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Abstract

:

We show that if a differentiable map f of a compact smooth Riemannian manifold M is   C 1   robustly positive continuum-wise expansive, then f is expanding. Moreover,   C 1  -generically, if a differentiable map f of a compact smooth Riemannian manifold M is positively continuum-wise expansive, then f is expanding.
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1. Introduction and Statements


Starting with Utz [1], expansive dynamical systems have been studied by researchers. Regarding this concept, many researchers suggest various expansivenesses (e.g., N-expansive [2], measure expansive [3] and continuum-wise expansive [4]). These concepts were used to show chaotic systems (see References [3,5,6,7]) and hyperbolic structures (see References [8,9,10,11,12,13,14]).



For chaoticity, Morales and Sirvent proved in Reference [3] that every Li-Yorke chaotic map in the interval or the unit circle are measure-expansive. Kato proved in Reference [7] that, if a homeomorphism f of a compactum X with   dim X > 0   is continuum-wise expansive and Z is a chaotic continuum of f, then either f or   f  − 1    is chaotic in the sense of Li and Yorke on almost all Cantor sets   C ⊂ Z .   Hertz [5,6] proved that if a homeomorphism f of locally compact metric space X or Polish continua X is expansive or continuum-wise expansive then f is sensitive dependent on the initial conditions.



For hyperbolicity, Mañé proved in Reference [12] that if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Arbieto proved in Reference [8] that,   C 1   generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is expansive then it is Axiom A and has no cycles. Sakai proved in Reference [13] that, if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Lee proved in Reference [9] that,   C 1   generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is continuum-wise expansive then it is Axiom A and has no cycles.



Through these results, we are interested in general concepts of expansiveness. Actively researching positive expansivities (positively expansive [15], positively measure-expansive [16,17]) is a motivation of this paper. In this paper, we study positively continuum-wise expansiveness, which is the generalized notion of positive expansiveness and positive measure expansiveness.



In this paper, we assume that M is a compact smooth Riemannian manifold. A differentiable map   f : M → M   is positively expansive(write   f ∈ PE  ) if there exists a constant   δ > 0   such that for any   x , y ∈ M  , if   d (  f i   ( x )  ,  f i   ( y )  ) ≤ δ    ∀ i ≥ 0   then   x = y  . From Reference [18], if a differentiable map   f ∈ PE   then f is open and a local homeomorphism. For any   δ > 0  , we define a dynamical  δ -ball for   x ∈ M   such as   { y ∈ M : d  (  f i   ( x )  ,  f i   ( y )  )  ≤ δ     ∀ i ≥ 0 }  . Put    Γ δ +    ( x )  = { y ∈ M : d   (  f i   ( x )  ,  f i   ( y )  )  ≤ δ    ∀ i ≥ 0 }  . Note that if a differentiable map   f ∈ PE  , then    Γ δ +   ( x )  =  { x }    for any   x ∈ M  . Here   δ > 0   is called an expansive constant of   f .  



Let us introduce a generalization of the positively expansive called the positively measure-expansive (see Reference [3]). Let   M ( M )   be the space of a Borel probability measure of M. A measure   μ ∈ M ( M )   is atomic if   μ ( { x } ) ≠ 0 ,   for some point   x ∈ M .   Let   A ( M )   be the set of atomic measures of M. Note that   A ( M )   is dense in   M ( M ) .   Let    M *   ( M )  = M  ( M )  ∖ A  ( M )  .   A differentiable map   f : M → M   is positively measure-expansive (write   f ∈ PME  ) if there exists a constant   δ > 0   such that   μ (  Γ δ   ( x )  ) = 0   for any   μ ∈  M *   ( M )  ,   where   δ > 0   is called a measure expansive constant. In Reference [17], the authors found that there exists a differentiable map   f :  S 1  →  S 1    that is positively  μ -expansive for any   μ ∈  M f *   (  S 1  )    but not positively expansive where    M f *   ( M )    is the set of non-atomic invariant measures of M.



Now, we introduce another generalization of the positive expansiveness, which is called positively continuum-wise expansiveness (see Reference [4]). We say that C is a continuum if it is compact and connected.



Definition 1.

A differentiable map f is positively continuum-wise expansive (write   f ∈ PCWE  ) if there is a constant   e > 0   such that if   C ⊂ M   is a non-trivial continuum, then there is   n ≥ 0   such that   diam  f n   ( C )  > e  , where if C is a trivial, then C is a one point set.





Note that   f ∈ PCWE   if and only if    f n  ∈ PCWE    ∀ n ≥ 1 .   We say that f is countably expansive (write   f ∈ CE  ) if there is a constant   δ > 0   such that for all   x ∈ M  ,     Γ δ +    ( x )  = { y ∈ M : d   (  f i   ( x )  ,  f i   ( y )  )  ≤ δ    ∀ i ∈ Z }   is countable. In Reference [19], the authors showed that if a homeomorphism   f : M → M   is measure expansive then f is countably expansive. Moreover, the converse is true. Then, as in the proof of Theorem 2.1 in Reference [19], it is easy to show that f is positively countable-expansive if and only if f is positively measure expansive. In this paper, we consider the relationship between the positively measure-expansive and the positively continuum-wise expansive (see Lemma 1). We can know that if f is positively measure-expansive then it is not positively continuum-wise expansive because a continuum is not countable, in general.



Definition 2.

A differentiable map   f : M → M   is expanding if there exist constants   C > 0   and   λ > 1   such that


    ∥   D x   f n    ( v )  ∥ ≥ C   λ n   ∥ v ∥  ,   








for any vector   v ∈  T x  M  ( x ∈ M )    and any   n ≥ 0  .





Note that a positively measure-expansive differentiable map is not necessarily expanding. However, under the   C 1   robust or   C 1   generic condition, it is true.



A differentiable map f is   C 1   robustly positive  P  if there exists a   C 1   neighborhood   U ( f )   of f such that for any   g ∈ U ( f )  , g is positive  P .



A point   x ∈ M   is a singular if    D x  f :  T x  M →  T  f ( x )   M   is not injective. Denoted by   S f   the set of singular points of   f .  



Sakai proved in Reference [15] that if a differentiable map f is   C 1   robustly positive expansive then    S f  = ∅   and it is an expanding map. Lee et al. [17] proved that if f is   C 1   robustly positive measure-expansive, then    S f  = ∅   and it is expanding. Note that if a differentiable map f is expanding then it is expansive. According to these facts, we prove the following.



Theorem A

If a differentiable map   f : M → M   is   C 1   robustly positive continuum-wise expansive (write   f ∈ RPCWE  ) then    S f  = ∅   and it is expanding.





Let    D 1   ( M )    be the set of differentiable maps   f : M → M  . Note that    D 1   ( M )    contains the set of diffeomorphisms     Diff  1   ( M )    on M and     Diff  1   ( M )    is open in    D 1   ( M )   . We say that a subset   G ⊂  D 1   ( M )    is residual if it contains a countable intersection of open and dense subsets of    D 1   ( M )   . Note that the countable intersection of residual subsets is a residual subset of    D 1   ( M )   . A property “P” holds generically if there exists a residual subset   G ⊂  D 1   ( M )    such that for any   f ∈ G ,   f has the “P”. Some times we write for   C 1   generic   f ∈  D 1   ( M )    which means that there exists a residual set   G ⊂  D 1   ( M )    such that for any   f ∈ G .   Arbieto [8] and Sakai [15] proved that,   C 1   generically, a positively expansive map is expanding. Ahn et al. [16] proved that for a   C 1   generic   f ∈  D 1   ( M )   , if    S f  = ∅   and f is positively measure expansive, then it is expanding. Recently, Lee et al. [17] showed that,   C 1   generically, if   f ∈  D 1   ( M )    is positively measure-expansive then    S f  = ∅   and f is expanding. According to these results, we consider   C 1   generic positively continuum-wise expansive for   f ∈  D 1   ( M )    and prove the following.



Theorem B

For   C 1   generic   f ∈  D 1   ( M )   , if f is positively continuum-wise expansive then    S f  = ∅   and it is expanding.






2. The Proof of Theorem A


The following proof is similar to Lemma 2.2 in Reference [19].



Lemma 1.

Let   C ⊂ M   be compact and connected. A differentiable map   f ∈ PCWE   if and only if there is a constant   δ > 0   such that for all   x ∈ M  , if a continuum   C ⊂  Γ δ +   ( x )    then C is a trivial continuum set.





Proof. 

Let   δ > 0   be a continuum-wise expansive constant and C be compact and connected (that is, a continuum). Take   c = δ / 2 .  . We assume that for any   x ∈ M  , if   C ⊂  Γ c +   ( x )    then   diam  f n   ( C )  ≤ 2 c   for all   n ≥ 0 .   Since f is positively continuum-wise expansive, C should be a trivial continuum set. Thus, if   f ∈ PCWE  , then for all   x ∈ M  , if a continuum   C ⊂  Γ c +   ( x )   , then C is a trivial continuum set.



For the converse part, suppose that   f ∈ PCWE  . Then, there is a constant   c > 0   such that   diam  f n   ( C )  ≤ c     ∀ n ≥ 0 ,   where C is a continuum. Let   x ∈ C   be given. Since   diam  f n   ( C )  ≤ c  , for all   y ∈ C   we have


  d (  f n   ( x )  ,  f n   ( y )  ) ≤ c ∀ n ≥ 0 .  











Thus, we know   y ∈  Γ c   ( x )  .   Since   y ∈ C   and y is arbitrary, we have   C ⊂  Γ c   ( x )  .   Since a continuum   C ⊂  Γ c   ( x )   , we have that C is a trivial continuum set. □





A periodic point   p ∈ P ( f )   is hyperbolic if    D p   f  π ( p )   :  T p  M →  T p  M   has no eigenvalue with a modulus equal to 0 or 1, where   π ( p )   is the period of   p .   Then,    T p  M =  E p s  ⊕  E p u    of subspaces such that



	(a)

	
   D p   f  π ( p )    (  E p σ  )  =  E p σ   (  σ = s , u )  , and




	(b)

	
there exist constants   C > 0  , and   λ ∈ ( 0 , 1 )   satisfies for all positive integer   n ∈ N  ,



	
   ‖   D p   f n    ( v )  ‖ ≤ C   λ n   ‖ v ‖    for any   v ∈  E p s   , and



	
   ‖   D p   f  − n     ( v )  ‖ ≤ C   λ n   ‖ v ‖    for any   v ∈  E p u   










A hyperbolic point   p ∈ P ( f )   is a sink if    E p u  =  { 0 }   , a source if    E p s  =  { 0 }   , and a saddle if    E p s  ≠  { 0 }    and    E p u  ≠  { 0 }   . Let    P h   ( f )    be the set of hyperbolic periodic points of   f .   The dimension of the stable manifold    W s    ( p )  = { x ∈ M : d   (  f i   ( x )  ,  f i   ( p )  )  → 0   as   i → ∞ }   is written by the index of p, and denoted by   ind ( p )  . Then, we know   0 ≤ ind ( p ) ≤ dim M .   Let    P i   ( f )    be the set of all   p ∈  P h   ( f )    with   ind ( p ) = i .  



Lemma 2.

If a differentiable map   f ∈ PCWE   then    P i   ( f )  = ∅   for   1 ≤ i ≤ dim M .  





Proof. 

By contradiction, we assume that there is   i ∈ [ 1 , dim M ]   such that    P i   ( f )  ≠ ∅  . Take   p ∈  P i   ( f )    and   δ > 0  . Then, we can find a local stable manifold    W δ s   ( p )    of p such that    W δ s   ( p )  ≠ ∅ .   We can construct a continuum    J p  ⊂  W δ s   ( p )    centered at p such that   diam  J p  = δ / 4 .   Let    Γ  δ / 2  +    ( p )  = { y ∈ M : d   (  f i   ( p )  ,  f i   ( y )  )  ≤ δ / 2     ∀ i ≥ 0 }  . Then, we know    J p  ⊂  Γ  δ / 2  +   ( p )  .   By Lemma 1,   J p   should be a trivial continuum set. This is a contradiction since   J p   is not a trivial continuum set. □





In Reference [17], the authors showed that there is a positively expansive differentiable map   f :  S 1  →  S 1    such that    S f  ≠ ∅ .   Thus, if f is positively measure-expansive then    S f  ≠ ∅ .   But if f is   C 1   robustly positive measure-expansive then    S f  = ∅ .   For that, we consider that f is   C 1   robustly positive continuum-wise expansive.



The following is a version of differentiable maps of Franks’ lemma (see Lemma 2.1 in Reference [8]).



Lemma 3

([20]). Let   f : M → M   be a differentiable map and let   U ( f )   be a   C 1   neighborhood of   f .   Then, there exists   δ > 0   such that for a finite set   A = {  x 1  ,  x 2  , … ,  x n  } ⊂ M ,   a neighborhood U of A and a linear map    L i  :  T  x i   M →  T  f (  x i  )   M   satisfying    ∥   L i  −  D  x i    f ∥ < δ    for   1 ≤ i ≤ n ,   there exist    ε 0  > 0   and   g ∈ U ( f )   having the following properties;




	(a)

	
  g ( x ) = f ( x )   if   x ∈ A  , and




	(b)

	
  g  ( x )  =  exp  f (  x i  )   ∘  L i  ∘   exp   x i   − 1    ( x )    if   x ∈  B  ε 0    (  x i  )    and   ∀ i ∈ { 1 , … , n } .  











It is clear that assertion (b) implies that


  g ( x ) = f ( x )   i f   x ∈ A  








and that    D  x i   g =  L i  ,    ∀ i ∈ { 1 , … , n } .  



Theorem 1.

If a differentiable map   f ∈ RPCWE   then    S f  = ∅ .  





Proof. 

Suppose that there is   x ∈  S f   . Then, by Lemma 3, we can take g  C 1   close to f such that g has a closed connected small arc    B ϵ   ( x )    centered at x with radius   ϵ > 0  , such that   dim  B ϵ   ( x )  = 1   and   g (  B ϵ   ( x )  )   is one point. Take   δ = 2 ϵ  . Let    Γ δ +    ( x )  = { y ∈ M : d   (  g i   ( x )  ,  g i   ( y )  )  ≤ δ    ∀ i ≥ 0 }  . It is clear    B ϵ   ( x )  ⊂  Γ δ +   ( x )  .   Since   g (  B ϵ   ( x )  )   is one point, for any   y ∈  B ϵ   ( x )  ,   we know that   diam  g i   (  B ϵ   ( x )  )  ≤ δ   for all   i ≥ 0 .   However,    B ϵ   ( x )    is not a trivial continuum set, by Lemma 1 this is a contradiction. □





Recall that a differentiable map   f : M → M   is star if every periodic point of   g (  C 1    nearby   f )   is hyperbolic.



Lemma 4.

If a differentiable map   f ∈ RPCWE   then f is star.





Proof. 

Suppose that f is not star. Then, we can take g  C 1   close to f such that g has a non-hyperbolic   p ∈ P ( g ) .   As Lemma 3, we can find   g 1    C 1   close to g (  g 1    C 1   close to f) such that    D p   g 1  π ( p )     has an eigenvalue  λ  with   | λ | = 1 .   For simplicity, we assume that    g 1  π ( p )    ( p )  =  g 1   ( p )  = p .   Let   E p c   be associated with  λ . If   λ ∈ R   then   dim  E p c  = 1  , and if   λ ∈ C   then   dim  E p c  = 2 .  



First, we consider   dim  E p c  = 1 .   Then, we assume that   λ = 1   (the other case can be proved similarly). By Lemma 3, there are   ϵ > 0   and h  C 1   close to   g 1   (also,   C 1   close to f), having the following properties;




	
  h  ( p )  =  g 1   ( p )  = p ,  



	
  h  ( x )  =  exp p  ∘  D p   g 1  ∘  exp p  − 1    ( x )    if   x ∈  B ϵ   ( p )  ,   and



	
  h  ( x )  =  g 1   ( x )    if   x ∉  B  4 ϵ    ( p )  .  








Since   λ = 1  , we can construct a closed connected small arc    I p  ⊂  B ϵ   ( p )  ∩  exp p   (  E p c   ( ϵ )  )    with its center at p such that




	
  diam  I p  = ϵ / 4 ,  



	
  h  (  I p  )  =  I p  ,   and



	
the map     h |   I p   :  I p  →  I p    which is the identity.








Take   δ = ϵ / 2  . Let    Γ δ +    ( p )  = { x ∈ M : d   (  h i   ( x )  ,  h i   ( p )  )  ≤ δ     ∀ i ≥ 0 }  . Then, it is clear    I p  ⊂  Γ δ   ( p )  ,   and   diam  h i   (  I p  )  = diam  I p    for all   i ≥ 0 .   Since   f ∈ RPCWE  , according to Lemma 1,   I p   has to be just a trivial continuum set. This is a contradiction since   I p   is not a trivial continuum set.



Finally, we consider   dim  E p c  = 2 .   For convenience, we assume that    g  π ( p )    ( p )  = g  ( p )  = p .   As Lemma 3, we can find   ϵ > 0   and    g 1  ∈ U  ( f )   , which has the following properties;




	
   g 1   ( p )  = g  ( p )  = p ,  



	
   g 1   ( x )  =  exp p  ∘  D p  g ∘  exp p  − 1    ( x )    if   x ∈  B ϵ   ( p )  ,   and



	
   g 1   ( x )  = g  ( x )    if   x ∉  B  4 ϵ    ( p )  .  








For any   v ∈  E p c   ( ϵ )   , there is   l > 0   such that    D p   g l   ( v )  = v  . Take   u ∈  E p c   ( ϵ )    such that   ∥ u ∥ = ϵ / 2  . As in the previous arguments, we can construct a closed connected small arc    J p  ⊂  B ϵ   ( p )  ∩  exp p   (  E p c   ( ϵ )  )    such that




	
  diam  J p  = ϵ / 4  ,



	
   g 1 l   (  J p  )  =  J p   , and



	
   g 1 l    |   J p   :  J p  →  J p    is the identity map.








As in the proof of the first case, take   δ = ϵ / 2  . Let    Γ δ +   ( p )  =  { x ∈ M : d (   g 1  l i    ( x )  ,  g 1  l i    ( p )  ≤ δ    ∀ i ≥ 0 } .   It is clear that    J p  ⊂  Γ δ +   ( p )  .   Then, by Lemma 1,   J p   must be a trivial continuum set but it is not possible since   J p   is a closed connected small arc. Thus, if   f ∈ RPCWE   then f is star. □





The differentiable maps   f , g : M → M   are conjugate if there is a homeomorphism   h : M → M   such that   f ∘ h = h ∘ g .   We say that a differentiable map f is structurally stable if there is a   C 1   neighborhood   U ( f )   of   f ∈  D 1   ( M )    such that for any   g ∈ U ( f ) ,  g is conjugate to f. A differentiable map f is Ω stable if there is a   C 1   neighborhood   U ( f )   of   f ∈  D 1   ( M )    such that for any   g ∈ U ( f ) ,     g |   Ω ( g )    is conjugate to    f |   Ω ( f )   , where   Ω ( f )   denotes the nonwandering points of   f .   Przytycki proved in Reference [21] that if f is an Anosov differentiable map then it is not an Anosov diffeomorphism or expandings which are not structurally stable. Moreover, assume that f is Axiom A (i.e.,     P ( f )  ¯  = Ω  ( f )    is hyperbolic) and has no singular points in the nonwandering set   Ω ( f )  . Then f is  Ω  stable if and only if f is strong Axiom A and has no cycles ( see Reference [22]). Here, f is strong Axiom A means that f is Axiom A and   Ω ( f )   is the disjoint union    Λ 1  ∪  Λ 2    of two closed f invariant sets.



According to the above results of a diffeomorphism   f ∈   Diff  1   ( M )   , one can consider the case of a differentiable   f ∈  D 1   ( M )    which is an extension of a diffeomorphism. For instance, a diffeomorphism   f ∈ Diff ( M )   is said to be star if we can choose a   C 1   neighborhood   U ( f )   of f such that every periodic point of g is hyperbolic, for all   g ∈ U ( f )  .



If a diffeomorphism f is star then f is Axiom A and has no cycles (see References [23,24]). Aoki et al. Theorem A in Reference [25] proved that if a differentiable map f is star and the nonwandering set   Ω  ( f )  ∩  S f   ⊂ { p ∈ P  ( f )  : p    is a sink } then f is Axiom A and has no cycles.



Theorem 2.

Let   f ∈  D 1   ( M )  .   If   f ∈ RPCWE   then f is Axiom A and has no cycles.





Proof. 

Suppose that   f ∈ RPCWE  . As Lemma 4, f is star. By Theorem 1, we know    S f  = ∅ ,   and so,   Ω  ( f )  ∩  S f  = ∅  . By Lemma 2, there do not exist sinks in   P ( f )  , that is,   { p ∈ P ( f ) : p   is a sink   } = ∅  . Thus, by Theorem A in Reference [25], f is Axiom A and has no cycles. □





Proof of Theorem A.

Suppose that   f ∈ RPCWE  . Then, by Lemma 2, Theorem 2 and Proposition 2.7 in [17],   Ω  ( f )  =    P 0   ( f )   ¯    is hyperbolic and     P 0   ( f )   ¯   is expanding. Then, by Lemma 2.8 in Reference [17],   M =    P 0   ( f )   ¯   . Thus, f is expanding. □






3. The Proof of Theorem B


Denote by  KS  the set of Kupka–Smale   C 1   maps of   M .   By Shub [26],  KS  is a residual set of    D 1   ( M )  .   If   f ∈ KS   then every   p ∈ P ( f )   is hyperbolic. Then, we can see the following.



Lemma 5.

Let   f ∈ KS  . If   f ∈ PCWE   then   P  ( f )  =  P 0   ( f )  .  





Proof. 

Let   f ∈ PCWE  . Suppose, by contradiction, that    P i   ( f )  ≠ ∅   for some   1 ≤ i ≤ dim M .   Take   p ∈  P i   ( f )    and   δ > 0  . Then, we can define a local stable manifold    W δ s   ( p )    of p such that    W δ s   ( p )  ≠ ∅ .   We can construct a closed connected small arc    J p  ⊂  W δ s   ( p )    with its center at p such that   diam  J p  = δ / 4 .   Let    Γ δ +    ( p )  = { x ∈ M : d   (  f i   ( x )  ,  f i   ( p )  )  ≤ δ   for all   i ≥ 0 } .   Then, it is clear    J p  ⊂  Γ δ +   ( p )  .   Since   f ∈ PCWE  , by Lemma 1,   J p   must be a trivial continuum set. This is a contradiction since   J p   is not a trivial continuum set. Thus, every   p ∈ P ( f )   is a source so that   P  ( f )  =  P 0   ( f )  .   □





Lemma 6.

Lemma 8 in [15]. There exists a residual set    G 1  ⊂  D 1   ( M )    such that for given   f ∈  G 1   , if for any   C 1   neighborhood   U ( f )   of f there exist   g ∈ U ( f )   and   p ∈  P h   ( g )    with   ind ( p ) = i ( 0 ≤ i ≤ dim M )  , then there is    p ′  ∈  P h   ( f )    with   ind (  p ′  ) = i .  





Lemma 7.

There exists a residual subset    G 2  ⊂  D 1   ( M )    such that for a given   f ∈  G 2   , if   f ∈ PCWE   then    S f  ∩    P 0   ( f )   ¯  = ∅ .  





Proof. 

Let   f ∈  G 2  = KS ∩  G 1    and   f ∈ PCWE  . Suppose, by contradiction, that    S f  ∩    P 0   ( f )   ¯  ≠ ∅ .   Since    S f  ∩    P 0   ( f )   ¯  ≠ ∅  , we can choose a point   x ∈  S f  ∩    P 0   ( f )   ¯  .   Then, we can find a sequence of periodic points    {  p n  }  ⊂  P 0   ( f )    with period   π (  p n  )   such that    p n  → x   as   n → ∞ .   As Lemma 3, there exists g  C 1   close to f such that    g  π (  p n  )    (  p n  )  =  p n    and    p n  ∈  S g  .   Again using Lemma 3, there exists   g 1    C 1   closed to g such that   g 1    C 1   is close to f,    g 1  π (  p n  )    (  p n  )  =  p n   , and   ind  (  p n  )  = i  ( 1 ≤ i ≤ dim M )  .   Since   f ∈  G 1   , by Lemma 6, f has a hyperbolic saddle periodic point q with   index ( q ) = i ( 1 ≤ i ≤ dim M ) .   This is a contradiction by Lemma 2. □





For a   δ > 0  , a point   p ∈ P  ( f )  (  f  π ( p )    ( p )  = p )   said to be a δ-hyperbolic (see Reference [27]) if for an eigenvalue of   D  f  π ( p )    ( p )   , we can take an eigenvalue  λ  of   D  f  π ( p )    ( p )    such that




     ( 1 − δ )   π ( p )   <  | λ |  <   ( 1 + δ )   π ( p )   .   









Lemma 8.

There exists a residual subset    G 3  ⊂  D 1   ( M )    such that for a given   f ∈  G 3   , if   f ∈ PCWE  , then we can take   δ > 0   such that f has no δ-hyperbolic.





Proof. 

Let   f ∈  G 3  = KS ∩  G 1  ∩  G 2  ,   and let   f ∈ PCWE  . Since   f ∈ KS ∩  G 1  ∩  G 2   , by Lemma 2 and Lemma 7, we know    S f  ∩    P 0   ( f )   ¯  = ∅ .   Assume that for any   δ > 0  , there is a   p ∈  P h   ( f )    with a  δ -hyperbolic. By Lemma 3, we can take g  C 1   close to f such that p has an eigenvalue with modulus one. Again using Lemma 3, there exists   g 1    C 1   close to g (  g 1    C 1   close to f) such that   g 1   has a saddle   q ∈  P h   (  g 1  )    with   ind ( q ) = i ( 1 ≤ i ≤ dim M ) ,   where    P h   (  g 1  )    is the set of all hyperbolic periodic points of    g 1  .   Since   f ∈  G 1   , f has a saddle    q ′  ∈  P h   ( f )    with   ind  (  q ′  )  = i  ( 1 ≤ i ≤ dim M )  .   This is a contradiction by Lemma 2. □





Lemma 9.

Lemma 7 in Reference [15]. There exists a residual subset    G 4  ⊂  D 1   ( M )    such that for a given   f ∈  G 4    and   δ > 0  , if any   C 1   neighborhood   U ( f )   of f there exist   g ∈ U ( f )   and   p ∈  P h   ( g )    with a δ-hyperbolic, then we can find    p ′  ∈  P h   ( f )    with a   2 δ  -hyperbolic.





Lemma 10.

There exists a residual subset    G 5  ⊂  D 1   ( M )    such that for a given   f ∈  G 5   , if   f ∈ PCWE   then f is star.





Proof. 

Let   f ∈  G 5  =  G 3  ∩  G 4    and   f ∈ PCWE  . Suppose that f is not star. Then, as Lemma 3, we can take g  C 1   close to f such that g has a   q ∈  P h   ( g )    with a   δ / 2  -hyperbolic for some   δ > 0 .   Since   f ∈  G 4   , f has a hyperbolic periodic point   p ′   with a  δ -hyperbolic. This is a contradiction by Lemma 8. □





The following is a differentiable version of closing Lemma under the generic sense (see Theorem 1 in Reference [28]). Then we set  CL  is the residual subset in    D 1   ( M )    such that for any   f ∈ CL  ,   Ω  ( f )  =  P ¯   ( f )  .  



Proof of Theorem B.

Let   f ∈ G =  G 5  ∩ CL   and   f ∈ PCWE  . It is enough to show that   M =    P 0   ( f )   ¯  .   By Lemmas 5 and 7,   P  ( f )  =  P 0   ( f )    and    S f  ∩    P 0   ( f )   ¯  = ∅ .   Since   f ∈ CL  ,   Ω  ( f )  =   P ( f )  ¯  .   According to Lemma 10, f is star, and so    { Ω  ( f )  ∖   P ( f )  ¯  }  ∩  S f  = ∅  . Thus we have   Ω  ( f )  =   P ( f )  ¯  =    P 0   ( f )   ¯    is hyperbolic. As Proposition 2.7 in Reference [17], we have that     P 0   ( f )   ¯   is expanding. Then, as in the proof of Lemma 3.8 in Reference [17], we have   M =    P 0   ( f )   ¯  .   □
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