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Abstract: We establish sufficient criteria for the existence of solutions for a nonlinear generalized
Langevin-type nonlocal fractional-order integral multivalued problem. The convex and non-convex
cases for the multivalued map involved in the given problem are considered. Our results rely on
Leray-Schauder nonlinear alternative for multivalued maps and Covitz and Nadler’s fixed point
theorem. Illustrative examples for the main results are included.
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1. Introduction

Fractional calculus is the extension of classical calculus which deals with differential and integral
operators of fractional order. It has evolved into a significant and popular branch of mathematical
analysis owing to its extensive applications in the mathematical modeling of applied and technical
problems. The literature on fractional calculus is now much enriched and covers a wide range of
interesting results, for instance [1-6]. For a comprehensive treatment of Hadamard-type fractional
differential equations and inclusions, we refer the reader to the text [7].

The Langevin equation is found to be an effective tool to describe stochastic problems in
fluctuating situations. A modified type of this equation is used in various functional approaches
for fractal media. A variety of boundary value problems involving the Langevin equation have been
investigated by several authors. In [8], existence and uniqueness results for a nonlinear Langevin
equation involving two fractional orders supplemented with three-point boundary conditions were
obtained. An impulsive boundary value problem for a nonlinear Langevin equation involving
two different fractional derivatives was investigated in [9]. Some existing results for Langevin fractional
differential inclusions with two indices were derived in [10]. In [11], the authors proved the existence of
and uniqueness results for an anti-periodic boundary value problem of a system of Langevin fractional
differential equations. In [12], the authors investigated a nonlinear fractional Langevin equation with
anti-periodic boundary conditions by applying coupled fixed point theorems. In a recent work [13],
the authors obtained some existence results for a fractional Langevin equation with nonlinearity
depending on Riemann-Liouville fractional integral, and complemented with nonlocal multi-point
and multi-strip boundary conditions.

In the present paper, we study the existence of solutions for a nonlinear generalized Langevin
type nonlocal fractional-order integral multivalued problem given by
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{ D%, (PDP + M)x(t) € F(t,x(t)), t€]:=[a,T], AR, "

x(a) =0, x(n) =0, x(T) = yF’IZer(é), a<n<gi<Tueck,

where D%, ¢ Df , denote the Caputo-type generalized fractional differential operators of order
1 < a<20<pB<1p >0, respectively, F : [4,T] x R — P(R) is a multi-valued map (P(R)
is the family of all nonempty subsets of R), PI, is the generalized fractional integral operator of
order v > 0 and p > 0. Here we emphasize that the single-valued analogue of the problem (1) was
discussed in [14].

The rest of the paper is arranged as follows. The background material related to our work is
outlined in Section 3. The existence results for the problem (1) are presented in Section 3. The first
result for the problem (1), associated with the convex valued mutivalued map, is derived with the
aid of Leray—Schauder nonlinear alternative for multivalued maps, while the result for non-convex
valued map for the problem (1) is proved by applying a fixed point theorem due to Covitz and Nadler.
Section 4 contains the illustrative examples for the main results. We summarize the work established
in this paper, and its implications, in the last section.

2. Preliminaries

Define by X! (a,b) the space of all complex-valued Lebesgue measurable functions ¢ on (a,b)
equipped with the norm:

b dx\1/p
ol = ([ o) <o, cer1<p <o

Let AC#{a, b] denote the class of all absolutely continuous functions g possessing 6"~ !-derivative
(6"~1¢ € AC([a,b],R)), endowed with the norm ||g||AC;.' = ZZ;& 6% ¢]lc.

Definition 1. The left-sided and right-sided generalized fractional integrals for ¢ € X! (a,b) of order p > 0
and p > 0, denoted by P If L gand Pl 57 g respectively, are defined by [15]

1- ot 0—1

PIf g)(t) = lp"(ﬁ) /a G i Sp)l,ﬁg(s)ds, —o<a<t<b< oo, )
1-a /b 0—1

(Plf_g)(t): Flz(ﬁ)/t (Spitp)lfﬁg(s)ds' —o<a<t<b< oo, )

Definition 2. Let § > 0, n = [B] + 1 and p > 0. We define the generalized fractional derivatives, associated
with the generalized fractional integrals (2) and (3), for 0 < a < t < b < co, as follows [16]:

n B—n+1 n ot 501
(pr+g)(t) = (tlip%> (pI;:ﬂg)(t) = 7&71 —p) (tlfp%) /a (tp_:p)ﬁmg(s)ds, 4)
n B—n+1 n b -1
(PDf_g)(t) = (ftl—p%) (PIZ_ﬁg)(t)er(n_ﬁ)(tl—P;t) /t (Sp_s;)ﬁ_wg(s)ds, 5)

provided the integrals in the above expressions exist.
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Definition 3. Let ¢ € AC}[a,b] and B > 0,n = [B] + 1. Then the Caputo-type generalized fractional
derivatives ’CJD;S L gand? Df_ g are respectively defined via (4) and (5) by [17]

n=-1 sk 0 _ P\ k d
els) =0l [0 - L 57 () o, a=w ©
n—1_1\ksk b P — PNk d
£D}_g(x) =D} [g(f)—kZ DTl pt ) ), 6=xte )
=0 :

Remark 1. The left and right generalized Caputo derivatives of order B for ¢ € AC}|a,b], are respectively

given by [17] t ;
1 P _ gP\n—B—1(n d
Dl = g [, () RO, @
B B 1 b s —to\n—a=1(—1)"(5"g)(s)ds
‘ngfg(t) - F(n _ ‘B) /1‘ ( 0 ) Sl_p . (9)

Lemma 1. Let g € AC}[a,b] or CJl[a,b]. Then, for B € R, the following results hold [17]:

p15+’ng+g(x) =g(x) - ZZ; ((5"52 (a) (Xp ; ap)k,

n—1 (__1\k( sk 4 .
F’If_ﬁpf_g(x) =g(x) — k;) (=1) gj g)(a) (bP : P)k.

In particular, for 0 < B < 1, we have

PILEDL8(x) = g(x) = g(a), 1 EDYg(x) = g(x) — g(b).
We need the following known lemma [14] in the sequel.

Lemma 2. Let h € C([a, T],R) and x € AC3(]). Then the unique solution of linear problem:

{ D%, (PDP 4+ M)x(t) = h(t), te]:=[a,T], W

x(a) =0, x() =0, x(T) =PI x(%), a<y<{<T,
is given by:
(1 — )P (P — 1)
PPHIT(B+2)Q

(tF — ap)ﬁ (TP — ap)ﬁ(Tp —tP)
Q(ne —ar)P ( pPHIT(B+2)

(& —aP)PHT[(B+1) (8 — 1) — Y(t — aP)]\ [ atp B
B OB HIT(B+ 4 +2)(B+1) ){plai h(n) _Ap1a+x(’7)}/ (11)

x(t) = PISPR(E) — APTE x(t) +

{PLEPn(T) = 22 1f x(T)

— L) + AP 1 (@) | -

where it is assumed that

(TP a®)B(TP ) (P — a®)PH(B 1)(E — ) — (g — )]
0= ey FEHIT(B 9 1 2)(B 1 1) J#o.

3. Main Results

We begin this section with the definition of a solution for the multi-valued problem (1).
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Definition 4. A function x € C(J,R) is called a solution of the problem (1) if we can find a function
v € LY(J,R) with v(t) € F(t,x) a.e. on ] such that x(a) = 0,x(17) = 0,x(T) = uPI), x(¢) and

t —af )P (4 — 1)

oPHIT(B+2)0
(t —af)P (TP —aP)P(TP — 1)

QP —ar)P ( ePHIT(B+2)

&0 — aP)PEY[(B+1)(E0 — tP) — y(t0 — af o

- P)ﬁ+v+[£1[i([3+)(7+2)([)3+,1y)( ”>{P1ﬂ++ﬁv(’7) = ML) (13)

x(t) = PITPo(t) - A1 x(t) + {PiPo(r) — A1 x(T)

—H P o) + e I x(e) | -

For the sake of computational convenience, we set

A (TP —at)rth 1+ & [+ [l (EF —af)*tPHgy
T Tt g b P 2)0]l T I (a + gty + DI+ 2)I0)
(P —af)*0y
PP (e + B+ 1) (14
N |A|<Tﬂfap>5[1 L] M@ - a)P1g,
? PPT(p+1) U pPT(p+2)I0]) " PB4+ DI(B+2)0)]
|AIC2
TP E+ i) (49
where
Gui= ma [0 = )P — )], (16)
_ (TP —aP)B(TP —10) (@ — a )P+ 1)(EF — 1) — 7 (# —aP)]
G = e (=) g P e T T |

We define the set of selections of F by Sg, := {y € L1(J,R) : y(t) € F(t,x(t)) on J} for each
x € C(J,R).

3.1. The Upper Semicontinuous Case

In the following result, we assume that the multivalued map F is convex-valued and apply
Leray-Schauder nonlinear alternative for multivalued maps [18] to prove the existence of solutions for
the problem at hand.

Theorem 1. Assume that:

(A1) F:] xR = Pepc(R) is L1-Carathéodory, where Pep(R) = {Y € P(R) : Y is compact and convex};

(Az) there exist a function P € C(J,R™") and a continuous nondecreasing function Q : [0, 00) — (0, 00) such
that |[F(t,x)||p :=sup{|y| 1y € F(t,x)} < P(t)Q(|x|) foreach (t,x) € ] xR;

(As) there exists a constant M > 0 such that

(1-A)M

U S, Ap<,
A|PQ(M)

where A1 and A; are respectively given by (14) and (15).

Then the problem (1) has at least one solution on J.
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Proof. Let us first convert the problem (1) into a fixed point problem by introducing a multivalued

map: N : C(J,R) — P(C(J,R)) as

heC(,R):
O sy
R S I o A
)
MG PG DG ) A=) o1 Py a0,
forv € Sp,.

It is clear that fixed points of N are solutions of problem (1). So we need to verify that the
operator N satisfies all the conditions of Leray-Schauder nonlinear alternative [18]. This will be done
in several steps.

Step 1. N(x) is convex for each x € C(],R).

Indeed, if 1, hy belongs to N(x), then there exist v1,v2 € Sp , such that, for each t € |, we have

(tP - aP)/g(UP — P
PFHIT (B +2)02
(0 —af)P /(TP —af)B(TP — tP)
Qne —ar)P ( PP HIT (B +2)
(&0 — aP)BEY[(B+ 1) (&0 — t0) — 4 (t0 — aP)]\ [, a -
B BT (B+ 9 +2)(B+1) ){plaiﬁvi(ﬂ) - /\plf+X(77)},l =1,2.

() = PhPoi(t) = APIE x(t) + Lot o, (r) - Ae1f,x(T)

L o)+ AP I (D) | -

Lett € Jand 6 € (0,1). Then

[0h1 + (1 — 0)ha](t)
= 21 Poi(s) + (1 - 0)0a(9)](1) — A1, x(t)

0~ @00 —2) (o P foon () + (1~ 8)oa(s)|(T) — AL, #(T)

PPHIT(B+2)Q
_ )P _ aP\B(TP —
4 ) ) - (P
(& — VPB4 1)@ — )~ 3 )]\ (e
et oy ) e + (a1}

Since F has convex values (S x is convex), therefore, 6h1 + (1 — 0)hy € N(x).
Step 2. N(x) maps bounded sets (balls) into bounded sets in C(J,R).

Let B, = {x € C(J,R) : ||x|| < r} be a bounded ball in C(J,R), where r is a positive number.
Then, for each h € N(x), x € B,, there exists v € Sg, such that

(1 — a)P (5 — )
PPHIT(p +2)0
(t0 —aP)B /(TP —aP)P(TP —tP)
Q(ﬂf’—a”)5< pPHIT(B +2)
& — aP)PHY[(B+1)(EP —tP) — y(t°P — af N
7}[( p)ﬁ3+'y-&-[§1ﬁ"(ﬁ_2€y+2)(l)3+’1y)( )]>{plaiﬁv(’7) 7/\plf+x(77)}.

Wty = PIPo(t) —APIP x(1) + {PPo(r) = AP I x(T)

—# I P o) + pA I (e} -
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In view of (Hy), for each t € |, we find that

|(t0 — aP)P (P — )]

W] < PP + 1A eI, [x()] + B2 {PI;"Iﬁlv(T)I+APIf+|x(T)|
a+p p (t0 —af)P (TP —a)P(TP — 1)
PP (@) + rAl I I @)} + )Q(”P_gp)/5< oFHIT(B+2)
0 _ 0\B+Y 0 0) — 0 —qgf o
e et
(TP — aP)x+P 4!
< HPHQ(IIXH)(pﬁﬁr(wrﬁﬁ) [H pﬁ+1r(ﬁ+2)|a|}
| (& — )Py L P —af)G )
P 2T (a+ B+ + DI(B+2)[Q]  p**PT(a+ B +1)|0)
IA[(TF — af)P 41
+”"H< oPT(B+1) [ pﬁ+1f(ﬁ+2)|ﬂ\]

[ul[AI(EF — af)PH7Ey A2 )
PPPEHIL(B+ 9+ DI(B+2)[Qf  pPT(B+1)|Q
= M PIQ(lIxI)) + Azllx],

which leads to ||k < A1||P]|Q(r) + Agr.
Step 3. N(x) maps bounded sets into equicontinuous sets of C(J, R).

Let x be any element in B, and /1 € N(x). Then there exists a function v € Sg , such that, for each
t € | we have

(t0 —af)B(yP —t°)
pﬁ+1r(lB+2)Q
(0 —aP)P (TP —af)B(TP — t0)
QP —af)P ( pFHIT (B +2)
PG —af)PT[(B+1)(3P — 1) — (1 — aP)]\ [pa+p p
- PP+ +2)(+ 1) )PPl = A1 |

W) = PISPo(t) —APTP x(t) +

[P Po(r) = M 1f x(T)

—p I P o) + pA I (e } -
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Lett, » €], 1 < 1. Then

|h(t2) — h(t1)]

< B L oo [ - ) o]

(s —aP)B(yP — 1) (¢ —aP)P (P — )7 [, asp at B
+ ;/5+1r(ﬁ+2)02 - ;ﬁ+1r(/3+2)01 [P o) - P o)

I (t — at)f e B)  p(E —a?)PET(B+ 1) (G — 1) — oy (# —e))

Q(pf —ar)P L pPHT(B 1 2) PPHTHT(B+ 7 +2)(B+1)

(f —at)P (TP —aP)P(TP — ) pu(er —a?)PH7((B+ 1)(& — ) —7(#] = aP)]
R T PPTET(B+y +2)(B+1) /)
<? L Po(y)|

Ao f [ /“ st — )P = (] — )P M a(s)ds + S ) ()]

£(p) Lho 1 W T

(8 —at)B(yP — ) (tp—ap)ﬁ(qf’—tp) 8 8
+[ TG0 T (20 [{= e () + il x(2) )

Aty —af)P (TP —af)P(TP —th)  pu(GP —aP)PTY[(B+1)(EF — 15) — 7(t° —aP)]
*[ Q@ — k)P [ BT (B+2) PP YT (B+ v +2)(B+1) ]
LA —ar)p L —a)P(TP ) u(E —aP)P[(B+ 1)@ — ) (] —aP)]H

QP —ar)B L pPHIT(B+2) pPTTHIT(B+ 9 +2)(B+1)
xplf+x( )‘

1P[1Q(r) (ctp) _ gplect) @

< it prn 4 =)
(85— a?)P(yf — ) (1 —af)P(y — 1)
‘ PPHT(B+2)0  pPHIT(B+2)Q ‘
(TP — aP)*+P (&0 — aP ) +P+Y
AP0 (s s 5oty M i (ap 4 1))
(th—af)P (TP —aP)B(TP — 1) (@ —af)PH7[(B+ 1)(E° — ) — y(th — aP)]
’Q nPfaP)ﬁ[ oPIT(B+2) PP+ +2)(B+1) }

_ (i —at)f [<Tpfa*’>ﬁ<TPff§> p(E —a?)PHI(B+1)(E — 1) — (] LS
B

QP — aP) oPHIT(p+2) PP T (B + 9 +2)(B+1)

(1P — af)**F r pB _ 0B P _o\B
*IPIQ() ey D) +pﬁr(ﬁ+1){|t 1P|+ 2(8 - )P}

(5 —af)B(ye —5) () —af)P(yP — 1)) af)P (&0 — af )Pty
H PPHT(B+2)Q  pPHIT(B+2)Q ”‘ I ( ﬂr(ﬁ+1) lu ‘pﬁ+7r(ﬁ+7+1
At —aP)P (TP —af)P(TP — ) (G —aP)PHY[(B+1)(8F — 1) — v (t* —af)]
Q@ —ar)F [ pPHIT(B+2) PPN+ +2)(B+1) }
A —af)f (TP —aP)P(TP —#]) (G —af)PTV[(B+1)(F — ) — v (H —a°)]
QP —af)P [ oPHIT(p+2) PP T (B + 9 +2)(B+1) ”
X Uis _ap)/S — Owhent; — t,, independently of x € B
pPT(p+1) L ey "

7 of 13

Combining the outcome of Steps 1-3 with Arzeld-Ascoli theorem leads to the conclusion that

N:C(J,R) — P(C(],R)) is completely continuous.

Next, we show that N has a closed graph. Then it will follow by Proposition 1.2 in [19] that the

operator N is u.s.c.
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Step 4. N has a closed graph.

Suppose that there exists x, — x., h, € N(x,) and h, — h,.. Then we have to establish that
h. € N(x4). Since h, € N(x,), there exists v, € Sy, . In consequence, for each t € |, we get

. (10 —a)(y — 1)
() = Lo = VI 0) e (P (1) = AP (T

(1P — gp)ﬁ (TP — ap)/%(Tp —tP)
QnP —aP)ﬁ< PPHIT(B +2)

(& —al)PH[(B+1) (0 —19) —y (0 — aP)]\ [p atp p
B PPHTHIT (B +2)(B+1) JE o) = X lesxal)

1P 0u(@) + i (@)} -

Next we show that there exists v« € Sr x, such that, for eacht € ],

(10— a)P(f — )
ePIT(B+2)Q
(tF — ap)ﬁ (TP — uﬂ)ﬁ(Tp —tP)
Q(nf —arf)P ( PP (B +2)
p(Er —al)PTT[(B+1)(3F — t°) — y(t* —aP)] at+p B
B PPIFIT(B 4y +2)(B+ 1) EHERORECHERO)?

he(t) =PI Pou(t) = AR () +

a

{Plg‘jﬁv*(T) —APIP x.(T)

I P 0. (@) + AP I (0} -

Consider the continuous linear operator @ : L!(J,R) — C(J,R) given by

v 00 () = PISPo(t) —APTE x(t) + (tzﬁjf?(;(fz;g) {”Iﬂﬁv(T) — AP, x(T)

(P — ap)l% (TP — ap)ﬁ(Tp —tP)
Qe —aP)ﬁ< pFHIT (B +2)

w(& —aP)PEY[(B+1)(E0 — t°) — (1P — af)] a+p B
- PPN (B +2)(B+ 1) RGO A0

—H I P o) + A I (@)} -

Notice that ||, (t) — h«(t)|| — 0 as n — 0. So we deduce by a closed graph result obtained in [20]
that @ o Sg , is a closed graph operator. Furthermore, 11, € ®(Sg y, ). Since x,, — x., therefore we have

0 —aP)B(ne — tP)
PPHIT(B+2)0
(t0 —aP)B /(TP —aP)P(TP — t°)
QP — af)p ( pPHIT(B+2)
(& —aP)PHT[(B+1) (8P — 1) — y(t — aP)]\ fp
- PPHIIT(B+ 7y +2)(B+1) J{iPonon - ¥,

() = PLTPou() - At () + {P1tPou(T) = A1 (1)

I P 0 @)+ i I (@)} -

for some vy € Sr .,
Step 5. There exists an open set V C C(],R) with x ¢ ON(x) for any 6 € (0,1) and all x € V.

Take 6 € (0,1), x € ON(x) and t € J. Then we show that there exists v € L(J,R) with v € Sg ,
such that

(0 — aP)P (P — 19)

H = I Pou(t) —eaPIP x(t PPy (T) — APIP x(T
K(0) = oL Po(t) AL x(0) + 0 e s P o (1) = I x(D
P —aP)B (TP —aP)B(TP —tP)
PR o Bt o, (P —a
pPE @ TR - 0 s (M s

(G —a)PT[(B+1)(E° —19) — 7 (t° —aP)]\ patp p
B Pﬁ+7+1r(ﬁ+7+2)(ﬁ+1) ){plaj: v(ﬂ)fAPIaer(W)}'
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Using the computations done in Step 2, for each t € |, we get
()] < A lIPIQUIxID + Azllx]l,

which yields
(1= Ag) x|l

AIPIQCx[)
By (A3), there exists M such that || x|| # M. Define a set

<1

V={xeC(,R): x| <M}

Observe that the operator N : V — P(C(J, R)) is a compact multivalued map, u.s.c. with convex
closed values. With the given choice of V), it is not possible to find x € 9V satisfying x € N(x)
for some 6 € (0,1). Consequently, by the nonlinear alternative of Leray-Schauder type [18], the
operator N has a fixed point x € V, which corresponds to a solution of the problem (1). This finishes
the proof. O

3.2. The Lipschitz Case

Let (X,d) denote a metric space induced from the normed space (X;|| - ||). Let Hy : P(X) x
P(X) — RU {0} be defined by Hy(A1,Az) = max{sup, c, d(a1,Az) sup, c, d(A1,2)},
where d(Ay,a2) = infy ca, d(ay;a2) and d(ay, A2) = infy,c 4, d(a1;a2). Then (Py i (X), Hy) is a metric
space (see [21]), where Py, (X)) = {Y € P(X) : YV is bounded and closed},

The following result deals with the non-convex valued case of the problem (1) and is based on
Covitz and Nadler’s fixed point theorem [22]: “If N : X — P.(X) is a contraction, then FixN # @,
where P (X) = {)Y € P(X): YVisclosed}”.

Theorem 2. Assume that

(Ag) F: J xR — Pep(R) is such that F(-,x) : ] — Pep(R) is measurable for each x € R, where
Pep(R) = {Y € P(R) : YV is compact};
(As) Hy(F(t,x),F(t,X)) < @(t)|x — x| for almost all t € [ and x,X € R with ® € C(J,R") and
d(0,F(t,0)) < @(t) for almost all t € ].
Then the problem (1) has at least one solution on ] if
@A+ A2 <1, (18)
where Ay and Ay are respectively given by (14) and (15).

Proof. Let us verify that the operator N : C(J,R) — P(C(J,R)), defined in the proof of the last
theorem, satisfies the hypothesis of Covitz and Nadler fixed point theorem [22]. We establish it in
two steps.

Step L. N(x) is nonempty and closed for every v € S .

Since the set-valued map F(-, x(+)) is measurable, it admits a measurable selection v : | — R by
the measurable selection theorem ([23], Theorem II1.6). By (As), we have

[o(t)] < @(t)(1+ [x(8)]),

thatis, v € L'(J,R). So F is integrably bounded. Therefore, S ; # @.
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Now we establish that N(x) is closed for each x € C(J,R). Let {u,},>0 € N(x) be such that
uy, — wasn — ooin C(J,R). Then u € C(J,R) and we can find v, € S, such that, for each t € ],

0 —aP)B(yP — tP)
PPHIT(B+2)Q
(tP —aP)B /(TP —al)P(TP —t°)
QP —a)p < pPHIT(B +2)
(& —aP)PHT[(B+1) (5P — ) — (0 —aP)]\ fp
B PPEHIT(B+ 9 +2)(B+1) RGO SHEION

unl) =PI o))~ AT (1) 4 {PLPo(m) = 210, xu(T)

L 00 (@) + A I ()} -

As F has compact values, we can pass onto a subsequence (if necessary) to obtain that v, converges
tovin L1(J,R).So v € S . Then, for each t € |, we get

(1 — )PP — t9)
PP (6 +2)0

a+p p (t —af)P (TP —a?)P(TP — 1)
—H I P o) + a1 (@) - Q@pP —ar)P ( PP (p+2)
(@ — af)PHT[(B+1)(E° — 19) — (1 — a)]\ (o atp B
- PPHHIT(B+ v +2)(B+1) HeutPon — a1},

w(t) = o(t) = PIPo() = AI x(t) + {PPo(r) = 01 x(T)

which implies that u € N(x).
Step II. We establish that there exists 0 < § < 1 (§ = A ||@|| + A») satisfying
Hy(N(x),N(%)) < 8||x — x|| foreach x,% € C(J,R).

Let us take x,¥ € C(J,R) and h; € N(x). Then there exists v1(t) € F(t,x(¢)) such that,
foreacht € |,

(t0 — aP)B(yP — tP)
pPHIT(p+2)0
(0 — )P ((Tp—ap)ﬁ(TP—fp)
Q (P —aP)P pPHIT (B +2)
w(& —af)PEY[(B+1)(E0 — t°) — y(t° — af)] ppath APTP
_ pﬁ+7+1r(‘3+7+2)(‘3+1) >{ a+ Z}1(77)_ a+x('7)}.

m() =PI Poi(t) - AT x(h) + {PtPou(T) - A If x(T)

PP 01 (@) + AP T (E

By (As), we have that Hy(F(t,x),F(t,X)) < @(t)|x(t) — X(t)|. So, there exists w(t) € F(t, x(t))
satisfying |v1 (t) — w| < @(t)|x(t) — x(t)|, t €.
Define W : ] — P(R) by

W(t) ={w e R: v (t) —w| < @(t)]x(t) = x(t)[}.

As the multivalued operator W(t) N F(t,%(t)) is measurable by Proposition II1.4 [23], we can
find a function v, (#) which is a measurable selection for WW. So v,(t) € F(t,%(t)) and for each t € ],
we have |v1(t) — v(t)| < @(t)|x(t) — X(t)|. For each t € ], we define

(1 — )PP — 1)

() = P Pea(t) - WILR0) + s {PLPoa(r) = 2017 (T)
at Bt B+ (t —aP)f (TP —aP)P(TP — 1)
WP Moo+ IR | - s (s )

(e —al)PH[(B+1) (8P —1#) — (1 —aP)]\ [ a 2
B PPTHIT(B 4y +2)(B+1) REAIORREHED)S
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As a result, we get
|h1(t) — ha(t)]
PI P oa(s) — 01 (3)](1) — APIE, [x(t) — %(1)]

—af)P - o ~
O 2 {012 os) — (D) — A [x(T) — K7

P s (s) — o1 (9)](0) + AP (@) — 20} - Lo (I AP )

QP —ar)P N pPHIT(B+2)
_ B+ _ _ _
N =) (o1t Pfonts) — (o)1) — 401 sta) — 500}
o (TP —af)*+P 51
< el g ' pings )
N K@ — a7y
P 2B (a4 B+ v+ )T (B+2) |
(1 —af)*a S (A(TP —a)P O
o pro@) I a1 e o)
HIALE — )P+, 16
BT+ DI+ 2)[0] * pPT(p+ 1[0
= (oA + Ag)llx 2],
Hence

11 = hal < (@[ A1+ A2)[[x — X]].
Analogously, we can interchange the roles of x and X to get
Hy(N(x), N(x)) < ([[@]| A1+ Ag)[|x — X,

which implies that N is a contraction by the condition (18). Hence, by the conclusion of Covitz
and Nadler fixed point theorem [22], N has a fixed point x, which corresponds to a solution of (1).
This finishes the proof. O

4. Examples

We illustrate our main results by presenting a numerical example.

Example 1. Consider the following problem

{ 143D5/4(143D1/4+1/5)x(t) € F(tx(t), te]:=[1,2], )

x(1) =0, x(3/2)=0, x(2) =2/73P/4x(7/4).
Herep=1/3,a =5/4,8=1/4,A=1/5,a=1,T=2n=3/2, u=2/7,v=3/4,¢=7/4
Using the given data, we find that {1 ~ 0.082260, {, ~ 0.232036, |Q}| ~ 0.293634, A ~ 1.336009 and

A = 0.673563, where (1, (2, A1 and A are given by (16), (17), (14) and (15) respectively.
(i) Let us consider the function

1 lx(£)] /1 [x(8)] et . 1
F(t, x(t)) = [m( 3 (lx(t>|+1+2)+1),9t+8(smx(t)+%)}. (20)
We note that |F(t,x(t))] < P(t)Q(||x||), where P(t) = ﬁ, QUxl) = x|l + 1. So the

assumption (Ay) holds. Moreover, there exists M > 1.047447394 satisfying (A3). Thus the hypothesis
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of Theorem 1 holds true and hence there exists at least one solution for the problem (19) with F(t, x)
given by (20) on [1,2].
(ii) To illustrate Theorem 2 we consider the function

N R S “Uy) 4 L
Fx) = | 557 oap (x+tan (x) + 15) . (21)
Clearly H;(F(t, x),F(t,x)) < @(t)|x — x|, where @(t) = ﬁ. Also d(0,F(t,0)) < @(t) for

almostall t € [0,1] and Aq]|@| + Az ~ 0.7804433180 < 1. As the hypothesis of Theorem 2 is satisfied,
therefore we conclude that the multivalued problem (19) with F(t, x) given by (21) has at least one
solution on [1,2].

5. Conclusions

We have introduced a new class of multivalued (inclusions) boundary value problems on
an arbitrary domain containing Caputo-type generalized fractional differential operators of different
orders and a generalized integral operator. We have considered convex as well as non-convex valued
cases for the multi-valued map involved in the given problem. Leray-Schauder nonlinear alternative for
multivalued maps plays a central role in proving the existence of solutions for convex valued case of the
given problem, while the existence result for the non-convex valued case is based on Covitz and Nadler
fixed point theorem. The work presented in this paper is not only new in the given configuration, but will
also lead to some new results as special cases. For example, fixing ¢ = 0 in the obtained results, we obtain
the ones for nonlocal three-point boundary conditions: x(a) = 0,x(y) = 0,x(T) =0,0 < y <T.
For p = 1, our results specialize to the ones for Liouville-Caputo type fractional differential inclusions
complemented with nonlocal generalized integral boundary conditions on an arbitrary domain.
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