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Abstract: The paper deals with a sharing economy system with various management factors by using
a bulk input G/M/1 type queuing model. The effective management of operating costs is vital for
controlling the sharing economy platform and this research builds the theoretical background to
understand the sharing economy business model. Analytically, the techniques include a classical
Markov process of the single channel queueing system, semi-Markov process and semi-regenerative
process. It uses the stochastic congruent properties to find the probability distribution of the number
of contractors in the sharing economy platform. The obtained explicit formulas demonstrate the
usage of functional for the main stochastic characteristics including sharing expenses due to over
contracted resources and optimization of their objective function.
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1. Introduction

This paper deals with a sharing economy platform with critical operational factors which include
a status of the owners (contractors, suppliers) and seekers (subscribers, customers) under the sharing
economy. Basically, the sharing economy platform makes the collaborative consumption by the
activities of sharing, exchanging and rental of resources without owning the goods [1]. Growing
concerns about climate change have made the collaborative consumption an appealing alternative
for consumers [2]. This concept describes in a broader sense any sales transactions which are done in
online market places, even in business-to-business (B2B). This sharing economy began to spread widely
by sharing unused resources between individuals. Startup companies including Uber and AirBnB not
only provide technological platforms to facilitate transactions but also become real-world companies,
with the same responsibilities as transportation companies under the sharing economy platforms [3,4].
The constituent factors of a sharing economy business model could be largely divided into eight
factors for the business operations—value proposition; financial profit and loss; resources; process;
target customers; exterior cooperation; and logistical flow [5]. The operations must evolve along
with the new sharing business model and they should preserve the value created through innovation.
This paper deals with modeling the business operations between resource owners (suppliers) and
consumers (customers). As a platform provider, a manager should control the balance between them.
This paper suggests that resource owners have two main types of contract in the sharing economy
platform. Individual contractors are typical suppliers in the system which are independent and have
fewer obligations but company contractors who are directly reserved by a platform provider have
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more obligations to support goods. The relationship between a platform provider and various types of
suppliers in the sharing economy system is described in Figure 1.

Figure 1. Sharing Economy with Two Types of Contractors [6].

This type of a sharing economy system could be described as a classical G/M/1 type queueing
model and its operations are critical for all companies in each section of the sharing economy. The main
target of sharing economy operations is balancing conflicted goals such as keeping enough for various
types of supplying resources (e.g., car drivers in Uber, room owners in AirBnB). The literature reviews
of queueing research have contained massive studies regarding queues in various situations [7–10]
and the Mb/Gb/1 type queues have been not only theoretically studied [11,12] but also studied based
on the algorithmic approach [13].

The model in this paper considers two types of contracts for suppliers. The individual contractor
is a typical resource owner in a sharing economy system. As mentioned, each contract is an individual
which is similar to a part-time contract. The other contract is rather more permanent than the first
and the contractors will be directly controlled by the service providers. In the terms of operating
cost, the individual contract is cheaper but has the risk of being out of the service at the same time.
Therefore, the contract type of resource owners should be balanced. Notably, valid suppliers are
posted on the (online) platform as a bulk of suppliers after gathering and screening. The duration of
gathering (and screening) resource owners is considered as a general inter-arrival time in a typical
single channel queue and the service which is consumed by customers is based on the Markovian
service time. This sharing economy model is well described as a G/M/1 type queueing model rather
than as a M/G/1 type queue [14]. Hence, this paper deals with a class of Gx/M/1 queueing model
with continuous time perspectives. More specifically, a G/M/1 type system with a finite capacity w
is considered and each input (i.e., offering resources from the individual contractors) is stored as a
fixed batch size v. A basic Gv/M/1 type queue has been well studied [1,15] in various areas including
inventory controls [10,16] and manufacturing systems [17] but it has never been adapted for sharing
economy models. The “congruent properties” explored in this paper gives an explicit relationship
between two models in terms of probabilities for the queueing processes. Explicit obtained formulas
demonstrate a relatively effortless usage of functionals for the main stochastic characteristics and
their objective function supports the optimization of the system. The main objective of this article
is to analyze the random process describing the sharing economy system at any moment of time
in equilibrium. Versatile scientific approaches using modern technologies, including an artificial
intelligence and a complex information systems, have been adapted for resolving social and economic
challenges [18,19]. The theoretical approach to find the optimization of a sharing economy platform
might be a basic clue for analyzing social and economic challenges to understand vital factors of the
problems before adapting complex intelligent systems.
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The article is organized as follows: Section 2 presents a “congruent model” which has the same
characteristics as the principal model. Some expressions provide a very simple connection between
the main and the congruent models. This section also includes mathematical formalism of two models
and the congruent properties are further extended to a worthwhile relationship between Model 1
(Gv/M/1/w) and Model 2 (M/Gv/1/w). Section 3 deals with the Markov processes and continuous
time processes for Model 2 (which bring back to Model 1 via the stochastic congruence). In Section 4,
functions of the semi-regenerative process are introduced to demonstrate tractability of the main
results, followed by optimization of a relevant objective function. Section 5 deals with optimization of
atypical sharing economy platform operation case, which is concluded with numerical examples.

2. Stochastically Congruent Models

The stochastically congruent model, referred to as Model 2, is introduced which is simpler than
the main model (i.e., Model 1). The stochastic congruence is widely applied to solve a problem by
using a well known model which is connected to the original problem. In this paper, Model 2 is similar
to Model 1 and the analytical solutions of Model 2 are already well known [15,20]. According to the
congruency, the states of Model 1 are equivalent to states of Model 2 which are simply flipped over
and counted the other way around. In other words, Model 2 is directly connected to Model 1. Both the
above models (Model 1 and 2) could be formally described.

Denote by Z1
t the total number of contracts from resource suppliers w at time t in Model 1.

Once one batch of individual contracts v from a supplier is ready, the resource is published for
customers. As mentioned, this sharing economy model could be described as a Gv/M/1/w queueing
model. Let τ0 (= 0) , τ1, . . . be the moment a batch contract is published on the system (the online
platform) and let D1, D2, . . . be the duration for publishing bulk service suppliers. The random
variables {Dn} are iid (independent and identically distributed) with a common CDF (Cumulative
Density Function)

A (x) := P {Dn ≤ x} , x ≥ 0, (1)

with the mean a = E [Dn] < ∞. Each of the consuming services (or users getting the service from the
contracted suppliers) is independent from each other and exponentially distributed with the parameter
0 < λ < ∞. The summary of the related values are provided in the table (see Table 1).

Table 1. Notation Summary.

Variables Descriptions in the Sharing Economy Platform

v The number of the individual contractors as a service supplier

w The total number of contractors including company reserved

s = (w− v)+ The number of the company reserved contractors

a = E [Dk] Duration between posting the suppliers on the platform

λ Customer arrivals to use the services on the platform

Model 2 describes the number of customers in a M/Gv/1/w queueing system which is a single
sever process with the fixed batch size v. It is like a single channel queue M/Gv/1/∞ except for the
finite waiting room w [15]. Let T0 (= 0) , T1, . . . be the moment of contracted suppliers are published
on the platform and it is assumed that the last action does not affect the status of the system in this
particular problem setting. The random variables Tn+1 − Tn (in Model 2) are stochastically equivalent
to τn+1 − τn of Model 1. It can be shown that τ1, τ2 . . . and T1, T2, . . . are sequences of stopping times of
the processes (

Ω1,U1, (P x)x∈E1
,
(

Z1
t ; t ≥ 0

))
IE1 = {0, 1, . . . , s} (2)
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and (
Ω,U, (P x)x∈E , (Zt; t ≥ 0)

)
IE = {0, 1, . . . , s} , (3)

respectively and that these processes are regenerative relative to these sequences. Let us assign:

ξn := Z1
τn− and Xn := ZTn− , n = 0, 1, 2, . . . .

Consequently, (
Ω1,U1, (P x)x∈E , (ξn; n = 1, 2, . . .)

)
IE (4)

and (
Ω,U, (P x)x∈E , (Xn; n = 1, 2, . . .)

)
IE (5)

are embedded Markov Chains (MCs). Both Markov chains are stochastically congruent. Their limiting
probabilities are expressed through the common invariant probability measure P= (P0, P1, . . . , Pw)

where Pk = P {Xn = k} and P1 =
(

P1
0 , P1

1 , . . . , P1
w
)

where P1
k = P {ξn = k}. The states of the

Gv/M/1/w queue are equivalent to the states of the flipped M/Gv/1/w queue. Therefore, the state
k in Gv/M/1/w queueing system “corresponds” to the state w− k in M/Gv/1/w queueing system
which yields that

P1
k = Pw−k, k = 0, . . . , w. (6)

Since (ξn) and (Xn) are stochastically congruent, only one of them will be treated in the
next section.

3. Embedded Processes and Continuous Parameters of Model 2

The embedded process {Xn} of Model 2 is a time-homogeneous Markov chain and Xn is the
number of customers at time (Tn−) and it has two types of transition matrices which depend on the
relationship between the batch size v and the system capacity w. The transition probabilities could be
changed because of these two factors but the method of solving stationary probabilities are essentially
same. Let Vn+1(j) be the number of completely processed customers during the period [Tn, Tn+1)

when Xn = j− 1. Then we have:

Xn+1 =

{
(Xn − x)+ + Vn, Xn = 0, 1, . . . , v− 1,

Vn, Xn = v, v + 1, . . . , w
(7)

Two types of the transition probabilities pjk := P{Xn+1 = k|Xn = j}, j = 0, 1, . . . , w and k =

0, 1, . . . , w, are as follows, if v ≤ w− v (Type-1):

pjk =


ψ(k), 0 ≤ j ≤ v,

ψ(k− j− x), v < j ≤ w, j ≤ k ≤ w− v,

0, otherwise,

(8a)

or, if v > w− v (Type-2):

pjk =

{
ψ(k), 0 ≤ j ≤ v, 0 ≤ k ≤ w− v

0, otherwise.
(8b)

where

ψ(k) =
∫
R+

e−λx · (λ)
k

k!
dA(x), (9)

Both TPMs (Transition Probability Matrices) of Model 2 (Type 1 and 2) repent a finite sub-matrix
which occurs within the corresponding TPM of M/Gv/1/∞ queueing system. The embedded
probabilities Q = (Q0, Q1, . . .) of a M/Gv/1/∞ queue are as follows [1]:
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Q(z) =
∞

∑
i=0

Qizi =
α(λ− λz)

[
∑v−1

i=0 Qi
(
zv − zi)]

zb − α(λ− λz)
, (10)

where
α (θ) = E

[
e−θDk

]
=
∫
R+

e−θudA (u) . (11)

The generating function Q(z) converges inside the unit open disc centered at zero. Alternatively,
Q is also the solution of equations Q = Q·M∞ and (Q, 1) = 1 where M∞ is the TPM of the infinite
queueing system. It is noted that M(w−v+1) is the (w + 1)× (w + 1) finite sub-matrix of M∞. Let the

vector Q̂ =
(

Q̂0, Q̂1, . . . , Q̂w−v, 0, . . . , 0 ( = Q̂w)
)

be the solution of the equation Q̂ = Q̂·M(w+1).

Because of the linearity of the equations Q = Q·M∞ and Q̂ = Q̂·M(w+1), Q̂0, Q̂1, . . . , Q̂w−v differ
from Q0, Q1, . . . , Qw−v by the same constant respectively. It means a constant A (proportionality) exists
such that

A =
Q̂0
Q0

=
Q̂1
Q1

= · · · = Q̂w−v
Qw−v

. (12)

Since we will use the probabilities Q̂ = (Q̂0, Q̂1, . . . , Q̂w−v) for the solutions of M/Gv/1/w,
the constant A (> 0) will be determined from (P, 1) = 1, where P is the invariant probability measure
of the embedded process in M/Gv/1/w system. The probabilities Pk, k = 0, 1, . . . , w were obtained
[21] from the expansion of the generating function (10). From (5) and (7)–(12), it follows that:

Pk =

{
A ·Qk, k = 1, . . . , w− v,

0, k = w− v + 1, . . . , w,
(13a)

where

A−1 =
w−v

∑
i=0

Qi (≤ 1) , (13b)

and

P(z) =
w

∑
k=0

Pkzk =
w

∑
k=0

w

∑
j=0

pjkPjzk. (14)

The next step is finding the continuous time parameter queueing process of Model 2. The below
treatment is similar to that of Kim and Dshalalow [22]. Let (Nt) be the counting process associated
with the point process (Tn) and Vt := TNt+1 − t, t ≥ 0. {Vt; t ≥ 0} gives the residual time from time t
to the next service completion TNt+1. The process

(Ω,F, (Px)x∈E, (Zt, Vt)t≥0) I(Φ, σ(Φ)), Φ := E×R+,

is weak Markov. Let (Pi
t ) be the Markov semi-group associated with (Zt, Vt). It is assumed to be

absolutely continuous, , that is, if
Pi

t (k× [0, y]) := Pi{Zt = k, Vt ∈ [0, y]}, (15)
then

πi
k(t, u)du = P{Zt = k, Vt ∈ [u, u + du)}, i, k ∈ E, u, t ∈ R+. (16)

Since all pertinent processes in equilibrium have been studied, the initial state is not considered.
So the index (i) from π is dropped. To find the limiting distribution π = {π0, π1, . . . , πw} of the
process (Zt), we will start with the Kolmogorov differential equations, assuming that A(x) has the
Radon-Nikodym density a(x), which, in addition, is pointless continuous. From (16), the Kolmogorov
equations are as follows:
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(
∂
∂t −

∂
∂u

)
πk(t, u) =



−λπk(t, u) + λπk−1(t, u) + πk−1+v(t, 0)a (u) ,

k = 1, . . . , w− v,

−λπk(t, u) + λπk−1(t, 0) + πw(t, 0)a (u) ,

k = w− v + 1, . . . , w− 1,

−λπw(t, u) + λπw−1(t, 0),

k = w.

(17)

The process (Zt, Vt) is also semi-regenerative relative to the sequence T0, T1, . . .and its limiting
distribution exists [5,8]. Let

πk(u) := lim
t→∞

πk(t, u), (18)

π̂k(θ) :=
∫
R+

πk(u)e−θudu, Re(θ) ≥ 0, k ∈ E. (19)

Letting t→ ∞ in (17) and then applying the Laplace transform we have:

(θ − λ) π̂k(θ) = πk (0)− λπ̂k−1(θ)− πk+v−1 (0) α(θ), (20)

k = 1, . . . , w− v− 1;

(θ − λ) π̂k(θ) = πk (0)− λπ̂k−1(θ) + πw(0)α(θ), (21)

k = w− v, . . . , w− 1;

(θ − λ) π̂w(θ) = πw (0)− λπ̂w−1(θ). (22)
With θ ↓ 0 in (20)–(22),

−λπk = πk (0)− λπk−1 − πk+v−1 (0) , k = 1, . . . , w− v− 1, (23)

−λπk = πk (0)− λπk−1 − πw (0) , k = w− v, . . . , w− 1, (24)

−λπw = πw (0)− λπw−1. (25)

Once, πk (0) , k = 0, 1, . . . , s are revealed, πk, k = 0, . . . , w could be found accordingly after
calculating the invariant probability measure P = (P0, P1, . . . , Pw) of {Xn} from the TPM of the system
which is covered in the next section. To find the unknowns πk(0) when k = 0, 1, . . . , w. Denote

pjk(t) := Pj{Zt = k | T1 > t}. (26)

Note that ∫
R+

pjk(t) A(dt) = pjk, i, k ∈ E, (27)

are the transition probabilities of the embedded MC (Xn). We use the natural assumption that

Pj{Zt = k | T1 > t} = Pj{Zt = k | T1 > t + y}, ∀y ≥ 0.

Let K j
t(k× [0, y]) := Pj{Zt = k, Vt ∈ [0, y], T1 > t} and from the main convergence theorem,

lim
t→∞

Pi
t (k× [0, y]) =

1
a ∑

j∈E
Pj

∫
R+

K j
t(k× [0, y])dt, k ∈ E, y ∈ R+. (28)

By elementary probability arguments,

K j
t(k× [0, y]) = pjk(t)[A(t + y)− A(t)]
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and then
lim
t→∞

Pi
t (k× [0, y]) = lim

t→∞
Pi{Zt = k, Vt ∈ [0, y]}

=
1
a

∫ y

x=0
∑
j∈E

Pj

∫
R+

pjk(t)a(t + x) dt dx. (29)

From (29),

πk(x) =
1
a ∑

j∈E
Pj

∫
R+

pjk(t)a(t + x) dt. (30)

When x → 0 in (30), due to (P, 1) = 1 and (13a),

πk(0) =
Pk
a

. (31)

3.1. Process of Model 2 Type 1

The Type 1 of Model 2 is the case that the total number of services w in the system is larger than
double of the batch independent supplier size v (i.e., w ≥ 2v). In Type 1, the transition probability is
determined from (8) and the TPM is constructed as follows:

M(w+1; w≥2v) =



ψ(0) ψ(1) . . . . . . ψ(w− v) 0 . . . 0
...

...
...

...
...

...
...

...
ψ(0) ψ(1) . . . . . . ψ(w− v) 0 . . . 0

0 ψ(0)
... . . . ψ(w− 1− v) 0 . . . 0

...
...

...
...

... 0 . . . 0

0 0
... . . .

...
...

...
...

0 0 ψ(0) . . . ψ(w− 2v) . . . . . . 0
0 . . . . . . 0 0 0 . . . 0
0 0 . . . . . . 0 0 . . . 0



(32)

and the invariant probability measure P = (P0, P1, . . . , Pw) of {Xn} is determined from (P, 1) = 1 and
(13) and (14). From (23), summation over j = 1, . . . , k (≤ w− v) in (23):

λ (πk − π0) =

∑k
j=1 πv+j−1 (0)− B̂k, k = 1, . . . v,

∑k−v
j=v+1 πv+j (0)− B̂v−1, k = v + 1, . . . , w− v,

(33)

where

B̂l =
l

∑
i=1

πi (0) =
1
a

l

∑
i=1

Pi (34)

Summing up the equation of (24) and (25) in j from w− v + 1 to s then yields:

λ (πk − π0) = (k− (w− v))πw (0)− B̂v−1 (35)

The continuous time parameter process of Type 1 (Model 2) could be analyzed from (31) and
(33)–(35) and limiting distribution π is as follows:

πn = Gn + π0, n = 1, . . . , w (36)



Mathematics 2019, 7, 1005 8 of 14

and using (π, 1) = 1,

π0 = 1−
w

∑
n=1

πn. (37)

where

λ · Gn =


1
a

(
∑n

j=1 Pv+j−1

)
− B̂n, n = 1, . . . , v,

1
a

(
∑n−v

j=v+1 Pv+j

)
− B̂v−1, n = v + 1, . . . , w− v,

1
a (n− w + v) Pw − B̂v−1, n = w− v + 1, . . . , w.

(38)

From (32), (35) and (36)–(38),

π0 = 1−
(

w

∑
k=1
Gk − w · π0

)
,

therefore,

π0 =

[
1−

w

∑
k=1
Gk

]
/ (1 + w) . (39)

For the process Z1
t , the corresponding formulas yield for the limiting distribution π1(

π1
k = limt→∞ P

{
Z1

t = k
}

, k = 0, . . . , w
)

is as follows:

π1
k = πw−k, k = 0, 1, ..., w. (40)

along with (6).

3.2. Process of Model 2 Type 2

Alternatively, the embedded process {Xn} of Model 2 is changed when w < 2v (Model 2 Type 2)
and the TPM becomes as follows from (8b) and (9):

M(w+1; w<2v) =



ψ(0) ψ(1) . . . ψ(w− v) 0 . . . 0
...

...
...

...
...

...
...

ψ(0) ψ(1) . . . ψ(w− v) 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 . . . 0


, (41)

and the TPMs from (41) repent the same finite sub-matrix which occurs within the corresponding TPM
of M/Gv/1/∞ queueing system (10). Similarly, the continuous time parameter process for Type-2
could be found from (23). From (23)–(26), summation over j = 1, . . . , k (≤ v) in (24) and (25):

λ (πk − π0) =

∑k
j=1 πv+j−1 (0)− B̂k, k = 1, . . . w− v,

∑w−v
j=1 πv+j−1 (0) + (k− (w− v))πw (0)− B̂k, k = w− v + 1, . . . , w,

(42)

and summing up the equation of (24) and (25) in j from v + 1 to w then yields:

λ (πk − π0) = πv−1 (0) +
w−v

∑
j=k−v+1

πv+j (0)+ (k− (w− v))πw (0)− B̂v−1. (43)

From (31), (34), (36) and (37), we finally arrive at the limiting distribution π with the different Gn:
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λ · Gn =


1
a

(
∑n

j=1 Pv+j−1

)
− B̂n, n = 1, . . . , w− v,

1
a

(
∑w−v

j=1 Pv+j

)
+ 1

a (n− w + v) Pw − B̂n, n = w− v + 1, . . . , v,
1
a

(
∑w−v

j=n−v+1 Pv+j

)
+ 1

a (n− w + v) Pw − B̂v−1, n = v + 1, . . . , w.

(44)

For the process Z1
t for Type 2, the corresponding formulas yield the same from (36), (39) and (40)

but with different parameters from (44).

4. The Optimality of the Sharing Economy System

In this section, a class of optimization problem, from which arises a stochastic sharing business
operation, is considered. Let us formalize a pertinent optimization problem. Let a strategy, say Ψ,
specify, ahead of time, a set of acts that are imposed on the queueing system such as the choice of the
batch size of an individual contract (v) on the service platform, the total number of resource suppliers
(w) and so on. Denote by φ(Ψ, C, t) the expected costs within [0, t], due to the strategy Ψ and costs C
and define the expected cumulative cost rate over an infinite horizon:

φ(Ψ, C) := lim
t→∞

1
t

φ(Ψ, C, t). (45)

Let h(n) denote the cost function associated with holding the contract in the (service) platform for
n contractors which remain in the supplier pool. If h (u), a linear function, that is, h (n) = cH · n, then
the expected holding cost for contractors in the supplier pool during the interval [0, t] is

Uh(t) = E
[

h
(∫ t

0
h
(

Z1
u

)
du
)]

= E
[

h (k)
∫ t

u=0
1{k}(Z1

u)du
]

(46a)

(which by Fubini’s Theorem is)

= cH ·
(

s

∑
k=0

∫ t

u=0
kP{Z1

u = k}du

)
(46b)

Since Z1
t is the number of available suppliers on the service platform, Mt =

(
Z1

t − v
)+ gives the

number of suppliers which are reserved by the company (i.e., platform provider) for urgent cases
(i.e., individual contractors are not enough to support all consumers). The expected cost for reserved
suppliers in the interval [0, t] is

Ug(t) = E
[∫ t

0
g(Mu)du

]
= E

[
g
(
(k− v)+

) ∫ t

u=0
1{k}(Z1

u)du
]

(47a)

(which by Fubini’s Theorem is)

=
w

∑
k=v+1

g (k− v)
∫ t

s=0
P{Z1

s = k}ds,

if g (n) is a linear function (i.e., g (n) = cR · n),

= cR ·
(

w

∑
k=v+1

∫ t

u=0
(k− v) P{Z1

u = k}du

)
. (47b)

Since the Markov renewal function D (t) = E
[
∑n≥0 1[0,t] (Tn)

]
represents the total number of

services consumed by customers in the time interval [0, t] where 1B is the indicator function of a set
B. The functional Ud (u) = cD (λ/v) D (t) gives the set cost for posting the available suppliers on
the service platform. The cumulative cost of the entire procedurs is involved in the sharing service



Mathematics 2019, 7, 1005 10 of 14

operations in the interval [0, t] is

φ(Ψ, C, t) = Uh (t) + Ug(t) + Ud (t)
=
(

∑w
k=0
∫ t

u=0 h (k) P{Z1
u = k}du

)
(48)

+
(

∑w
k=v+1

∫ t
u=0 g (k− v) P{Z1

u = k}du
)
+ cD (λ/v) D (t)

Now we turn to convergence theorems for Markov renewal and semi-Markov processes [18],

(i) limt→∞
1
t D(t) = 1

a
(ii) limt→∞

1
t
∫ t

0 Pi{Z1
s = k}ds = π1

k

to arrive at the objective function φ(Ψ, C), which gives the total expected rate of all processes over
an infinite horizon. In light of Equations (i) and (ii) we have

φ(Ψ, C) = lim
t→∞

1
t

φ(Ψ, C, t) =
w

∑
k=0

h (k)π1
k +

w

∑
k=v+1

g (k− v)π1
k + cD

(
λ

v

)
D (t) (49)

With the cost functions being linear functions, we have

φ(Ψ, C) = cH ·E
[

Z1
∞

]
+ cR

[
w

∑
k=v+1

(k− v)π1
k

]
+ cD

(
λ

v

) [
1
a

]
, (50)

Recall that from (40) we have{
π1

n = Gw−n + π1
w, n = 0, 1, . . . , w− 1,

π1
w = [1−∑w

k=1 Gk] / (1 + w) .
(51)

With these attachments and (10) and (13b), Formula (50) for the objective function is complete.

5. Supplier Contract Optimization Case

In a special model of the sharing business operation situation, this section intends to demonstrate
the tractability of our results in Sections 2–4. We allow an exponential distribution of inter-arrival
duration between an (individual) contract posting on the platform. Since the method involves operating
with an embedded Markov process in a single channel open queue with a finite buffer, we get back to
Section 2 for some particular formulas.

5.1. Mv/M/1/w Sharing Business Operations

The pertinent special formulas of Section 4 under these assumptions are as follows:

A(x) = 1− e−
1
a x, (52)

α(θ) =
∫ ∞

x=0

(
1
a

)
e−(θ+

1
a )xdx =

1
1 + aθ

, (53)

α(λ(1− z)) =
1

1 + λa(1− z)
, (54)

Q(z) = ∑
i≥0

Qi · zi =

[
∑v−1

i=0 Qi
(
zv − zi)]

(1− λa) zv − λazv+1 − 1
. (55)
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From Chaudhry and Templeton [15],

Qi =

(
1− 1

z0

)(
1
z0

)i
(56)

where, from (55),
z0 ∈

{
∃z :

{
(1− λa) zv − λazv+1 − 1 = 0

}
∧ {z > 1}

}
.

The remaining parameter such as B̂l from (34), Gk from (38) (or (44)) and Pk from (13) to get πk
from (36) and (37) could be calculated accordingly. After finding πk (k = 0, . . . , w), we can find π1

k ,
k = 0, . . . , w from (51).

5.2. Optimization with the Two Types of Supplier Contracts

For our optimization example, we specify the remaining three primary cost functions are
as follows:

h(n) = cH · n, g (n) = cR · n. (57)

where cH is the holding cost per contract on the service platform, cR is the supplier costs which are
reserved by the company for urgent cases. From (49) and (57), we have

φ(Ψ, C) = cH ·
[
−
Z

1

∞

]
+ cR ·

[
w

∑
k=v+1

(k− v)π1
k

]
+ cD

(
λ

v

) [
1
a

]
, (58)

where

−
Z1

∞ := E
[
Z1

∞
]
= ∑w

k=0 kπ1
k .

Finally, we arrive at the following expression for the objective function:

φ(Ψ (v) , C) = cH ·
[
−
Z

1

∞

]
+ cR ·

[
w

∑
k=v+1

(k− v)π1
k

]
+ cD

(
λ

v

) [
1
a

]
, (59)

Here, we use Formulas (50), (51) and (38) for Type-1 (or (44) for Type-2). Notice that we have the
parameter v vary. We restrict the initial strategy of this model to one, which includes only the control
level v of the batch size of each arrival. In other words, we need to find a v such that

φ(Ψ(v), C) = min{φ(Σ(v), C) : b = 1, 2, . . . , vmax (< w)}. (60)

As an illustration in Figure 2, let us take cH = 3, cR = 1 and cD = 80. The inter-duration between
posting one bulk of contracts on the (online) platform is exponentially distributed with the mean
a = 1.3 and the parameter of consuming services by customers is λ = 2.2. Take the maximum number
of contracts (suppliers) as 35 and the maximal bulk size of the individual contracts must be smaller
than the size of the total capacity w (i.e., vmax ≤ w). Now, we calculate φ(Ψ(v), C) and v0 which gives
a minimum for φ(Ψ(v), C). In other words, the control level v0 stands for the optimal batch size of the
individual supplier contracts which minimizes the total operating cost of the sharing business. Below
is a plot of φ(Ψ(v), C) for N ∈ {1, 2, . . . , w(= 35)}.

Our calculation yields that v0 = 33 for which the minimal cost equals 39.8673. When the total
number of the allowed suppliers is 35, we obtain the threshold value v0 = 33 which gives us the
decision point that is the number of bulk contracts for the individual suppliers to minimize the cost
of the sharing economy system operations. It also indicates that only 2 suppliers are reserved by the
platform provider (i.e., s0 = w − v0). In addition, it is also feasible to visualize the cost objective
function with two variables in the platform (see Figure 3).
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As a part of reasonable performance measures, let us consider a capability factor $, which
represents the estimated loss rate of the potential service (customers) at any moment of time
in equilibrium:

$ =

[
λa
w
− 1
]+

(61)

In this particular case, this value is zero (i.e., $ = 0) and it indicates that there are no customer
losses in the system. This value could not only be a performance measure but be also a constraint to
optimize an objective function of the sharing economy platform.

Figure 2. Optimization Example.

Figure 3. Visualization based on two variables.

6. Conclusions

This paper has propounded a compounding model of operating the sharing economy system by
using the Gv/M/1 queueing model with stochastic congruence. For each of these systems, we have
determined the stationary distributions for the embedded and the continuous time parameter
processes. The queueing process in the sharing economy platform coincides with a conventional
M/Gv/1 queueing system with a finite waiting room. This theoretical approach for a sharing
economy platform could become the basis for resolving social and economic challenges by better
understanding before adapting complex intelligent systems. Analytically tractable results are obtained
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by using a stochastic congruence, semi-regenerative analysis and a semi-Markov process. This analytic
approach supports the theoretical background to operating the sharing economy service platform.
The comparison and the gap analysis between the theoretical solutions and the results based on the
actual data from real sharing economy firms might be considered as a future research topic in this area
of study. Additionally, the theoretical mathematical modeling for various social challenges could be
yet another research topic in the near future.
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