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Abstract: With the rapid development of advanced sensor technologies, it has become popular to
monitor multiple quality variables for a manufacturing process. Consequently, multivariate statistical
process control (MSPC) charts have been commonly used for monitoring multivariate processes.
The primary function of MSPC charts is to trigger an out-of-control signal when faults occur in a
process. However, because two or more quality variables are involved in a multivariate process, it
is very difficult to diagnose which one or which combination of quality variables is responsible for
the MSPC signal. Though some statistical decomposition methods may provide possible solutions,
the mathematical difficulty could confine the applications. This study presents a time delay neural
network (TDNN) classifier to diagnose the quality variables that cause out-of-control signals for a
multivariate normal process (MNP) with variance shifts. To demonstrate the effectiveness of our
proposed approach, a series of simulated experiments were conducted. The results were compared
with artificial neural network (ANN), support vector machine (SVM) and multivariate adaptive
regression splines (MARS) classifiers. It was found that the proposed TDNN classifier was able to
accurately recognize the contributors of out-of-control signal for MNPs.

Keywords: Time delay neural networks; multivariate normal process; variance shift; out-of-control
signal; soft computing

1. Introduction

Effective process improvement is always the top concern for industries. Over the last eight decades,
extensive studies have reported that process improvements can be greatly achieved by applying the
statistical process control (SPC) chart to the monitoring of a process. The main function of the SPC chart
is to trigger an out-of-control chart when process disturbances or faults intrude into the underlying
process. Since the signal implies the occurrence of an unstable state, the process personnel usually
start searching for the root causes of the faults when the signal is given. Accordingly, the process can
be brought into a state of in-control [1].

Nowadays, modern technology has had a huge impact on the industry. While advanced sensor
technology and automatic data acquisition systems have played an important role in industrial
settings, univariate monitoring layouts have rapidly expanded to multivariate monitoring settlements.
Accordingly, it is common to simultaneously monitor two or more correlated quality variables of a
multivariate process through multivariate SPC (MSPC) charts [2,3].

Typically, based on overall statistics, MSPC charts are effective in detecting multivariate process
faults and signaling out-of-control signals. However, the primary difficulty of MSPC charts is that they
can detect out-of-control faults but do not explicitly instruct which quality variable or set of quality
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variables has caused the out-of-control signal. The process personnel initially need to determine the
quality variables at fault in order to take remedial actions. Nonetheless, the determination of the
contributor of the signal is complicated in the real world [4]. In fact, the more quality variables that
are included in a multivariate process, the more increased the difficulty degree for this determination.
As a consequence, the determination of the contributor for an out-of-control signal has become a
challenging task for manufacturing processes.

Because of their importance, many studies have investigated the contributor of an MSPC signal.
Graphical techniques have been used to identify fault quality variables when an SPC signal is
given. These include polygonal charts [5], line charts [6], multivariate profile charts [7], and boxplot
charts [8]. Since those graphical approaches are subjective, statistical decomposition methods have
been investigated to interpret the contributors to an SPC signal. Since the Hotelling’s T2 control
chart is one of the most common MSPC techniques for monitoring multivariate processes [9,10], the
well-known T2 decomposition method was developed to reflect the contribution of every single quality
variable [11,12].

Following the concept of the T2 decomposition method, a number of studies have proposed
different approaches to determine the possible fault quality variables which cause the out-of-control
signal [13–19]. However, the abovementioned methods have not been reported in terms of their
percentage of success in the classification of the fault quality variables [19,20]. In addition, if the
underlying multivariate process is not monitored by a Hotelling’s T2 control chart, it is not feasible to
obtain the T2 statistics. Thus, the T2 decomposition method is not feasible to capture fault variables.
Consequentially, soft computing classification methods are widely used in practice [21–38].

Among various soft computing classifiers, we have observed that the artificial neural network
(ANN), support vector machine (SVM) and the hybrid-based models are widely used to recognize
fault variables which cause the out-of-control signals. Specifically, even though numerous studies have
addressed problems for the interpretation of out-of-control signal, very little research has discussed
the recognition of fault variables through the use of time delay neural networks (TDNNs). A TDNN
can be viewed as a special structure of recurrent neural networks [39]. Since they are able to seize
the dynamics of a system and to foresee the outputs in the current time, TDNNs have typically been
reported to be successful for prediction and classification [40–42].

Furthermore, while most of the related research has examined the process mean vector shift as a
major fault, the present study considers process variance shifts as a process fault. The present study is
concerned with the situation whereby a multivariate normal process (MNP) with five or nine quality
variables is monitored by the generalized variance chart. The structure of this study is organized as
follows: Section 2 addresses the MNP models. The results of the simulated experiments are provided
in Section 3, as the diagnostic performance of the proposed TDNN technique was compared with the
performance of the ANN, the SVM and multivariate adaptive regression splines (MARS). The final
section discusses the research findings and conclusions inferred from this study.

2. The Process and TDNN

In general, there are two categories of SPC charts’ applications: Variable and attribute processes.
The variable control charts’ are used to evaluate variation in a process whereby the outputs can be
measured on a continuous scale, such as the length or the weight of the products. For multivariate
applications, one of the major representations of the variable processes is the MNP. Accordingly, this
study considers the MNP for demonstrating the diagnosis of out-of-control signals.

2.1. MNP

Multivariate normal distribution is a multidimensional generalization of the univariate normal
distribution. Typically, the p-multivariate distribution with mean vector u and covariance matrix

∑
is expressed as Np(u,

∑
). The probability density function of a multivariate normal distribution is

described as:
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Np
(
u,
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∑
|
1/2

(2π)p/2
exp(−

1
2

(
X − µ)TΣ(X − µ)

)
(1)

where u is the mean vector and
∑

is the covariance matrix.
Assume that an MNP with p quality variables is monitored by an |S| control chart. Let

X̃i =
[
Xi1, Xi2, . . . , Xip

]T
, i = 1, 2, . . . , n (2)

be a p × 1 vector in which denotes p quality variables on the ith observation with the multivariate
normal distribution. For Equation (2), the sample covariance matrix is then expressed as:

S =
1

n− 1

n∑
i=1

(X̃i − X̃) (X̃i − X̃)
T

(3)

where X̃ = 1
n
∑n

i=1 X̃i.
Now, we define

∑
0 as a covariance matrix in which the process is in-control and

∑
0 can be

described as:

Σ0 =



σ1,1

σ2,1

σ1,2

σ2,2

· · ·

...
· · ·

σ1,p
σ2,p

...
...

σi,1
...
σp,1

· · ·

σp,2

· · ·

σi,p
...
σp,p


pXp

(4)

Typically, when a variance shift intrudes into a multivariate process, we can use the sample
generalized variance |S| control chart to trigger an out-of-control signal. The researchers in [43]
provided the upper control limit (UCL) and lower control limit (LCL):

UCL = |Σ0|
(
b1 + 3

√
b2

)
LCL = max

(
0, |Σ0|(b1 − 3

√
b2

) (5)

where

b1 = 1
(n−1)p

p∏
i=1

(n− i),

b2 = 1
(n−1)2p

p∏
i=1

(n− i)
( p∏

i=1
(n− i + 2) −

p∏
i=1

(n− i)
) (6)

In addition, we define
∑

1 as a covariance matrix in which the process is out-of-control [24].

Σ1 =



σ1,1 σ1,2 . . . θσ1, j σ1, j+1 . . . σ1,p
σ2,1 σ2,2 . . . θσ2, j σ2, j+1 . . . σ2,p

...
...

. . .
... . . .

...
θσi,1 θσi,2 θ2σi, j θσi, j+1 . . . θσi,p
σi+1,1 σi+1,2 θσi+1, j σi+1, j+1 σi+1,p

...
...

...
...

...
. . .

...
σp,1 σp,2 . . . θσp, j σp, j+1 . . . σp,p


p×p

(7)

where θ stands for the inflated ratio.
When an out-of-control signal is triggered by the |S| control chart, there is no extra information

about which quality variable or set of quality variables is responsible for this signal. Since the quality
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variables at fault are usually associated with specific root causes that adversely affect the multivariate
processes, it is important to diagnose the out-of-control signals and to identify the contributors for
the signals.

2.2. Time-Delay Neural Network

TDNNs can be referred to as feedforward neural networks, except that the input weight has
a delay element associated with it. The time series data are often used in the input and the finite
responses of the network can be captured. Accordingly, a TDNN can be considered as an ANN
architecture whose main purpose is to work on sequential data.

For TDNN processing, TDNN units perceive traits which are independent of time-shift and
usually form part of a larger pattern recognition system. A TDNN has multiple layers and sufficient
inter-connection between units in each layer to ensure the ability to learn complex nonlinear decision
surfaces. In addition, the actual abstraction learned by the TDNN should be invariant under in time
translation [40–42].

Figure 1 shows the architecture of a TDNN. The structure of the TDNN includes an input layer, one
or more hidden layers, and an output layer. Each layer contains one or more nodes determined through
a trial and error process of the given data, as there is no theoretical basis. In here, the present study
employed one hidden layer in the TDNN’s structure. In addition, as shown in Figure 1, the network
input layer utilized the delay components embedded between the amounts of input-units to attain the
time-delay. Each node had its own values and through the network computation to achieve the output
results. Under the input–output relationship function of the network, if the output result is the next time
prediction of the input x, there must be a certain relationship between present and future. This is given
by y = x(t + 1) = H[x(t), x(t − 1), . . . , x(t − p)]. Consequentially, the TDNN is to seek the relationship

function H of the input–output in the network. This is given by net j =
p∑

l=0
Wi j ×X(n− l) + θ j and

y(n) =
∑
j

W jk f
(
net j

)
, where net j and y(n) are the function at the input and output layers, respectively;

p is the number of tapped delay nodes; Wi j is the weight of the ith neurons in the input layer into the
jth neurons in the hidden layer; and θ j is the bias weight of the jth neurons. The function f represents a
nonlinear sigmoid function.

Mathematics 2019, 7, x FOR PEER REVIEW 4 of 14 

 

processes, it is important to diagnose the out-of-control signals and to identify the contributors for 

the signals. 

2.2. Time-Delay Neural Network 

TDNNs can be referred to as feedforward neural networks, except that the input weight has a 

delay element associated with it. The time series data are often used in the input and the finite 

responses of the network can be captured. Accordingly, a TDNN can be considered as an ANN 

architecture whose main purpose is to work on sequential data. 

For TDNN processing, TDNN units perceive traits which are independent of time-shift and 

usually form part of a larger pattern recognition system. A TDNN has multiple layers and sufficient 

inter-connection between units in each layer to ensure the ability to learn complex nonlinear decision 

surfaces. In addition, the actual abstraction learned by the TDNN should be invariant under in time 

translation [40–42]. 

Figure 1 shows the architecture of a TDNN. The structure of the TDNN includes an input layer, 

one or more hidden layers, and an output layer. Each layer contains one or more nodes determined 

through a trial and error process of the given data, as there is no theoretical basis. In here, the present 

study employed one hidden layer in the TDNN’s structure. In addition, as shown in Figure 1, the 

network input layer utilized the delay components embedded between the amounts of input-units 

to attain the time-delay. Each node had its own values and through the network computation to 

achieve the output results. Under the input–output relationship function of the network, if the output 

result is the next time prediction of the input x, there must be a certain relationship between present 

and future. This is given by y = x(t + 1) = H[x(t), x(t − 1), …, x(t − p)]. Consequentially, the TDNN is to 

seek the relationship function H of the input–output in the network. This is given by 𝑛𝑒𝑡𝑗 =

∑ 𝑊𝑖𝑗 × 𝑋(𝑛 − 𝑙) + 𝜃𝑗
𝑝
𝑙=0  and 𝑦(𝑛) = ∑ 𝑊𝑗𝑘𝑓(𝑛𝑒𝑡𝑗)𝑗 ,  where 𝑛𝑒𝑡𝑗  and 𝑦(𝑛)  are the function at the 

input and output layers, respectively; p is the number of tapped delay nodes; 𝑊𝑖𝑗 is the weight of the 

ith neurons in the input layer into the jth neurons in the hidden layer; and 𝜃𝑗 is the bias weight of 

the jth neurons. The function f represents a nonlinear sigmoid function. 

 

Hidden layer 
Input layer 

Output layer 

      

      

      

 

Figure 1. The architecture of a time delay neural network (TDNN). 

  

Figure 1. The architecture of a time delay neural network (TDNN).
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3. Experimental Results

A series of computer experiments were performed in order to demonstrate the performance of the
proposed TDNN technique. Additionally, the performance of the ANN, SVM and MARS are discussed
in this section.

In this study, we considered two cases of an MNP to be analyzed. While the first case of the
process contained five quality variables, the second case of the process involved nine quality variables.
For the case of an MNP with five quality variables (denoted as MNP5), we should have 25

− 1 possible
types of faults. It is not feasible to study all the possible data structures, so this study arbitrarily
selected ten combinations of faults in the process. For the case of an MNP with nine quality variables
(denoted as MNP9), this study also arbitrarily considered ten combinations of faults in the process.
Table 1 displays those ten combinations of process faults in an MNP5 and an MNP9.

Table 1. Ten combinations of faults for an multivariate normal process with five quality variables
(MNP5) and an MNP with nine quality variables (MNP9).

MNP5 MNP9

(1) C5-1 = {F5-1, F5-2, F5-3} (1) C9-1 = {F9-1, F9-2, F9-3}
(2) C5-2 = {F5-1, F5-2, F5-4} (2) C9-2 = {F9-1, F9-2, F9-9}
(3) C5-3 = {F5-1, F5-2, F5-5} (3) C9-3 = {F9-1, F9-5, F9-9}
(4) C5-4 = {F5-1, F5-3, F5-4} (4) C9-4 = {F9-1, F9-8, F9-9}
(5) C5-5 = {F5-1, F5-3, F5-5} (5) C9-5 = {F9-2, F9-4, F9-8}
(6) C5-6 = {F5-1, F5-4, F5-5} (6) C9-6 = {F9-2, F9-6, F9-8}
(7) C5-7 = {F5-2, F5-3, F5-4} (7) C9-7 = {F9-4, F9-5, F9-6}
(8) C5-8 = {F5-2, F5-3, F5-5} (8) C9-8 = {F9-4, F9-5, F9-9}
(9) C5-9 = {F5-2, F5-4, F5-5} (9) C9-9 = {F9-5, F9-7, F9-9)}

(10) C5-10 = {F5-3, F5-4, F5-5} (10) C9-10 = {F9-7, F9-8, F9-9}

In Table 1, the meaning of F5-1 is that the first quality variable of an MNP5 was at fault and the
last four remaining quality variables (i.e., the second, third, fourth, and fifth variables) had no fault.
The meaning of F9-1 is that the first quality variable of an MNP9 was at fault and that the last eight
remaining quality variables had no fault. Similarly, F5-5 or F9-9 denotes that the five quality variables
of an MNP5 or the nine quality variables of an MNP9 were all at fault, respectively.

In this study, the data vectors for the classifiers were generated by computer simulations. In order
to understand the effects of various correlations (denoted as ρ) between any two quality variables,
this study arbitrarily set ρ = 0.2, 0.5, and 0.8 to represent the low, moderate, and high correlations,
respectively. This study also arbitrarily considered the case of θ = 1.7 and the sample size n = 10.
The approximate ratio of 7:3 for training and testing data vectors were used for all cases. The four
soft computing classifiers—TDNN, ANN, SVM and MARS—were used for the identification of the
contributors of the out-of-control signal. For all the classifier models, we used five input variables.
They represent the averaged values of each column in the out-of-control covariance matrix,

∑
1 (i.e.,

Equation (7)). There was one output node (Y) for the classifiers. In here, the value of the output node
was designed as follows: When we consider the first combination of process faults (i.e., C5-1), the value
of Y = 0 indicates the presence of contributor of F5-1, the value of Y = 1 represents the presence of
contributor of F5-2, and Y = 2 stands for the presence of contributor of F5-3. The analogous output node
design was employed for other combinations.

Considering the case of C5-1, this study utilized 1500 data vectors in the training phase. Whereas
the first 500 data vectors were generated from the process fault of F5-1, the data vectors from 501 to 1000
were generated from the process faults of F5-2, and the data vectors from 1001 to 1500 were generated
from the variance faults of F5-3. This study used 600 data vectors in the testing phase. The first 200 data
vectors were generated from the process fault of F5-1, the data vectors from 201 to 400 were generated
from the process faults of F5-2, and the data vectors from 401 to 600 were generated from the process
faults of F5-3. Furthermore, all other data structure designs were adopted as this data structure.
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After performing identification tasks with the TDNN classifier, Table 2; Table 3 show the
identification results for an MNP5 and an MNP9, respectively. The notation of {TDni, TDnd, TDnh,
TDno} is the parameter setting for the TDNN design. They represent the number of neurons in the
input layer, the number of delay neurons, the number of neurons in the hidden layer, and the number
of neurons in the output layer, respectively. For TDNN designs, there is no unique mechanism to
determine those parameters. In this study, we used the rules of thumb and our experience to determine
those parameters. Accordingly, for the TDNN design in this study, TDnd was chosen to range from 1 to
TDni, TDnh was chosen from (2, 4, 6, . . . 2 × TDni), and TDno = 0. Therefore, For the MNP5 design,
TDni = 5, TDnd ranged from 1 to 5, TDnh was chosen from (2, 4, 6, 8 to 10), and TDno = 0. For the MNP9

design, TDni = 9, TDnd ranged from 1 to 9, TDnh was chosen from (2, 4, 6, . . . , 18), and TDno = 0.
In this study, the accurate identification rate (AIR) was employed to measure the classifiers’

identification performance. The AIR is defined as follows:

AIR =
na

N

where N is the total number of data vectors used for the identification process and na is the number of
data vectors in N where the true contributor is accurately identified.

In addition, the AIR values obtained through the use of the TDNN, ANN, SVM and MARS
classifiers are denoted as AIR-TDNN, AIR-ANN, AIR-SVM and AIR-MARS, respectively.

In Table 2, in the intersection of ρ = 0.2 and C5-1, the meaning of the AIR-TDNN (i.e., 79.83%) can
be described as follows: Suppose an out-of-control signal is triggered for an MNP5 process with a
correlation of 0.2 between any two quality variables. When we use the TDNN classifier with the
parameter setting of {5, 5, 10, 1}, we could have a 79.83% chance to accurately identify the true
contributor (e.g., the first quality variable is at fault) for this signal. The same implication applies to
all of the AIR values in Table 2; Table 3. Observing Table 2, we can clearly notice that we had higher
AIRs for the case of ρ = 0.5. In addition, we can observe that higher AIRs were achieved for the case of
ρ = 0.8.

Table 2. TDNN identification results, accurate identification rate (AIR)-TDNN {TDni, TDnd, TDnh, TDno},
for ten combinations of faults of a multivariate normal process (MNP5).

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C5-1
79.83%

{5, 5, 10, 1}
98.99%

{5, 5, 10, 1}
75.97%

{5, 5, 10, 1}

C5-2
86.39%

{5, 5, 8, 1}
98.99%

{5, 5, 8, 1}
75.71%

{5, 3, 8, 1}

C5-3
82.69%

{5, 5, 6, 1}
98.99%

{5, 5, 10, 1}
71.52%

{5, 3, 8, 1}

C5-4
82.69%

{5, 5, 6, 1}
98.32%

{5, 5, 8, 1}
74.20%

{5, 3, 10, 1}

C5-5
85.38%

{5, 5, 10, 1}
99.16%

{5, 5, 8, 1}
94.37%

{5, 3, 6, 1}

C5-6
83.36%

{5, 5, 10, 1}
99.16%

{5, 5, 8, 1}
75.21%

{5, 3, 6, 1}

C5-7
78.99%

{5, 5, 10, 1}
98.99%

{5, 5, 8, 1}
93.63%

{5, 3, 10, 1}

C5-8
85.71%

{5, 5, 8, 1}
99.33%

{5, 5, 4, 1}
97.15%

{5, 3, 6, 1}

C5-9
85.38%

{5, 5, 8, 1}
99.33%

{5, 5, 10, 1}
94.97%

{5, 3, 10, 1}

C5-10
75.97%

{5, 5, 10, 1}
97.98%

{5, 5, 10, 1}
89.11%

{5, 3, 10, 1}
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Table 3. TDNN identification results, AIR-TDNN {TDni, TDnd, TDnh, TDno}, for ten combinations of
faults of an MNP9.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C9-1
73.78%

{9, 5, 10, 1}
79.58%

{9, 5, 10, 1}
97.32%

{9, 3, 4, 1}

C9-2
84.20%

{9, 5, 8, 1}
89.92%

{9, 5, 10, 1}
95.99%

{9, 2, 8, 1}

C9-3
89.09%

{9, 4, 10, 1}
90.79%

{9, 3, 8, 1}
96.49%

{9, 2, 10, 1}

C9-4
74.29%

{9, 5, 10, 1}
88.24%

{9, 5, 6, 1}
92.98%

{9, 2, 10, 1}

C9-5
81.34%

{9, 5, 6, 1}
94.30%

{9, 4, 6, 1}
97.83%

{9, 2, 6, 1}

C9-6
79.66%

{9, 5, 10, 1}
91.29%

{9, 3, 10, 1}
97.66%

{9, 2, 4, 1}

C9-7
58.32%

{9, 5, 10, 1}
87.23%

{9, 5, 6, 1}
94.97%

{9, 3, 6, 1}

C9-8
78.15%

{9, 5, 8, 1}
91.60%

{9, 5, 6, 1}
97.15%

{9, 3, 4, 1}

C9-9
74.79%

{9, 5, 10, 1}
92.79%

{9, 4, 8, 1}
95.82%

{9, 2, 10, 1}

C9-10
54.62%

{9, 5, 10, 1}
87.73%

{9, 5, 8, 1}
95.81%

{9, 3, 4, 1}

Additionally, the parameter setting of {Ani, Anh, Ano} is widely used for the ANN designs of
classification tasks. Three parameters {Ani, Anh, Ano} represent the number of neurons in the input
layer, hidden layer, and output layer, respectively. For ANN designs, there is no unique mechanism
to determine the number of hidden nodes. While fewer hidden nodes restrain the generalization
characteristics, a considerable number of hidden nodes could result in problems of overtraining.
Accordingly, rules of thumb were used in this study. For the MNP5 design, the hidden nodes were
chosen to range from (2n − 2) to (2n + 2), where n (i.e., n = 5 in here) is the number of input variables.
For the MNP9 design, the hidden nodes were chosen to range from (n − 2) to (n + 2), where n is equal
to 9. Additionally, this study employed the learning rate for all ANN models at the default value (i.e.,
0.01) to ensure consistency [44].

Table 4; Table 5 present the identification results for an MNP5 and an MNP9, respectively, when
the ANN classifiers were implemented. Observing Table 4; Table 5, one can notice that the AIR values
were higher for the cases of ρ = 0.5 and ρ = 0.8.

Table 4. Artificial neural network (ANN) identification results, AIR-ANN {Ani, Anh, Ano}, for ten
combinations of faults of an MNP5.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C5-1
61.33%

{5, 12, 1}
67.67%
{5, 8, 1}

68.67%
{5, 8, 1}

C5-2
65.00%
{5, 8, 1}

69.67%
{5, 11, 1}

66.00%
{5, 9, 1}

C5-3
65.50%
{5, 9, 1}

69.17%
{5, 8, 1}

58.00%
{5, 10, 1}

C5-4
65.17%
{5, 8, 1}

69.33%
{5, 8, 1}

68.17%
{5, 11, 1}

C5-5
67.00%
{5, 8, 1}

70.83%
{5, 11, 1}

64.00%
{5, 10, 1}



Mathematics 2019, 7, 959 8 of 14

Table 4. Cont.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C5-6
65.33%
{5, 9, 1}

73.17%
{5, 12, 1}

64.33%
{5, 9, 1}

C5-7
60.67%

{5, 12, 1}
69.33%

{5, 12, 1}
79.33%

{5, 11, 1}

C5-8
63.17%

{5, 12, 1}
71.00%

{5, 12, 1}
82.17%

{5, 10, 1}

C5-9
62.67%

{5, 12, 1}
68.83%
{5, 8, 1}

84.33%
{5, 11, 1}

C5-10
55.67%

{5, 11, 1}
63.67%
{5, 8, 1}

78.50%
{5, 8, 1}

Table 5. ANN identification results, AIR-ANN {Ani, Anh, Ano}, for ten combinations of faults of an
MNP9.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C9-1
64.17%
{9, 8, 1}

70.67%
{9, 11, 1}

84.83%
{9, 10, 1}

C9-2
62.67%
{9, 7, 1}

72.67%
{9, 10, 1}

81.67%
{9, 9, 1}

C9-3
71.33%
{9, 8, 1}

81.67%
{9, 11, 1}

88.83%
{9, 11, 1}

C9-4
66.33%
{9, 9, 1}

74.17%
{9, 10, 1}

86.00%
{9, 7, 1}

C9-5
69.17%

{9, 11, 1}
77.67%

{9, 11, 1}
90.83%
{9, 7, 1}

C9-6
66.67%
{9, 7, 1}

77.83%
{9, 11, 1}

91.67%
{9, 8, 1}

C9-7
58.33%

{9, 10, 1}
66.17%
{9, 8, 1}

82.50%
{9, 8, 1}

C9-8
68.67%

{9, 11, 1}
76.83%
{9, 9, 1}

90.17%
{9, 9, 1}

C9-9
64.33%
{9, 8, 1}

76.67%
{9, 9, 1}

87.33%
{9, 10, 1}

C9-10
58.33%

{9, 11, 1}
68.17%

{9, 10, 1}
82.83%

{9, 11, 1}

For the SVM classification design, the performance is affected by the values of two parameters,
C and γ [45,46]. There are no general rules for the choice of C and γ. The grid search method uses
exponentially growing sequences of C and γ to identify good parameters (e.g., C = 2−5, 2−3, 2−1, ...,
215; γ = 2−5, 2−3, 2−1, ..., 215). The parameter settings for C and γ that generate the highest AIR are
considered to be ideally set. Table 6; Table 7 demonstrate the results of using the SVM classifier for the
cases of an MNP5 and an MNP9. Observing Table 4; Table 5, we can discover the AIR values were
higher for the cases of ρ = 0.5 and ρ = 0.8.
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Table 6. Support vector machine (SVM) identification results, AIR-SVM {C, γ}, for ten combinations of
faults of an MNP5.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C5-1
67.17%

{2−3, 21}
73.50%

{2−3, 20}
67.17%
{20, 21}

C5-2
70.33%

{2−3, 20}
79.33%

{2−1, 20}
66.83%
{20, 22}

C5-3
71.17%

{2−3, 21}
77.50%

{2−1, 2−1}
68.83%
{20, 24}

C5-4
68.17%

{2−3, 20}
76.67%

{2−1, 2−1}
65.00%
{20, 22}

C5-5
71.50%

{2−3, 21}
78.83%

{2−1, 20}
68.83%
{21, 21}

C5-6
69.50%

{2−1, 2−2}
78.00%

{2−1, 20}
61.83%
{21, 20}

C5-7
64.33%

{2−3, 21}
74.83%

{2−2, 21}
86.83%
{20, 20}

C5-8
67.67%

{2−3, 22}
77.50%

{2−1, 20}
89.33%
{20, 22}

C5-9
65.83%

{2−3, 20}
76.83%

{2−1, 20}
89.50%
{20, 22}

C5-10
60.83%

{2−2, 2−3}
73.33%

{2−3, 24}
85.50%
{20, 21}

Table 7. SVM Identification results, AIR-SVM {C, γ}, for ten combinations of faults of an MNP9.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C9-1
66.50%

{2−5, 2−3}
73.17%

{2−3, 23}
88.17%

{2−3, 24}

C9-2
78.33%

{2−2, 2−1}
82.67%

{2−1, 2−1}
91.83%
{20, 21}

C9-3
82.67%

{2−3, 21}
81.33%

{2−2, 20}
95.33%
{20, 21}

C9-4
69.05%

{2−2, 2−3}
77.17%

{2−2, 21}
88.83%
{20, 21}

C9-5
76.83%

{2−2, 21}
83.50%

{2−2, 20}
95.00%

{2−1, 22}

C9-6
76.67%

{2−3, 21}
84.00%

{2−2, 20}
96.67%

{2−1, 22}

C9-7
57.33%

{2−5, 2−3}
72.67%

{2−3, 22}
87.67%

{2−3, 25}

C9-8
72.67%

{2−4, 2−3}
82.50%

{2−2, 2−0}
93.17%

{2−1, 22}

C9-9
69.13%

{2−3, 21}
81.67%

{2−4, 24}
93.67%

{2−2, 24}

C9-10
59.83%

{2−4, 2−3}
70.50%

{2−4, 24}
85.33%

{2−2, 24}

For the MARS design, this study simply reports the parameter settings as {null} since there were
no specific parameter settings. The results obtained by using the MARS classifier for the cases of an
MNP5 and an MNP9 are shown in Table 8; Table 9. Similarly to the results for the other classifiers, we
can observe that the AIR values were higher for the cases of ρ = 0.5 and ρ = 0.8.
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Table 8. Multivariate adaptive regression splines (MARS) identification results, AIR-MARS{null}, for ten
combinations of faults of an MNP5.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C5-1 56.67% 62.33% 61.83%
C5-2 59.67% 62.33% 58.00%
C5-3 61.67% 65.67% 53.50%
C5-4 58.83% 62.33% 58.33%
C5-5 60.50% 67.00% 56.67%
C5-6 58.17% 67.67% 56.00%
C5-7 58.33% 64.17% 73.50%
C5-8 58.67% 65.50% 76.83%
C5-9 57.17% 66.67% 76.83%
C5-10 55.50% 63.67% 70.67%

Table 9. MARS Identification results, AIR-MARS {null}, for ten combinations of faults of an MNP9.

Types of Combination ρ = 0.2 ρ = 0.5 ρ = 0.8

C9-1 62.00% 62.50% 78.00%
C9-2 63.50% 67.67% 76.50%
C9-3 66.17% 73.00% 79.00%
C9-4 62.17% 68.17% 76.00%
C9-5 59.67% 68.67% 83.50%
C9-6 60.17% 67.67% 83.00%
C9-7 54.17% 60.67% 74.17%
C9-8 62.00% 68.50% 83.33%
C9-9 59.67% 65.00% 81.83%
C9-10 54.67% 61.33% 75.67%

4. Classification Performance

This study used a TDNN, an ANN, an SVM and MARS to classify the quality variables at fault
when an out-of-control signal was triggered in an MNP. Table 10; Table 11 present the average AIRs of
the four classifiers for an MNP5 and an MNP9. High average AIRs values are associated with better
recognition accuracy. As shown in Table 10; Table 11, the proposed TDNN models outperformed the
other three classifiers.

Table 10. The average AIRs of the four classifiers for an MNP5.

Types of Combination TDNN ANN SVM MARS

ρ = 0.2 82.86% 63.15% 67.65% 58.52%
ρ = 0.5 98.92% 69.27% 76.63% 64.73%
ρ = 0.8 82.18% 71.35% 73.97% 64.22%

Table 11. The average AIRs of the four classifiers for an MNP9.

Types of Combination TDNN ANN SVM MARS

ρ = 0.2 74.82% 65.00% 70.90% 60.42%
ρ = 0.5 89.35% 74.25% 78.92% 66.32%
ρ = 0.8 96.20% 86.67% 91.57% 79.10%

In addition, for the recognition of an MNP5 and an MNP9 by the TDNN classifier, the AIR
percentage improvements (AIRPI) over the ANN, SVM, and MARS classifiers are defined as:

AIRPIi _TDNN_j =
(AIR_TDNNi−AIR_(j, i))

AIR_(j, i)
× 100%
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where i holds 5 or 9; j can be an ANN, an SVM or MARS; AIR_TDNNi is the AIR from performing the
TDNN classifier for an MNPi; and AIR_(j,i) is the AIR from performing the j classifier for an MNPi.

For the quality variables at fault recognition in an MNP5 process, the AIRPI using the TDNN
classifier over the ANN classifier was 29.54%. The AIRPI using the TDNN classifier over the SVM and
MARS classifiers were 20.94% and 40.80%, respectively. For the quality variables at fault recognition in
an MNP9 process, the AIRPI using the TDNN classifier over the ANN, SVM and MARS classifiers were
15.25%, 7.86%, and 26.49%, respectively. Figure 2; Figure 3 display the AIRPI obtained by employing
the proposed TDNN classifier over the ANN, SVM and MARS classifiers for an MNP5 and an MNP9.
As shown in Figure 2; Figure 3, considerable accuracy improvements can be achieved by using the
proposed TDNN classifier.
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Figure 3. The AIRPI obtained by using the TDNN classifier over the ANN, SVM and MARS classifiers
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5. Conclusions

Monitoring and recognizing the sources of a process fault is important for process improvement.
In this study, four soft computing techniques, TDNN, ANN, SVM and MARS, were presented to
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determine the quality variables at fault when variance shifts occur in an MNP. The proposed TDNN
classifier maintained satisfactory performance in recognizing the quality variables at fault for an MNP
process. The TDNN benefits from an extra set of tuning/adjustable parameters (e.g., delay neurons),
and it may be best effective for a smaller number of quality variables (e.g., MNP5), as can be observed
Figure 2; Figure 3. Accordingly, the general study of TDNNs is worth investigation. One important
research direction is to improve the robustness of the TDNN classifier with respect to a considerable
number of quality variables (e.g., MNP13 or MNP15) and compare its classification results with other
methods. In addition, although the cases considered in this study did not cover all possible changes of
covariance matrix, it may be worth knowing what will happen when the first and second component
inflate by two different values of the inflated ratio, θ.

In this study, widely used variable multivariate processes (i.e., an MNP) were investigated, and
an attempt to attribute multivariate processes (e.g., the multinomial process) would be a valuable
contribution to future studies. However, one difficulty in the recognition phase that will be encountered
is that the number of categories of classifiers’ output nodes increases when more categories are involved
with an attribute multivariate process. Other soft computing classifiers, such as the extreme learning
machine, rough set, random forest and hybrid modeling techniques [37,38], may be worth investigating
to decrease the number of output categories in the future.
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