Weighted Method for Uncertain Nonlinear Variational Inequality Problems
Abstract
:1. Introduction
2. Preliminaries
2.1. Uncertainty Theory
2.2. Other Preliminaries
3. Convergence Analysis
3.1. UWERM Establishment and Hypothesis
3.2. Convergence of Global Optimal Solutions
3.3. Convergence of Stationary Points
4. Case Where Uncertain Event Space T Is Unbounded
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, J.C. The generalized quasi-variational inequality problem with applications. J. Math. Anal. Appl. 1991, 158, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Guo, J. Variational and generalized variational inequality with discontinuous mappings. J. Math. Anal. Appl. 1994, 82, 371–392. [Google Scholar] [CrossRef]
- Yang, X.Q.; Yao, J.C. Gap functions and fxistence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 2002, 115, 407–417. [Google Scholar] [CrossRef]
- Mititelu, S.; Postolache, M. Efficiency and duality for multitime vector fractional variational problems on manifolds. Balk. J. Geom. Appl. 2011, 16, 90–101. [Google Scholar]
- Yao, Y.H.; Postolache, M. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Thakur, B.S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Postolache, M.; Liou, Y.C. Variant extragradient-type method for monotone variational inequalities. Fixed Point Theory Appl. 2013, 2013, 185. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.H.; Chen, R.D.; Xu, H.K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Yao, Y.H.; Liou, Y.C.; Yao, J.C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.H.; Zheng, X.X. The split variational inequality problem and its algorithm iteration. J. Nonlinear Sci. Appl. 2017, 10, 2649–2661. [Google Scholar] [CrossRef] [Green Version]
- Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer: New York, NY, USA, 2003. [Google Scholar]
- Liu, B. Uncertainty Theory, 4th ed.; Springer: Berlin, Germany, 2015. [Google Scholar]
- Chen, Q.Q.; Zhu, Y.G. A class of uncertain variational inequality problems. J. Inequal. Appl. 2015, 2015, 231. [Google Scholar] [CrossRef]
- Li, C.L.; Jia, Z.F. Expected residual minimization method for uncertain variational inequality problems. J. Nonlinear Sci. Appl. 2017, 10, 5958–5975. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 1992, 53, 99–110. [Google Scholar] [CrossRef]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Postolache, M.; Jia, Z. Weighted Method for Uncertain Nonlinear Variational Inequality Problems. Mathematics 2019, 7, 974. https://doi.org/10.3390/math7100974
Li C, Postolache M, Jia Z. Weighted Method for Uncertain Nonlinear Variational Inequality Problems. Mathematics. 2019; 7(10):974. https://doi.org/10.3390/math7100974
Chicago/Turabian StyleLi, Cunlin, Mihai Postolache, and Zhifu Jia. 2019. "Weighted Method for Uncertain Nonlinear Variational Inequality Problems" Mathematics 7, no. 10: 974. https://doi.org/10.3390/math7100974
APA StyleLi, C., Postolache, M., & Jia, Z. (2019). Weighted Method for Uncertain Nonlinear Variational Inequality Problems. Mathematics, 7(10), 974. https://doi.org/10.3390/math7100974