),

(2)%@&,1(—5#5)) = —bitP 1 Ep p(—bit). (1)
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Lemma 5. For any b; satisfying b; > by > 0, there exists positive constants A, B such that
A = B
b1 ‘ pp+1(—bi )‘ = TP (12)
Lemma 6 (See [21]). Let b > 0, we have
]oepttﬁi+7lE(i) (£atb)dt = i R(a) > [|a||? (13)
By (pP ¥ a)i+1’ ’
0
where E/(;)V(y) = dd—yl,.E/g,,y(y).
= 1
Lemma 7. For constant ¢ > by and 2 < 1 <1, o0nehas
¢ — 1
C(8) = oy < Clm A, (9

where C = C(t, A) are independent on a, &.

Proof. Let - < 7 < 1, we solve the equation C’'(¢p) = 0, then there exists a unique o = A(27 —
1)’217zx’%, it gives

€@ < @) < A" @r—1)F at = Tlr, A

O

Lemma 8. Let the constant & > by and % <71 <1, we get

a2F2T] PB(i, 7, A oc%, 0<ij<2T,
D(¢) = A2T - T S 1(]. )~ 2 ]
+a5g By (j, T, A, by)a?, j > 2t
Proof.
e Ifj > 27, thenfrom ¢ > 51, we get
“2(:277]' D(ZérZTfj o2 1
D@) = dor e S e S oo S ~;2r"‘2' (15)
AT+ a2g A AZTb]l AZ'rb]1
[ ]

If 0 < j < 27, then it can be seen that limg_,o D () = limg_, 1o D(&) = 0. Taking the derivative of
D with respect to ¢, we know that

D/(g) B “2(27 —j)§2T_j_1(A2T + 062621') _ 0642T€4T_j_1 .

(AZT + aZé’ZT)Z (16)
From (16), a simple transformation gives
0(2(21’ _j)AZTérZTfjfl _ a4jg4"ffj71
D'(¢) = (AZT 1 a2027)2 ' 17)

D(¢) attains maximum value at { = & such that it satisfies D'(¢) = 0. Solving D' (&) = 0,
we know that §y = A(2t —j)%zx_%j—%,



Mathematics 2019, 7, 934 5o0f 24

Hence, we conclude
W 2T S
2T 7])714—]]? j
T, 18
= a (18)

D(§) < D(&) = D(AQT — j)atj %) = L
O

Lemma9. Let & > by > 0and 3 <7 <1, and F (&) be a function defined by

P = S < {933(7’T’A>5HT1' d<j<r-l,
+a% Balj, T, A1), j>2r-1,
i . j+1
ahre 1,5, 40) = 2 (5T ) e A =
1

Proof.
o Ifj>2t—1,thenfor¢ > 51 we know that

06262T_(j+1) 1

2 _ . =~ 9
S i Al A 19)
1

F(g) <

e If0 <j <2t -1, then we have limg_,g F (&) = limg_o F (&) = 0, then we know

F(E) < sup F(E) < F(Qo)-
¢€(0,400)

By taking the derivative of F with respect to ¢, we know that

_ AZTIXZ(ZT o ] o 1)€2T—j—2 + 0(4(7]' o 1)§4T—j—2.

(]:),(C) (AZT + leéKZT)Z

(20)

The function F () attains maximum at value { = &, whereby &y € (0, +0c0), which satisfies

L
(F)'(&o) = 0. Solving (F)'(&p) = 0, we obtain that §y = M > 0, then we have

8% (j+1)77
AQT—j—1)%\ 20—j-1( j+1 \*
_ T—j—1)z@\ 2t1—j— ]+ ro
]:(C)S}“(éO)*F( “%(],_'_1)% )* 2TA2T <2T—j—1> ar

The proof of Lemma 9 is completed. Our main results are described in the following Theorem. [

Now, we use the separation of variables to yield the solution of (1). Suppose that the solution
of (1) is defined by Fourier series

u(x, t) = iui(t)e,-(x), with u;(t) = (u(- t),e;(-)). (21)
i=1

Next, we apply the separating variables method and suppose that problem (1) has a solution
of the form u(x,t) = Y72, u;(t)ej(x). Then, u;(t) is the solution of the following fractional ordinary
differential equation with initial conditions as follows:

;;ui(t) = Au;(t) + Ei(x), (x,t)€Qx(0,T),
u;i(0) = (f(x),ei(x)), x€Q,

_ . (22)
uir(0) = (g(x),ei(x)), x € Q.



Mathematics 2019, 7, 934 6 of 24

As Sakamoto and Yamamoto [22], the formula of solution corresponding to the initial value
problem for (22) is obtained as follows:

ui(t) = tPEg g1 (—bitP) (B &) + Eg1(—bitP) (f,e;) + tEgo(—bitF) (g, e;)- (23)

Hence, we get

)= 3 [IPEp i (—BitB) (5(2),ex(x)) + Epa(<5i) (£(2),ei(x)

i=1

+ tEpa(~bit?) (g(x), ei(x)) ] ei(x). 24)

Letting t = T, we obtain

e T) = L [TPEppa (BT) (200 1(2) + B (B TF) () 9)
+ TEpa(~BiT)(g(x), €i(x)) | ei (). (25)

From (25) and using final condition u(x, T) = h(x), we get
)= L [TEppaa (SBTF) (20, 0400)) + Epa (BTA) () ()
+ TEa(~biTP) (g(x), ei(x)) ] es(x). (26)

By denoting i = (h(x),ei(x)), fi = (f(x),ei(x)), & = (g(x),ei(x)), and & = (E(x),ei(x)),

using a simple transformation, we have

hi — Eg1(—b;TP) f; — TEgo(—b;TP)g;

B = ; = (27)
TPEg g1 (—b;TP)
Then, we receive the formula of the source function E(x)
= = Ri
E(x) = : e;(x), (28)

where Ri = hi — E‘Bll(*aT‘B)fi — TEﬁ/z(*E‘Tﬁ)gi.
In the following Theorem, we provide the uniqueness property of the inverse source problem.

Theorem 1. The couple solution (u(x,t),E(x)) of problem (1) is unique.

Proof. We assume = and =, to be the source functions corresponding to the final values R and Rp
in form (27) and (28), respectively, whereby

Rl = h1 — Eﬁ,l(*EiTﬁ)fl — TElg,z(f’EiTﬁ)gl,
Rz = hz - Eﬁ,l(—EiTﬁ)fz - TE/g,z(—EiTﬁ)gZ. (29)
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Suppose that iy = hy, fi = f», and g1 = g, then we prove that Z; = Hy. In fact, using the
inequality (a + b+ c)? < 3(a? + b? + ¢?), we get
2
HRl -R ) = 3th - h2||z:2(0) +3[Eﬁl ~b; TF) ] ||f1 fZHLZ
= 2
+ 377 [Ega(=biTP)] Hg1 *82ch

2
2Hc2(0

3T?B?

2
§3Hh1—h2”£z< b T2B

||f1 fZH,cz Q) T T a5 g1 — g2H2£2(Q)‘ (30)

b T2/5

From (30), we can see that if the right hand side tends to 0, then HR1 —Rs Hiﬂ @ 0. Therefore,
we have R1 = Rj. The proof is completed. [

2.1. The Ill-Posedness of Inverse Source Problem

Theorem 2. The inverse source problem is ill-posed.

Define a linear operator K : £2(Q) — £2(Q) as follows:

KE(x /kwa w=TR(x), x€Q, (31)
Q

where k(x, w) is the kernel
k(x,w) =Y TPEg g1 (— biTF)ei(x)ei(w). (32)
i=1

Due to k(x,w) = k(w, x), we know K is a self-adjoint operator. Next, we are going to prove its
compactness. We use the fractional Tikhonov regularization method to rehabilitate it, where e;(x) is an
orthogonal basis in £2(Q2) and

& = TPEp g1 (—DiTP). (33)

Proof. Due to k(x,w) = k(w, x), we know K is a self-adjoint operator. Next, we are going to prove its
compactness. Defining the finite rank operators Ky as follows:

M™M=z

KNE(x) = Y [TPEg g (~BiTF)| (2(x), ei(x))ei(x). (34)

I
—

i

Then, from (31) and (34) and combining Lemma 5, we have

o _ 2 2
licnE K2l = 3 |TPEppa(-5T9)| [(El) )

i=N+1
[} B2 2

< L |E@ea)
i=N+1 Yi
BZ 00 2

<=— ¥ |(Ex)e)] (35)
bn i=N+1

Q) 0 in the sense of operator norm in £(£2(Q); £?(Q)) as N — oo.

Additionally, K is a compact and self-adjoint operator. Therefore, K admits an orthonormal eigenbasis
e; in £2(Q). From (31), the inverse source problem we introduced above can be formulated as an
operator equation

KE(x) = R(x), (36)
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and by Kirsch [23], we conclude that it is ill-posed. To illustrate an ill-posed problem, we present an
example. To perform this example ill-posed, we fix § and let us choose the input data

() = em(x) o = (T2—2/3> em(¥) g = (T2/5> em(x) 37)

— B2 — ‘B2 —
\/ b \/ b \/ b
Due to (28) and combining (37), by (23), the source term corresponding to =" is

m(x) _ - <Rm(x)/ei<~x)>
i=1 TPEgg11(—b;TP)

<e\’”/%),ei(x)> - Eﬁ,l(—ia}-ﬁxﬁ,ei(x» - TEﬁ,z(—E,-Tﬂxﬁ,ei(x»

[1]

ei(x)

- 1; TPEg 41 (~biTP) e:(%)
enl®) (1 - Eﬁ,l(—biTﬁ)) - TEﬁ,z(biTﬁ))l o)

B TPEgps1(—b;TF)

where R" = h™ — Eﬁ,l(—EiTﬁ)f”‘ - TEﬁlz(—EiTﬁ)gm.
Let us choose other input data k, f,g = 0. By (28), the source term corresponding to #, f, g is
E = 0. An error in £2(Q)) norm between two input final data is

17— ) oy = |22 | = f
\/ b 1E2(0) b
m TP Jlem(x) TP\

1™ = fllz2) = (%22/3) e\’;%) . = <]Bﬂ§)\/%7m’ (39)
with B as defined in Lemma 5. Therefore,
B = g2y = Jim ——-0
m
im 18"~ gl iy = (Tr) Jim ==
m
i 1Pl = () lim, = =0 @
m

An error in £? norm between two corresponding source terms is
em () (1 — Ep(—buTP) — TﬁEﬁ,z(—'EmTﬁ))

b TPEg g1 (—b;TP) 2@)

(1 Epa(-BuTP) — TPEgo(—buTP)) a

\/bw TPEg i1 (~biTP)

(=)

1E" = & 20 =
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2.2.

From (41) and using the inequality in Lemma 5, we obtain

b - N
12" — &)l 2y \/1: (1 — Epg1(—buTF) — TﬁEﬁlz(—meﬁ)).

From (42), we have

. A _
>m£f£‘m3<1—ﬁ<w“‘>> s
m
Combining (40) and (43), we conclude that the inverse source problem is ill-posed.

Conditional Stability of Source Term E(x)

In this section, we show a conditional stability of source function Z(x).

Theorem 3. If H_HHW < M; for My > 0, then

j .
_ TB\ 7+1 g
12y < 1 () T IRIE g

Proof. By using the (28) and Hoélder inequality, we have

2 ) _ ) RZ
HdHﬁ(n) = Z“zz = Z Z 2
i=1 =1 ‘TﬁEﬁ,ﬁJrl(_szﬁ)
_ 2 . u
) ‘Ri 1] o 2| 7+1
= Z ~ 21+2] [Z‘R” ]
Li=1 ‘TﬁEﬁ,ﬁH(—szﬁ)‘ =
2 1
[ o ”Ri j+1 2
< Z - 2] IRl 2oy
= ’TBEMH( b;TF) ‘ ‘T’BEﬁﬁ+l( Tﬁ)’
Using Lemma (5) leads to
1
—T— %
’TﬁEﬁ,ﬁ-&-l(_biTﬁ)‘ ’A ‘
Combining (45) and (46), we get
]+1 ‘ ]+]1 2j
= = = TAN\FT
21 2 Ry < imiz, o) IRIE )

i=1 Aitl
Taking square root in both sides, we have (44). O

9of 24

(42)

(43)

(44)

(45)

(46)

(47)
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3. Regularization of the Inverse Source Problem for the Time-Fractional Diffusion-Wave
Equation by the Fractional Tikhonov Method

As mentioned above, applying the fractional Tikhonov regularization method we solve the
inverse source problem. Due to singular value decomposition for compact self-adjoint operator K,
as in (33). If the measured data (h®1(x), ©2(x), g% (x)) and (h(x), f(x)),g(x)) with a noise level of
€1, €2, and e3 satisfy

= gy < 101 = £y < ezvant g =8z < 9

then we can present a regularized solution as follows:

(TﬁE ( 'E:rﬁ))zT_1
= Bp+1\—0i o
2T< . 3(x)’ei(x)>ei(x)r

2 x) =

7

<t<1, (49)

N —

i=1 2 4 (TﬁEﬁ,ﬁ+1(*E‘T‘B))

where « is a parameter regularization.

o0 (TﬁEﬁ,ﬁH (—E’Tﬁ)) o

- 1
Eor(x) = Z — 5= (R(x),ei(x))ei(x), > <t<1, (50)
=1 a2 + (TPEgpoa (~BTF) )
where
R{V29 = 0 — Eg (~0iTP)fi? — TEg(~;TF)g,
R; = hi — Eg1(=b;TP)fi — TEgo(—b;TP)g;. (51)

4. A Priori Parameter Choice

Afterwards, we will give an error estimation for ||Z(x) — Zl7 2 (x) | £2(0) and show convergence
rate under a suitable choice for the regularization parameter.

Theorem 4. Let E be as (28) and the noise assumption (48) hold. Then, we have the following estimate:

—_

. . max 82,52,82 2 L2
o If0<j< 21, sincen = (%)]Jr we have

1

o (= - ! ‘
|12 - B2 | o < ((max{s§,s§,g§})z)' M) (C(T,A)(P(B, by, T,B)) + % (],T,A)). (52)

NI=

max{s% ,E%,S% }) T

o Ifj > 27, by choosing o = ((T) 2 e have
|E—E7*" Hc2(0)

1

< ((max{s%,e%, eé})%) mM{“ (E(T,A)(P(B,E1,T,ﬁ))% +%(j, T, A,51)), (53)

where
- B2 B2T2-2p
P(B,b1,T,B) = (1+ = + —= ), (54)
TP [y
My is a positive number satisfies HE‘HHW(Q) < M, (55)
2y Acijh ;
%l(j,T,A) = ] ] s %2(]'/77/14) = (56)

27 AZY '
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Proof. By the triangle inequality, we know

— r-|€1 82 €3 - —E&1,€2,€3
12 = Bt 20y < 1Bar = Zde™ | o) + 1B = Baell 2y (57)

chll‘EZ((n HK2H£2(Q)

The proof falls naturally into two steps.
Step 1: Estimation for || K1[ z2(y), we receive

(T/SE (_E‘Tﬁ))erl
B.p+1 ! . - (<R£1,€2,53 (x) — R(x),ei(x)>)ei(x)
i=1 42 4 <T5E5,5+1(—biTﬁ))

- 271
TPEg 511 (—BiTP)
( B.B+1 ~) - <<hl§1 _ hi/ei(x)>
+Epa( —biTﬁ ){(f? = fiei(x))

+ TEﬁlz(—EiT5)<gf3 - gi, el-(x)>> e;(x). (58)

Combining (50) to (51), and Lemma 5, it is easily seen that ‘TﬁEﬁ,ﬁ(—ETﬁ)‘ > ,Eé From (58),

applying the inequality (a + b + c)? < 3a? + 3b% 4 3¢ and combining Lemma 7, we know that

b; . 2
|/C1|2£2(Q)§Sup(> <23‘<h1 hi,e;(x >]

ieN \A2T + 2|b|ZT

_ 2
#3 1 [Epa (BT (2~ ieute)

3725 Epat-57°) (57 0000

i=1

b; ? 2 c- = By |2
<sup | ———=—; 31 +3) ‘Elg,l(—biT )‘ €5
ieN i=1

A2T+Dcz|bi‘

d ~ 2
+3T2 Y |Ega(~BiTF)| e%,). (59)
i=1

Using the result of Lemma 1 in above, we receive

B 00 332 0o 3B2T22
1C1 112 < (C(t, A)a~t (3 )
K1y < (Cln ) (38 + L oot + ¥ o
3B%¢3 3B2T23)
by TR2 [y TFP2
Bz BZTZ—Z/S)
- + —
by TF|2 b1

< (C(T,A)a—1)2<3s§ +

< (E(T,A)vc_%)zmax {e3,65, €3} (3 + (60)

Therefore, we have concluded

Nf—

1K1l 2y < Clr, A)a™7 (max{}, 3,3} P(B, b1, T, ), (61)
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where

_ 2 27228
P(B,bl,T,/a)=<3+ B BT >

- + 2=
Zyak |b1]2
O

(62)
Step 2: Next, we have to estimate H’CZH 2 From (28) and (50), and using Parseval equality,
we get

1

) o [ (TPEg 4 (~BiTF)) ™ - 2 P
el 5 (A e T ety ) [RG00)

=1

a2

400
<) (

i=1 ‘TﬁEﬁlﬁﬂ(—biTﬁ) ’ (:xz + ‘TﬁEﬁ,ﬁJrl(_biTﬁ)
From (63), we have estimation for ||Cz||7, )

2
zT)> )(R(X),ei(x»r. (63)

2
» ot (R(x),ei(x))|
||’C2||z:2 Z 2/, ~ 2\ 2
; 2
+oo oc4f;.2]b;2] ’ <R(x),ei(x)>‘
, = 2 = 27 2
=1 ’TﬁEﬁ/ﬁHl(_biT’B) (062 + ‘TﬁEﬁ,/ﬂ+1(_biTﬁ) )
; 2
24 5[ (R(x),ei(x)|
<sup‘D ‘ — —sup’D ‘ ||_‘|| (64)
‘e ’TﬁEﬂ/BJrl( bTﬁ)‘
Hence, D(i) has been estimated
] W2}
D(i) = o (65)
a2+ ‘TﬁE‘B/ﬂ+1(—biTﬁ)
Next, using the Lemmas 5 and 8, we continue to estimate D(i). In fact, we get
2727—j i .
) a<b; PB1(j, T, A)at, 0<j<2T,
D) < e < 4 1T .] (©6)
AZT + a%b; ,@2(],T,A,b1)tx j> 2t
Combining (64) to (66), we receive
]
2 #1(j, T, A)Mia~, 0<j<2T,
HICZHCZ(Q) < . ~ 5 ) (67)
$>(j, T, A, b1)Mya®, j>2t.

Next, combining the above two inequalities, we obtain

1
_ 71 2
|2(x) — Bl x)||l:2( <C(t T (max {81,82,83}P (B,by, T, B, 7))
],TAMloc 0<j<2t,
],T A, b] M]O(

) )
j>2t.
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Choose the regularization parameter « as follows:

1
(max{e?, e3,€3}) 2\ 72
M,

o= L (69)
(g @dhy®
A41 7 -
Hence, we conclude that
1
2.2 .21)2\ 5
Case1: If 0 < j < 27, since a = (W) "2 we have

|26 -222 ()] e

< ((max{e%,e%,e%})%)mM{? (E(TrA)(P(BrELTuB/'Y))% + 2T A)). (70)

N

2.2 .2 .
Case2: If j > 27, since . = (%) % we have

200252 ()] e

_1

< ((max{s%,e%,s%}) %) M (é(r, A)(P(B,by, T,,7)) + %), 7, A,'El)). (71)

5. A Posteriori Parameter Choice

In this section, we consider an a posteriori regularization parameter choice in Morozov’s
discrepancy principle (see in [21]). We use the discrepancy principle in the following form:

(TPEg g1 (—b;TF)) ™"
~ 2T
a? + <TﬁE}g’ﬁ+1(—blTﬁ))

NI

REv26 (x) - RO2O() | = k(max{&,3,8))%,  (72)

£2(Q)

whereby % <71 <1,k >1,and « is the regularization parameter.

Lemma 10. Let

2
oo a2 2
pla) = ( = > (Reve2ss (x), ei(x) ) (73)
izzl a2+ (TﬂEﬁ’ﬁ+1(*biTﬁ))2T ‘ l ‘
1
If0 < k(max{ef, e3,e5})? < [|R°125 | 2y, then the following results hold:
(a) p(«) is a continuous function;
(b) p(a) = 0asa —0;
() pla) = [[REE2ES 2y a5 0 — 00;
(d)  p(a) is a strictly increasing function.
Lemma 11. Let « be the solution of (72), it gives
1 L
(V275057 ) My 0<j<aro
— 1 1 ] T—1
1| (R -6PBETE) T (max (83317 o
1 — ~ L L
ar (\/5%4(j/T1Arb1))2T M12T ] >2r -1
~ 1 1 - 7
(k2 —6P(B,by, T, B))* (max{e?,3,e3})*
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which gives the required results.

Proof. Step 1: First of all, we have the error estimation between R®1-°2%3 and R. Indeed, using the
inequality (a + b+ 0)2 < 3(512 + b2+ c2),Va, b,c > 0, we get

o0 _ 5 <) . 2
[Reveres — RHiZ(Q) < <3g% +3)° ‘Eﬁll(—biTﬁ)’ & +3T2Y ‘Eﬁ,z(_biTﬁ)‘ e§>,
b i=1

3B%2¢2  3B2T2¢2
2 2 3 2 2
< (381 + |51Tﬁ|2 + |51Tﬁ|2 ) < 3<max {81,82,83})P(B b, T,B). (75)

Step 2: Using the inequality (a +b)? < 2(a? + b%),Va,b > 0, we can receive the following
estimation

0o 2 2
kz(max{€]/€2183}) 1—21<0c2—|—‘T/3E,3:+1( EiTﬁ)’h) ‘<Rl€-1,s2,ss(x),ei(X)>‘2
gzi( - >Z\<R?'€2’53<x>—R<x>,ei<x>>\2
=1 a2+‘T/5E55+1( bTﬁ)
g (el _ydmono) o,
i=1 [a2+‘TﬁEﬁ5H( bTﬁ)‘ ]'EJ ‘TﬁEMH(—’I;,«Tﬁ)‘Z.
From (76), we get
kz(max {e2, €3, e%}) <2 i ‘<Rfl’€2’s3(x) - R(x),ei(x)>‘2
i=1
+2i< ZlTﬁEﬁm—E-Tﬁ)\ )2 B (R(x)e(x))]
I\ 2+ ’TﬁEMH( bTﬁ)’ }b{ ‘TﬁEﬁ,ﬁH(—ETﬁ)‘Z
§6(max{s1,ez,e3}> (B,by, T, B,7)
. Z( [T Egpur(5P)| )2@?’ (R@),ei(0)]
[a2+(TﬁEﬁﬁ+l( bTﬁ)‘ }{ ‘TﬁEﬁ,ﬁH(—ETﬁ)‘z
< 6(max {S%,sg,%})P(B, by, T,B)
=i ‘ 2
+2Z|H |2b11 <R(x),el~(x)>’2/ -
i=1 ‘TﬁEﬁﬁ+1( biTﬁ)‘

whereby

2|TPE —b; TP
wy— N Eppn (CHTH| (78)

[+ [TPEg g1 (—BiTP) 3]

From (78), we get H; as follows:

~ 2 B
_ W TPEg 5.1 (—biTP) TP o «’B —(+1)
H; — 2T S 6 4 12T~ < A2t ZbZT bl @)
[ucz + ‘TﬂElg,ﬁﬂ(—biTﬁ)‘ ]b{ {o@ + ’Lé ]b] T
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From (79), using Lemma 9, we have

"< @3(]',T,A)ﬁj+71, 0<j<2r-1,
By(j, T, A, by)a?, j>2r—1.

Therefore, combining (77) to (79), we know that
k?(max {€3,€3,€3}) < 6(max{e3, e3,¢3})P(B, by, T, B)

j+1
282/, T, AM3X,  0<j<2r-—1,

- > (80)
2%2(j,7, A, b)) M2, j>2r-1.
From (80), it is very easy to see that
~ 2 2 21 . B
(£~ 6P(B,51,T, ) (max {3, B, 3}) <  2HUTAME T 02l )
2%3(j,7, A, by) M2, j>2r-1.
So,
L L
(V2%5(j, 7, A)) ™ M 0<j<2t—1
~ 1 1/ s
1 < (k2_673(B,b1,T,/3))2(f+1) (max{g%,g%,g%})izgm )
1= o X
"” (V224(j, 7, 4,51)) ™ M o
~ L 1 J=z<st =14,
(2~ 6P(B,by, T,B) " (max{e},3,3))

which gives the required results. The estimation of ||Z(x) — Zgl5 2 (x) || £2(0) is established by our
next Theorem. [J

Theorem 5. Assume the a priori condition and the noise assumption hold, and there exists T > 1 such that

1
0<k ( max {€3,¢3,63})2 < ||Rée243| £2(0) This Theorem now shows the convergent estimate between the
exact solution and the regularized solution such that

o If0<j<2t—1, we have the convergence estimate

1

|12(x) — Ei{fz’%(x)ﬂﬁz(m < Q(jT,AB, ﬁ,k,gl)(max {s%,s%, s%})ﬁ M{H. (83)

e Ifj > 271 — 1, we have the convergence estimate

1(1-L
|2 (x) = 2 ()| o) < Z(C T, AB, Bk, br) x (max {&],63,63 }) 10 ZT)M%, (84)
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whereby

E(T,A) (\/5%3(], T, A))j}rl ’P(BIELT/ ﬁ)>%
(k2 —6P(B,'51,T,ﬁ))ﬁ

(\/§(P(B,51,T,,B))% +k) )]%1
A
B2 B2T2—2p

i e )
Clr, 4)(V2%4(j, 7, A1) ™ (P(B, by, T, B)?
(k2 — 6P (B,b1,T,B)) ™

Q(j,T,A,B,B kb)) =

+

7

7)(Blfgll T/ :B/ ’Y) = (

Z(C,T,A,B,Bkjb) = [

(\/5(73(8,51,1 B)* +k)121r~b?_]-_1}

+ 1 (85)
Proof. Applying the triangle inequality, we get
|E0x) — B2 ()| gy < IEGE) = Enelloy + |Bar () = ERE2 ()| oy (86)

Case 1: If 0 < j < 27 — 1. First of all, we recalled estimation from (61) and, by Lemma 9 Part (a),
we have

- j 1
|Bar(x) ~ E22 (0| ) < QUL T, A, B, Bk B) (max {3, ,3)) 00 M. (87)

Next, we have estimate HE(x) — Bar(x) H £2(0) From (28) and (50), and using Parseval equality,
we get

1EG) = Ear ()| 2

R (TPEgpin (-BiTH) 1 2 el (x

= e <£¥2+ (T‘BE/;,‘B+1(—EI'T‘B))2T (TﬁEﬁ,ﬁ+1(_EiTﬁ))><R< )rez( )>ez< ) £2(Q)
3 8 H(x),e;(x))e;(x

N 1:21 0(2 + (TﬁEﬁ,lB-‘rl(_E‘Tﬁ))ZT <‘_‘( )/ el( )>el( ) EZ(Q)

B Ji" “zTﬁEﬁ,/&H(—ETﬁ) (2(x),ei(x)) ei(x)
- ~ ~ 1
= a2+ (TPEg gt (—B,TP)) > TPEp gia (—B;TP)

(88)

£2(9)
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Using the Holder’s inequality, we obtain

|E(x) - ‘E"‘rT(x)HLZ(O)

% WTPEgpa (~biTF)

< ’i:l a2 4 (TPEg g1 (—BiTP))™ (E(x), ei(x))ei(x) 0
|| T BT (Eeld) b
i=1 02+ (TﬁEﬁ,ﬁﬂ(—biTﬁ)) (TPEgpi1(— b:rﬁ))]+1 £2(Q)
<z Y (R@e@)e)
i=1 a2+ (TPEg g 1 (—b;TP))™" £2(0)
Ay
<L S—C A RN LA
i=1 o + (TPEgp41(=b;TP))™ (TPEgp11(—biTF)) £
Ay

From (89) and (75), using Lemma 11, one has

2
14
— R — RE1£2/43 ,e; .
(HZ (TPEgpia (-~ biTﬁ))2T+uc2< ) (x)eilx))ei(x) £2(0)
062 RS &7,E H%l
1,£2/,£3 . .
HZ (TPEgp+1(— EiTﬁ))2T+a2< (x); €i(x) e () £2(0)

< (\/g(max {e?‘l,s‘%, 8%})

g

) A1

NI—
NI

(P(B,by, T, ,B))% (max {e%,s%,s%})

g

< (VA(PBH,T.0) +£) (max {4,417,

Next, using the priori condition 2, we have

Aj

IN

<

o9 2 (E(x),ei(x)) i

i; a2+ (TPEg g1 (—B;TP))*" (TPEg i (—BiTF))

& (E()ei(x))

£2(0)

1
j+1

P ]‘ei(x)
i=1 (TPEg p11(—b;TF)) £2(0)
+oo T\ A AL
Z (E)]Eiei(x) FH < 1]' M{H.
=N GO pra

Combining (88) to (91), we conclude that

e

Combining (87) to (92), we know that

=€1,€2,€3
—x, T

~ L
x)”ﬁZ(Q) S Q(j/T/A/B/,B/k/bl)(maX{81182183}) ]+1 M{+1/

1

~ 1 .
B,b,, T 241k st
X)HLZ(Q) < ((\/g(P( s 11?1 /ﬁ)) + ))]*1 (max {821,8%,8%})2(]+1)M:{+1'

17 of 24

(89)

(90)

©1)

(92)

(93)



Mathematics 2019, 7, 934 18 of 24
whereby
e
| _ C(xA)(V2#s(i T, A) T P(B B, T, B))
Q(]/ T/A/ B/ﬁ/k/ bl) = 1
(k2 —6P(B,by, T, 5)) 20+
L (APEE )+
A 7
_ BZ B2T272‘B
P(B,bi;, T,B,7) =1+ = + — . 94
(B b, T.8.7) ( b1 TR ? b1 ? ) o
Case 2: Our next goal is to determine the estimation of |2, (x) — 7> ()| 2(0) when j >
2t — 1, we get
L ~
g Cle, A) (V2%a(j, v, A ) ) ™ (P(B,1, T, B)'
Ha,m(x) — Bt HﬁZ(Q) < _ T
(kz — 6P (B, bl,T,ﬁ)) “
MZT (max{el,sz,eg,})% %), (95)
Next, for ||Z(x) — Zq(x) ]|£2(Q), we get
I266) - Zar )] v < (5(0), ex(x) e ()
E(x) = Ea (%) || p20q) = — H(x),ei(x))ei(x
@S« +(T'BE/5,ﬁ+l(_biTﬁ))2T £2(0Q)
B 400 [szﬁEﬁ/ﬁ+l( T ) <E(x),el-(x)> e'(x)
— ~ 1
i=1 a% + (TPEg g41(— b;T ))ZT TPEg gi1(—b;iTF) £2(0Q)
1
too W2TPEg s 1 (—b;TP) T
< | L5 P (B e()e()
i=1 &%+ (TPEg g41(—b;TF)) £2(0)
By
- 1
X i LRI S (B () ei(x) ) (96)
~ -~ 1
i=1 a2 + (TﬁEﬁ"BJrl(—biTﬁ))ZT (TﬁEﬂ,ﬁJrl(_biTﬁ))ZT £2(Q)

B

From (96), repeated application of Lemma 11 Part (b) enables us to write Bj, it is easy to check that

2 2
€1,€3,€3

B < (ffs(max{

1-L 1
27 2
9 (max {38 1)

<

(\/E(P(B,El, T, ,B))% +

2}) : (P(B,El,T,ﬁ))% + k(max {e2, €3, s%})

1
>1ZT

(-2)

97)
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o2

062 + (T/SE/S,‘B—&-l (—EiTﬂ))

In the same way as in Aj, it follows easily that >z < 1, we now proceed
by induction

1
27
£2(0)

w @me)
b= H z; (TﬁEﬁrﬁH(—ET’g))ZT*l%( )

b,\21—1._ i~i
(Zl) bi ]bfaiei(x)

1

< AT M (98)

L
2T
£2(0)

1

Combining (86) and (95)—(98), it may be concluded that

1-4)

1(1—
Ha(x)Ezgfz'%(x)y\ﬁ(mgz(c,T,A,B,ﬁ,k,j,El)x(max{e%,eg,sg}y( MF,  (99)

whereby

Clr, A)(V2%4(j,7, A, ) * (P(B, by, T, B)
(k2 — 6P(B,51,T,/3))4%

N (\/E(P(B,E,T,ﬁ))% +k)1‘zluzf_]-_1]

Z(C,T,A,B,B,k,j,b) =[

" b (100)

The proof is completed. O

6. Simulation Example

In this section, we are going to show an example to simulate the theory. In order to do this,
we consider the problem as follows:

8§+u(x,t) = %u(x, t)+E(x), (x,t) € (0,7) x (0,1), (101)

where the Caputo fractional derivative of order § is defined as

1 t9%u(x,s) ds
O u(x,t) = / ’ 1 2, 102
o4/ t) r2—a)Jo 92 (t—s)f1 <P< (102)
where I'(.) is the Gamma function.
2
We chose the operator Au = aa?u on the domain Q) = (0, 1) with the Dirichlet boundary

condition u(0,t) = u(m,t) = 0 for t € (0,1), we have the eigenvalues and corresponding eigenvectors
- 2
givenby b; = i%, i =1,2,...and e;(x) = 4/ p sin(ix), respectively.

In addition, problem (101) satisfies the conditions

J
u(x,0) = f(x), 5u(x,0) =g(x), x € (0,7)
and the final condition

u(x,1) = h(x),x € (0, ). (103)
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We consider the following assumptions:

h(x) = \/Z[Em(—l) sin(x) + Eg1(—2) sin(2x) + Eg g1 (—3) sin(3x)} :

In this example, we choose the following solution

u(x, t) = \/Z [tEm(—tﬁ) sin(x) + Eg1(—2tF) sin(2x) + tPEg g1 (—3tF) sin(3x)] (104)

Before giving the main results of this section, we present some of the following numerical
approximation methods.

e  Composite Simpson’s rule: Suppose that the interval [a, b] is split up into n sub-intervals, with n
being an even number. Then, the composite Simpson’s rule is given by

n/2
Y [mj_z) T dg(za) + go(sz)]

OO\:‘

/ub(p(z) dz ~

(105)

UJ\F
[ —

n/2—1 n/2
¢(z0) +2 Z ¢(22)) +42q0 Zyj— 1)—1—(,0(2”)}
j=1 j=

h—
where zj=a +jhforj=0,1,.,n—1,n withh = a, in particular, zyp = a and z,, = b.

o  Fora,b are two positive integers given. We use the finite difference method to discretize the time
and spatial variable for (x,t) € (0,7r) x (0,1) as follows:
xp=pAx, tg=gAt, 0<p<X, 0<g<T,

T 1
Ax =2 At=_—.
YTX T

e  Explicit forward Euler method: Let uZ, = u(xyp, t;), then the finite difference approximations are

given by
a2u(xp, tq) N p+l Zup + u 106
ox? o Ax? ! (106)
q+1 q q—1
0%u(xp, tg) Uy —2uptuy (107)
or2 N At2

Instead of getting accurate data (, f, g), we get approximated data of (, f, g), i.e., the input data
(h, f, g) is noised by observation data (h*1, g2, h*3) with order of €1, €3, €3 > 0 which satisfies
h' = h+ ¢ (rand(-) — 1),
f2 = f+e(2rand(-) + 1),
¢ = g+ egz(rand(-) —2),

where, in Matlab software, the rand(-) function generates arrays of random numbers whose elements
are uniformly distributed in the interval (0, 1).
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The absolute error estimation is defined by

where%g’rglandzx:(

Error

B.en,T

X-1

1

2

( max{e% ,e%,e% })
My

p=1

_T_
T+2

From the above analysis, we present some results as follows.

In Table 1, we show the convergent estimate between E and ;!5
parameter choice rules. From the observations on this table, we can conclude that the approximation
result is acceptable. Moreover, we also present the graph of the source functions with cases of the
input data noise and the corresponding errors, respectively (see Figures 1-3). In addition, the solution
u(x,t) is also shown in Figure 4 for 0 < x < wand 0 < t < 1.
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Figure 1. A comparison between E and Ef/52 for B = 1.5, X = T = 40, {e1, ¢z, 63} := {9 x 1072,2 x
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Figure 2. A comparison between E and Eg/72 for f = 1.5, X = T = 40, {e1, ez, 63} := {1 x 1073,2 x
4
1073,3x 1073}, 7 = =
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0.05 ‘ ‘
0.045
- 5 0.04f
25 i 0.035 |
(1] =
T 5 003f
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B = 00251
< g
E £ oo02f
g ] ol
2 £ 0.0151 i o)
g g
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=001 0. 0
0.005 | o 6 Too 1
1 el LTl
oblocllle 17 bl IHRNRNNEEREIN)
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(a) The source functions Z and Z/;* (b) The error estimation between Z and Egl; 2

Figure 3. A comparison between Z and Ej5>® for p = 1.5, X = T = 40, {e1, ez, 63} := {3 x 1071,2 x

1072,5x 1071}, 7 = %.

X

o
i)
3
R

The solution u(z,t)

Figure 4. The solution u(x, t) for (x,t) € (0,7) x (0,1).

4
Table 1. The errors estimation between E and E;52 at = 1.5 with X =T =40, 7 = 5

( ) X =40,T =40
€1,€2,€3
B.em, T Ben,T
Errorpriori Errorposteriori

{3x1071,2x1072,5 x 1071}  0.164478172012052  0.182258736154960
{9x1072,2x 1072,1 x 1073}  0.031066747441897  0.030595088570760
{1x1073,2x1073,3 x 1073}  0.014676586512256  0.015071362259137

7. Conclusions

In this study, we use the Tikhonov method to regularize the inverse problem to determine an
unknown source term in a space-time-fractional diffusion equation. By an example, we prove that this
problem is ill-posed in the sense of Hadamard. Under a priori and a posteriori parameter choice rules,
we show the results about the convergent estimate between the exact solution and the regularized
solution. In addition, we show an example to illustrate our proposed regularization.
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