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Abstract: This work is on the nature and properties of graphs which arise in the study of centered
polygonal lacunary functions. Such graphs carry both graph-theoretic properties and properties
related to the so-called p-sequences found in the study of centered polygonal lacunary functions.
p-sequences are special bounded, cyclic sequences that occur at the natural boundary of centered
polygonal lacunary functions at integer fractions of the primary symmetry angle. Here, these graphs
are studied for their inherent properties. A ground-up set of planar graph construction schemes can
be used to build the numerical values in p-sequences. Further, an associated three-dimensional graph
is developed to provide a complementary viewpoint of the p-sequences. Polynomials can be assigned
to these graphs, which characterize several important features. A natural reduction of the graphs
original to the study of centered polygonal lacunary functions are called antipodal condensed graphs.
This type of graph provides much additional insight into p-sequences, especially in regard to the
special role of primes. The new concept of sprays is introduced, which enables a clear view of the
scaling properties of the underling centered polygonal lacunary systems that the graphs represent.
Two complementary scaling schemes are discussed.

Keywords: lacunary function; gap function; centered polygonal numbers; triangular numbers;
renormalization; scaling; fractal character; primes

1. Introduction

Complex analytic functions have been a rich, important, and insightful chapter in mathematics
and their use in physics and physical chemistry is matched only by a few other areas. While analyticity
is of critical importance, it is often the points where analyticity breaks down that are most interesting.
The singularities of meromorphic functions often carry much of the functional information and thereby
provide physical insight. Analytic functions can be represented using a power series (Taylor or Laurent)
whose radius of convergence is restricted by singularities [1,2]. Often, the singularities are isolated and
are either poles or essential singularities. Certain times, however, the singularities form a curve in the
complex plane called a natural boundary through which analytic continuation is not possible.

A particularly important class of functions that exhibit a natural boundary are functions whose
power series are characterized by “gaps” (or “lacunae”) in progression of terms [1,3]. One example is
f (z) = ∑∞

n=1 zn3
= z + z8 + z27 + z64 + · · · . According to the gap theorem of Hadamard, a function

will exhibit a natural boundary if the gaps in the powers increase such that the gap tends to infinity
as n → ∞ [1]. In the example function above, the natural boundary is the entire unit circle. f (z) is
analytic on the open unit disk.
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Because the natural boundary blocks analytic continuation and because of other complications,
functions with natural boundaries have not seen extensive use in physics and chemistry over the years,
standing in stark contrast to meromorphic functions. Nonetheless, lacunary functions have found
some recent use in tackling physical problems. Creagh and White showed that natural boundaries
can be important in the short-wavelength approximation when calculating evanescent waves outside
of elliptic dielectrics [4]. Meanwhile, in the area of integrable/nonintegrable systems, Greene and
Percival encountered natural boundaries in their study of Hamiltonian maps [5]. Shado and Ikeda
demonstrated that natural boundaries impact quantum tunneling in some systems by influencing
instanton orbiting [6].

In the area of statistical mechanics, Guttmann et al. showed that, if an Ising-like system is not
solvable, then any solution must be expressible in terms of functions having natural boundaries [7,8].
Indeed, Nickel explicitly showed the presence of a natural boundary in the calculation of the magnetic
susceptibility in the 2D Ising model [9]. In quantum mechanics, Yamada and Ikeda investigated
wavefunctions associated with Anderson-localized states in the Harper model [10]. In kinetic theory,
lacunary functions exhibit features upon approaching the natural boundary that are related to Weiner
(stochastic) processes. As such, lacunary functions have been discussed in the context of Brownian
motion [1,11].

Notably, lacunary functions are consistent with the central limit theorem [2,12–14] and so,
in addition to physics, they have found utility in probability theory. Certain lacunary trigonometric
systems behave as independent random variables. Lacunary trigonometric systems are also of interest
in the study of harmonic analysis on compact groups [15,16]. Finally, Lovejoy studied the relationship
to mock theta functions [17].

Recent work of the current authors has focused on a special family of lacunary functions that
are based on centered polygonal numbers [18]. The modulus of these lacunary functions uniquely
exhibit rotational symmetry under a phase shift in the complex plane. The is exposed in Figure 1 where
a contour plot of the modulus of the centered polygonal lacunary function for two examples is shown.
For clarity, the plots are limited to values between 0 and 1. This is related to the fact that lacunary
functions also exhibit well organized behavior at the natural boundary [18]. As one approaches
the natural boundary along integer fractions of the symmetry angle (see Figure 1), the limit values,
although not convergent, are bounded. The lacunary sequence associated with the lacunary function
at the natural boundary takes on a well-defined cycle of complex numbers [18]. Because of this, the set
of integer fractions of the symmetry angle gives a set of bounded, cyclic sequences. These sequences
are referred to in this work as p-sequences. There is an intimate relationship between the p-sequences
and the triangular numbers. This current work exploits that relationship in developing a graph-based
construction procedure to build the p-sequences from the ground up. That procedure is discussed
below and several concrete examples are given. In addition, the construction procedure allows for
several theorems and conjectures to be expressed.

All figures, graphs, and numerical results were generated with home-written Mathematica code.
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Figure 1. Two examples of centered polygonal lacunary functions, f18(z) plotted for | f18(z)| ≤ 1,
where g(n) = C(k)(n) (see Equation (3)). The left panel shows the case for k = 2 while the right shows
the case of k = 5. The superimposed line segments represent the symmetry angles (p = 1 through
p = 25). The terminus of the line segments at the natural boundary sits at a point where | f18(z)| does
not converge, but the limit value is a bounded 4p-cycle.

2. Notation and Background Results

Definitions, notation, and some theorems from Reference [18] are briefly collected here for
convenience of the reader.

2.1. Lacunary Sequences and Lacunary Functions

For this work, lacunary sequences of functions are considered. The Nth member of the sequence
is given by

fN(z) =
N

∑
n=1

zg(n), (1)

where g(n) is a function of n satisfying the conditions of Hadamard’s gap theorem [1]. (Note that the
sum starts at n = 1.) Following Reference [18], the notation

L(g; z) ≡
{

fN(z) =
N

∑
n=1

zg(n)

}
, (2)

is used to represent the particular lacunary sequence described by g(n), in complex variable z.
For example, L(n3; z) ≡

{
fN(z) = ∑N

n=1 zn3
}

. The lacunary function associated with the sequence

L(n3; z) is f (z) = limN→∞ fN(z).
Lacunary sequences of numbers are obtained by identifying a particular value of z. For |z| < 1,

the sequences are convergent and not very interesting because fN(z) is analytic inside the unit disk.
Interesting sequences occur when |z| = 1. In general, these sequences are not convergent, but bounded
cyclic sequences occur along with divergent sequences. The p-sequences, which arise when g(n) is
a centered polygonal number, are one such family of bounded cyclic sequences.

2.2. Centered Polygonal and Triangular Numbers

It has been shown that the whole family of centered polygonal lacunary sequences can be consider
at once because of the relationship between the centered polygonal numbers (cpns) and the triangular
numbers [18].

Centered polygonal numbers are an increasing sequence of numbers arising from considering
points on a polygonal lattice [19]. These numbers were discussed in the context of two-dimensional
crystal structures by Teo and Sloane [20]. The formula for the centered k-gonal numbers is
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C(k) =

{
kn2 − kn + 2

2

}
, n ≥ 1. (3)

The central focus of this work is L
(

C(k); z
)

. The notation C(k)(m) is used to denote the mth
member of the set.

It turns out that nearly all of the structural features discussed in this work are independent of
the choice of k [18]. This is precisely because the cpns are related to the triangular numbers [21],
T =

{
n(n+1)

2

}
, in a simple way. The notation T(m) is used to denote the mth member of the set.

For convenience, a lemma proved in Reference [18] is stated here without proof:

Lemma 1.
C(k)(m + 1)− 1

k
= T(m). (4)

It is noted that, in work unconnected to the cpns, Atanasov et al., employed the use of a lacunary
function based on the triangular numbers in their study of representations of integers as sums of
triangular numbers [22]. Additionally, there is a relationship between the triangular number based
lacunary functions and mock theta functions [17].

Because of Lemma 1, one can learn much about the entire family of centered polygonal lacunary
sequences at once by considering the triangular numbers. Most notably for this work, one is interested
in the behavior of the triangular numbers modulo n. While many properties are known about this,
there does not appear to be a centralized reference in the literature. The proofs for the following two
lemmas and three theorems can be found in Reference [23].

Lemma 2. The sequence of triangular numbers mod p is a 2p-cycle. The sequence is symmetric about the
midpoint of the 2p-cycle. The 2pth member of the 2p-cycle is zero.

Lemma 3. There is an equal number of even and odd numbers in the first p members of 2p-cycle of Lemma 2.

Theorem 1. All values appear once and only once in the first p members of the 2p-cycle if and only if p = 2m

where m is a positive integer.

Theorem 2. If p 6= 2m, then the first time 0 appears is at a position less than the p− 1 position. The converse
is also true.

Theorem 3. Values appear no more than twice in the first p members of the 2p-cycle for p prime.

2.3. p-Sequences

Lemma 1 connects the triangular numbers to the p-sequence of limit values of fN(z) at the
natural boundary along the set of pth symmetry angles. The pth symmetry angle is αp = π

kp .
The Nth member, SN , of the p-sequence is part of a 4p-cycle of values. The 4p-cycle reduces to
a 2p-cycle when considering | fN(z)| rather than fN(z). A factor of pk

√
−1 is the only factor that

carries k dependence and is present in every term. Hence, SN = pk
√
−1σN . The sequence of σN

has its own structure as it follows a 4p-cycle. The index of that 4p-cycle is M = N mod 4p
and σ̂N represents σN 7→ σ̂N under the mod. This yields a structure for the σN of the form
{σ̂1, σ̂2, . . . , σ̂p, σ̂p−1, . . . , σ̂0,−σ̂1, . . . ,−σ̂p,−σ̂p−1, . . . ,−σ̂1, σ̂0}. Consequently, only p, rather than 4p,
distinct σ̂M must be determined. A very simple expression for the values exists [18]:
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σ̂0 = 0

σ̂1 = 1

σ̂i+1 =
i

∑
j=0

(−1)
T(j)

p , (5)

where 1 ≤ i ≤ p− 1. Note: σ̂0 is really σ̂p+1 = 0 but it proves convenient to limit the run of i to p and

define σ̂0 = 0. One collects the pk
√
−1(−1)

T(j)
p as elements of the set Φ(p), which is called the base space

symmetry angle set [18].

2.4. Fiber Bundle Representation of Centered Polygonal Lacunary Sequences

The use of a primitive fiber bundle is a convenient way to deal with the emerging 4p-cycles
discussed above and was a main topic of Reference [18]. The reader is alerted, by the use of the
word “primitive”, to the fact that this bundle lacks a manifold structure which is attendant when one
typically thinks of a fiber bundle [24]. For the convenience of the reader, the primitive fiber bundle
machinery is briefly outlined here. A more thorough discussion along with illustrative examples is
given in Reference [18].

The base space is the unit circle in the complex plane, S1 = {|z| = 1}. This is not the same
complex plane that serves as the domain of the fN(z). In the above defined base space, the symmetry
angle set is identified: Φ(p) ∈ S1. The set of positive integers, Z+, are the typical fibers which are
attached to the base space at the points Φ(p). The bundle is B(p) =

{
B(p), S1,Z+, Φ(p), π̂

}
, where B(p)

is the total space, and π̂ is the projection from B(p) to Φ(p) ∈ S1 such that π̂−1 maps to the typical fiber
and π̂−1(φi) = Mi where is Mi ∈ M(p), the multiplier set [18]. A cross-section on B(p) is a graphical
way to represent

{
M(p), Φ(p)

}
for a particular N. The collection of all cross-sections on B(p) then

represent the entire lacunary sequence for fN(z). The set of cross-sections for a given value of p can be
reduced to the consideration of a single fiber position diagram which is simply a graphical representation
of the base space, S1 [18]. (They are not mathematical graphs, however.) S1 is partitioned evenly at
every π/p which represents the points on S1 where the fibers are attached. Fiber position diagrams
are discussed thoroughly in Reference [18] where the proof of the following theorem can be found.

Theorem 4. Fiber position diagrams are at least two-fold rotationally symmetric.

3. Construction of Two-Dimensional Base Space Graphs

This section contains two distinct constructions of the two-dimensional base space graphs. “Graph”
is meant in the graph theory sense with the added sense that the relative position of the vertices in the
plane carry meaning. A concrete example of the construction procedure is carried out for the p = 3
case. Finally, information that one is able to glean from the graphs is discussed.

3.1. The Construction of the Two-Dimensional Base Space Graphs

Several definitions are needed prior to laying out the construction procedure.

Definition 1. Division point set, Dp. The ordered set of 2p equally spaced points on S1. Point 0, d0 ∈ Dp,
of that set is at (1,0) ( viewing S1 as embedding in R2). The remaining ordered points progress counterclockwise
on S1 from vertex 0.

Definition 2. Antipodal pair. Pairs of points (di, di+p) ∈ Dp.

Definition 3. Unit increase progression. Identification of members of an ordered set, Q as
{q[1], q[3], q[6], q[10], ..., }, where [i] means i mod |Q|. Note the spacing between each identified member
increases by one.
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Definition 4. Terminal edge. An edge of a graph connected to only one vertex. Alternatively, an edge that
connects a vertex with the “vertex at infinity”.

Definition 5. Multiplicity set, Mp.

Mp =
{

mj|mj = occurrences of jth number in the 1st p members of T mod p
}

Definition 6. Saturation, s. s = |Vp |
|Dp | , where Vp is the vertex set for the base space graph.

The following scheme is used to construct the two-dimensional base space graphs.

Construction 1. Two-dimensional base space graph, Gp = {Dp, Vp, Ep}.

1. Add 2p division points, Dp, to S1.
2. Add a vertex at point 0 on S1. This is referred to as vertex 0. The antipode to vertex 0 is referred to as

vertex π.
3. Add a terminal edge to vertex 0.
4. Perform unit increase progression through Dp for 2p− 1 iterations. This is done going counterclockwise

from vertex 0. This builds the set of vertices, Vp. Each step in the progression creates an edge that
terminates to either a new or an existing vertex and builds the set of edges, Ep.

5. Add a terminal edge to vertex π. This completes the graph.

Figure 2 collects the two-dimensional base space graphs for p = 1 to p = 16.

Figure 2. Two-dimensional base space graphs for p = 1 through p = 16 (read left to right, top to
bottom). The grey circle represents S1 and small grey dots (sometimes obscured by larger blue dots)
represent 2p equally spaced positions S1. The graph, Gp, is shown in blue. The vertices of the graphs

represent terms of the form e
jπi
p , j ∈ Z. The edges (blue lines) represent steps in the unit increase

progression (Definition 3).

3.2. Information Carried in Base Space Graphs

Several straightforward but fundamental observations are expressed in the following lemmas
and conjectures.
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Lemma 4. If di ∈ Dp is a vertex, then so is its antipodal partner, di+p.

Proof. The proof follows from Lemma 2.

Lemma 5. The positions of the antipodal pairs of vertices on a two-dimensional base space graph are equal to
the numerical values of T mod p. The degree of a vertex is equal to the number of times the corresponding
numerical value of T(n) mod p appears.

Proof. The proof follows immediately from Construction 1.

Theorem 5. Only one antipodal pair shares an edge. For p odd, this edge connects the 0 and π vertices. For p
even, this connects the π

2 and 3π
2 vertices.

Proof. The first part follows immediately from the nature of Construction 1. For an edge to connect
antipodes it must count exactly p members of Dp beyond the current vertex. Further, this particular
edge is generated by the pth step. The second part follows from Lemmas 2 and 5 once one notes the
following. Consider the pth member of T,

T(p) =
p(p + 1)

2
=

p
2

p +
p
2

. (6)

Now, considering this expression mod p yields,

T(p) =
( p

2
p +

p
2

)
mod p = 0 + p/2. (7)

If p is even the value of p/2 corresponds to the position of the π
2 vertex by Lemma 5. When p is

odd this value of p/2 must be zero otherwise it is not an integer. Hence, the position corresponds to
the 0-vertex. This completes the proof.

Lemma 6. The positions of the vertices on a two-dimensional base space graph give the fiber position diagram.

Proof. Removal of the edges in the graph leaves the fiber position diagram for the triangular numbers
case. Shifting by kp

√
−1 gives the fiber position diagram for the kth cpn case [18].

In providing position information, the two-dimensional base space graphs gives the terms
involved in the numerical value of a particular member of a p-sequence. Furthermore, these graphs
carry multiplicity information as shown in the following theorem.

Theorem 6. The degree of a vertex is twice the multiplicity of the term it represents.

Proof. The proof follows from Construction 1 because each iteration in the construction either:

1. creates a new vertex, in which case a new term is represented; or
2. lands on an existing vertex, in which case represents a degeneracy (multiplicity) of a term that

already exists.

Each pair of subsequent iterative steps creates edges, ei and ei+1 ∈ Ep. Thus, the vertex linking
these edges increases in degree by 2. (The terminal edges ensure this is also true for the 0 and π

vertices.) This completes the proof.

The base cross-section can be obtained immediately from the two-dimensional base space
diagrams by pulling the information about the fiber positions and the multiplicities. When combined
with the cross-section generation procedure thoroughly discussed in Reference [18], one can generate
the entire p-sequence from the single two-dimensional base space diagram.
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As an illustrative example, consider the p = 3 case. G3 is the third graph in the top row
of Figure 2. One sees that there are four distinct vertices in V3 and positioned at {d0, d1, d3, d4}.
The base cross-section is obtained by removing the edges of the graphs and casting S1 as the
line [−π, π] and reading the multiplicity from G3 (1/2 the degree of each vertex). In this case,
the vertices located at d0 and d3 have degree 4 (hence, multiplicity 2), while the vertices located
at d1 and d4 have degree 2. The base cross-section is shown as the first fiber diagram in the top
row of Figure 3. The unit increases progression and then generates the remaining cross-sections,
as shown in Figure 3. Each of these cross-sections corresponds to a numerical value in the
associated p-sequence. For the case of k = 5, which is the lacunary function on the right in
Figure 1, the numerical values are (0, 0.978+ 0.208i, 1.287+ 1.159i, 0.309+ 0.951i, 1.287+ 1.159i, 0.978+
0.208i, 0,−0.978− 0.208i,−1.287− 1.158i,−0.309− 0.951i,−1.287− 1.159i,−0.978− 0.208i). This list
of numerical values corresponds directly to the cross-sections shown in Figure 3 when read left-to-right,
top-to-bottom. Note that upon taking the modulus the 4p-cycle reduces to a 2p-cycle. When one
factors out the k-dependent common multiplier, the cyclic sequence of values is (0, 1, 3

2 +
√

3
2 i, 1

2 +√
3

2 i, 3
2 ,+

√
3

2 i, 1, 0,−1,− 3
2 −

√
3

2 i,− 1
2 −

√
3

2 i,− 3
2 −

√
3

2 i,−1).

Figure 3. The complete set of cross-sections for the case of p = 3 (corresponding to the third graph in
the top row of Figure 2). The leftmost cross-section is considered the base cross-section and is obtained
directly from G3. The complete set of cross-sections is obtained from the base cross-section via unit
increase progression starting on the first fiber to the right of the midpoint. Each cross-section directly
gives the 4p numerical values in the centered polygonal lacunary sequence at the position on the
natural boundary at angle α3.

3.3. Rectangular Construction for Odd p

There is an alternative construction for the two-dimensional base space graphs corresponding to
odd values of p. This is called the rectangular construction.

Construction 2. Rectangular construction (odd p only).

1. Add 2p division points to S1.
2. Add the 0 and π vertices and connecting edge. This is referred to as the 0-rectangle.
3. Simultaneously perform the first iteration of the unit increase progression counterclockwise from the 0

vertex and from the π vertex.
4. Add connecting edges from vertex π

p to vertex π and π + π
p to vertex 0. This forms the 1-rectangle.

5. The next iterations of the unit increase progression forms the 2-rectangle, etc. The number of iterations of
the unit step progression is p+1

2 . The final rectangle formed is called the maximal rectangle.
6. Add a terminal edge to vertices 0 and π. This completes the graph.

The rectangle construction offers a geometric proof of the following theorem.
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Theorem 7. There are p + 1 total vertices for graphs of odd prime numbers.

Proof. The rectangle construction implies that there are p+1
2 total rectangles (including the 0-rectangle)

coming from that same number of iterations during the construction process. Further, the top half-circle
and the bottom-half circle behave symmetrically because antipodal pairs are arising simultaneously
(unlike for Construction 1). Because p is prime, the first iteration step to cross from the top half circle to
bottom half-circle (if there is one) produces a new vertex. Consequently, its antipode in top half-circle
is also a new vertex and one can base the next iteration step on this vertex. Again, because p is prime,
the remaining steps will all create new vertices. Note, this is related to the fact that Z mod p is a field
when p is prime and hence has no non-zero divisors.

Theorem 7 leads to several corollaries which are listed now without proof.

Corollary 8. The maximum degree of any vertex is 4 for odd primes (maximum multiplicity is 2).

Corollary 9. The maximal rectangle has one pair opposing vertices with degree two. All other vertices are
degree 4.

Corollary 10. The saturation of prime graphs are s = p+1
2p .

4. Three-Dimensional Base Space Graphs

The two-dimensional base space graphs provide much insight in to the centered polygonal
lacunary p-sequences and even form the basis for complete construction of the numerical p-sequences
themselves. However, at high values of p, the benefits of a visual representation diminish because the
graphs become so crowded.

By opening up the used of a third dimension, one is able to obtain a different visual perspective
on the graphs. This perspective actually works better at high p values so it is quite complementary to
the two-dimensional graphs. The construction procedure for these graphs is the following.

Construction 3. Three-dimensional base space graphs, Ḡp = {Dp, Vp, Ep, Mp}.

1. Create a lattice on the cylinder S1 ×R+ using Dp and the positive integers.
2. Create the three-dimensional graph from the corresponding two-dimensional graph by placing the jth

vertex at its corresponding division point and value equal to half of its degree (equal to mj ∈ Mp).
3. Add a terminal edge to vertex 0 and π (usually not shown in a rendering of the graph). This completes

the graph.

Figure 4 shows the three-dimensional base space graphs corresponding to the 16 two-dimensional
base space graphs shown in Figure 2. Table 1 collects some information for several important classes
of p values. Figure 5 shows four representative examples from Table 1 involving larger values of p.

The three-dimensional base space graphs are useful for visually categorizing various families of
p values based on their descriptive three-dimensional shape, such as those listed in Table 1. This is
especially useful for large p values compared to the two-dimensional version of the graphs. Despite this,
the subtle details are less evident. It is helpful to associate with each three-dimensional base space
graph and “exploded” version in which the layers are arrayed and the edges removed. The example of
the exploded graph of G27 is shown in Figure 6.
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Figure 4. Three-dimensional base space graphs for p = 1 to p = 16 (read left to right, top to bottom).
These correspond directly to the graphs in Figure 2, now with the third dimension being the degree of
the vertex. In addition to offering a different visual perspective of the p-sequences, the degrees of the
vertices within a given graph are intimately related to the nature of p itself and to the values of the
centered polygonal lacunary functions at the natural boundary (see text for discussion).

Table 1. Characteristics of some important types of three-dimensional base space graphs.

Nature of p s Descriptor Example Remark

2m 1 disk Figure 4 unbranched graph

q q+1
2q table two legs Figure 5 legs antipodal

2m · q q+1
2q table 2m+1 legs Figure 5 legs equally spaced

q2 q2−q+2
2q2 crown two spikes Figure 6 spikes antipodal

2m · q2 q2−q+2
2q2 crown 2m+1 spikes — legs equally spaced

q3 q3−q2+q+1
2q3 double level crown Figure 6 spike positions at q

qn (odd)
1+∑n

j=1(−1)j+1qj

2qn
odd+1

2 level crown — nested orders

qn (even)
2+∑n

j=1(−1)jqj

2qn
even

2 level crown — nested orders

q1 · q2
q1q2+q1+q2+1

2q1q2
drum two legs Figure 5 legs antipodal

2m · q1 · q2
q1q2+q1+q2+1

2q1q2
drum 2m+1 legs Figure 5 legs equally spaced
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Figure 5. Three-dimensional base space graphs: Ḡ59 (top left); Ḡ96 (top right); Ḡ323 (bottom left);
and Ḡ646 (bottom right).

Figure 6. Ḡ33 and corresponding slices (first and second panels), Ḡ72 (third panel), and Ḡ34 (fourth panel).

5. Prime Decomposition

A powerful feature of the graphs is the insight they provide in understanding the 4p bounded,
cyclic nature of the limit values at the natural boundary and pth symmetry angle. In addition to the
illuminating graphical characteristics, one can assign a polynomial to each class of three-dimensional
base space graph. This polynomial gives the number of vertices contained in the graph and, hence,
immediately gives the saturation value upon dividing by 2p. The polynomial for any given graph is
constructed via prime polynomials associated with each prime power. These are given in the following
construction.

Construction 4. Base space graph polynomial.

1. The prime power polynomials are generated via,

P(2m) = 2m

P(qn) = 1 +
n

∑
j=1

(−1)j+1qj n odd

P(qn) = 2 +
n

∑
j=1

(−1)jqj n even. (8)

2. Find the prime decomposition of p and let r equal the number of distinct odd primes present in the
decomposition.
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3. For a given p, multiply the prime power polynomials represented in the prime decomposition of p and
divide by a factor of 2r−1 to obtain the overall polynomial.

P(p) = P(2mqn1
1 qn2

2 · · · q
nr
r ) =

1
2r−1P(2

m)P(qn1
1 )P(qn2

2 ) · · · P(qnr
r ). (9)

4. Evaluating P(p) for a given p gives the number of vertices in Gp.

|Gp| = |Vp| = P(p). (10)

It is immediate to calculate the saturation of a graph by normalizing the graph polynomial by 2p:

s(p) =
P(p)

2p
. (11)

An immediate corollary of Construction 4 and Equation (11) is the following.

Corollary 11. The saturation is independent of a factor of 2m,

s(2mqn1
1 qn2

2 · · · q
nr
r ) = s(qn1

1 qn2
2 · · · q

nr
r ). (12)

Consider p = 1260 as an illustrative example. Ḡ1260 is shown in the left panel of Figure 7.
The prime decomposition is p = 22 · 32 · 5 · 7. Thus, m = 2, q1 = 3, r1 = 2, q2 = 5 and q3 = 7. The P
associated with G1260 is

P(22 · 32 · 5 · 7) = 22(32 − 3 + 2)(5 + 1)(7 + 1)
23−1 = 384. (13)

The saturation is then immediately

s(1260) =
384

2 · 1260
=

16
105

= 0.152. (14)

Now, consider the case when p = 315 which is just 1260 without the factor of 22. One expects
the saturation to be the same as for the p = 1260 and, although not explicitly shown, that is indeed
the case.

Figure 7. Ḡ1260 and Ḡ315. The p values associated with these graphs differ by a factor of 22 and hence
have equal saturation values.
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The Prime Power Family of Graphs

Values of p = qn constitute an interesting family. From graphical morphology point-of-view,
the most notable feature of this family is that the exploded graph has a nested feature. The structure
of the Ḡp = qn family three-dimensional base space graphs is of the form of an increasing layered
crown. For odd powers, this is an n+1

2 layer crown (base layer plus n+1
2 layers of spikes). Furthermore,

each progression of n to n + 2 introduces a new base layer with the spike layers having equivalent
vertex positions previous case, albeit with different connectivity. Similar behavior is seen for the even
case.

Considering the saturation for the prime power case, one sees s(qn) approach an asymptotic value
with increasing n,

lim
n→∞

s(qn) = lim
n→∞

1 + ∑n
j=1(−1)j+1qj

2qn =
q

2(q + 1)
, (15)

which follows from pulling up the denominator as q−n, distributing through the numerator,
recognizing the alternating series and writing it in closed form. Further, as q → ∞ in Equation (15),
s(q)→ 1

2 . This behavior is shown in Figure 8. The larger is the value of q, the faster is the convergence to
the asymptotic value. By way of example, s(34) = 0.3827, which deviates from 3/8 by 2.06%, whereas
s(54) and s(74) deviate from their respective asymptotic values by 0.22% and 0.054%, resoectively.

Figure 8. Behavior of the saturation of prime powers, qm for q = 3 (circle); q = 5 (square); q = 7
(diamond); q = 11 (triangle); and q = 13,(inverted triangle). The vertical axis is s and the horizontal
axis is m.

The nature of the graph polynomials implies this limit easily extends to products of prime powers.

lim
ni→∞

s(qn1
1 qn2

2 · · · q
nr
r ) =

r

∏
i=1

qi
2(qi + 1)

. (16)

By Corollary 11, a potential 2m component comes along trivially.
Finally, plotting the entries in the adjacency matrix also provides insight into the nature of

the p-sequences. They are especially good at revealing the special nature of primes, prime powers
and the scaling properties. The adjacency matrix for a number of different graphs are collected
in Figure 9. The top row is meant to visually capture the typical differences between primes and
non-primes by showing G51, G52, G53, and G54. G53 has a particularly “clean” adjacency matrix.
The second row shows the squares of the p values used in the top row: G512 , G522 , G532 , and G542 .
The differences between primes and non-primes are even more exaggerated. It is also important to
note that, for primes, the structure of adjacency matrix is nearly independent the power on the prime.
This is seen in comparing G53 and G532 . Aside from picking up some entries along the left and top
borders, the adjacency matrix of G532 has the same structure as G53. The only difference is that it is
scaled for the now much larger adjacency matrix. This is also shown in the third row where powers
of 5 are used as the example. Here, G52 , G53 , G54 , and G55 are shown. The adjacency matrix for G5
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(not shown) is too small to display the characteristic structure seen with G53. The structure begins
to emerge with the still small adjacency matrix for G52 . For G53 , G54 , and G55 , the structure is very
clearly present. Note, however, that increasing power does introduce some additional patterning
in the adjacency matrix. What is perhaps even more surprising than the scaling insensitivity of the
adjacency matrix with prime power, is the scaling insensitivity with respect to choice of the prime
itself. Remarkably, aside from scaling, all primes and prime powers look the same.

The above analysis is very helpful in gaining insight into the structure of the saturation data
shown in Figure 10. For numbers that are composed of highly redundant primes, the above formula
holds. Thus, one expects “attractor” values which are the asymptotic values. Adding in the 2m

independence of s from Corollary 4 allows for a good understanding p values of the form 2mq. These
will be at the same saturation values spaced on the powers of two. Visual inspection of Figure 10
shows clear and distinct striations (or lines of attraction); these are the numbers composed of highly
redundant primes. The power of two spacing is also readily seen, for example s = 1 and several values
between roughly s = 0.55 and 0.7. Thus, there is significant organization of these saturation data.

The exception occurs for numbers composed of low redundancy primes; most notably the “noisy”
data at the low s values. In fact, a noticeable trail of low s values separates slightly from the bulk of the
data points. These are the numbers whose prime decomposition consists of first-order primes. Indeed
the following conjecture has been verified for the first 32,000 p values, but awaits a general proof.

Conjecture 12. For a set value, p̄, the p value having the minimum saturation is pmin = 3 · 5 · 7 · 11 · · · q
such that p < p̄.

Figure 9. A plot of the entries of the adjacency matrix for several graphs. The special nature of primes
and the inherent scaling properties are particularly noticeable. The top shows the typical differences in
the adjacency matrices for primes and non-primes by collecting G51, G52, G53, and G54. The second row
shows G512 , G522 , G532 , and G542 . The third row shows G52 , G53 , G54 , and G55 . The bottom row show
several examples of other primes: G79, G179, G251, and G887.
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Figure 10. Saturation values for the first 25,000 integer values of p. Visible striations appear because
of the asymptotic “attractor” values of for number whose prime decomposition consist of high
redundancy.

6. Antipodal Condensed Graphs

In the use of the base space graphs to understand p-sequences, the vertices sitting at antipodal
points in the two-dimensional base space graph have a natural relationship [18]. This suggests
a related graph construction called antipodal condensed graphs in which each antipodal vertex pair from
the two-dimensional base space graph is merged into a single vertex in the antipodal condensed graph.
Notationally, Ap denotes the antipodal condensed graph associated with Gp. Ap has half the number
of vertices as Gp.

Construction 5. Antipodal condensed graph, Ap =
{

V̂p, Êp
}

1. Identify all antipodal pairs as
{

vj, vj+p
}
→ v̂j.

2. The collections of edges, eij ∈ Ep, that connect
{

vi, vi+p
}

to
{

vj, vj+p
}

are identified as a single edge,
êij ∈ Êp.

3. The terminal edges are viewed as connecting vertex 0 with vertex π via the “vertex at infinity”.
This collapses to a self-loop ê0 ∈ Ep. This completes the construction.

Some self-evident aspects ofAp are |Ep| = p + 1 for even (this includes the self-loops), |Ep| = p+1
2

for odd (includes self-loop), and ∑
|Vp |
j=1 d(vj) = 2|Ep|, where d(vj) is the degree of vertex vj (counting

self-loops).
As an illustrative example, G5 is shown in Figure 11. The first panel shows the standard S1

embedding whereas the middle panel shows a different rendering (the default rendering used by
MATHEMATICA). Note the double edge connecting the two left most vertices in this rendering is
an artifact of the terminal edges in the construction. This can be viewed in the following way. One edge
connects the two vertices (as in the corresponding base space graph) while the other edge connects the
two vertices via the “vertex at infinity”. The right panel shows the corresponding antipodal condensed
graph, A5.
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Figure 11. Renderings of G5. The left panel is the two-dimensional base space graph. The grey
dots represent the members of Dp that are not vertices. The grey circle simple guides the eye to
the embedding space, S1. The middle panel is a different representation of the graph that vertically
juxtaposes antipodal vertices. The right rendering is a reduction of the graph by associating antipodal
points together as a single vertex. The resulting graphs is A5. This always reduces the number of
vertices by half.

Self-loops occur in the antipodal condensed graph because of the edge connecting antipodal pairs
in the base space graph. By Theorem 5, this occurs only at vertex 0 for odd values of p odd and at
vertex π

2 for even values of p. Note that for even values of p there are actually two self-loops in graphs
arising form even values of p, a “real” one which is at vertex π

2 and a “virtual” one at vertex 0. (For odd
values of p, the self-loop at vertex 0 is real.) The virtual self-loop, seen in the graph is an artifact of
the the terminal edges in the base space graph. Again, this can be viewed as an edge connecting a the
vertex with itself via the “vertex at infinity”. These self-loops are of no mathematical consequence but,
nonetheless, are sometimes helpful in orienting the eye so they are kept in the rendering.

The antipodal condensed graphs for p = 1–16 are collected in Figure 12, which correspond
directly to the base space graphs shown in Figures 2 and 4. While only a small sampling, some
generalities in Ap are exposed. Odd primes are always simple linear graphs with q+1

2 vertices and q−1
2

edges not including the single self-loop. Even values of p yield two self-loops because of Theorem 5.
The A2m family is always a simple linear graph with 2m vertices and 2m edges not including the two
terminal self-loops. Aside from self-loops, A2q ' Gq for q an odd prime. This relation is further seen in
Figure 13 which shows Ap when p is 2 times an odd number (prime or not). The odds from 3 (p = 6)
to 51 (p = 102) are shown. Primes are clearly distinctive in shape, being very linear in nature for this
particular rendering of Ap. The primes and their powers are the subject of the next section.

Figure 12. Antipodal condensed graphs, Ap for p = 1–16. These correspond directly to the base space
graphs shown in Figures 2 and 4.
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Figure 13. Antipodal condensed graphs, Ap for p = 2r for r = 3–51 (odds). Graphs corresponding to
p = 2 times a prime are distinctively linearly in shape. Those corresponding to p = 2 times a prime
square also hold their distinctive flower shape.

The nested nature of the primes is evident in the antipodal condensed graphs for even values of p
that are powers of two times a prime. For a given power of two, A2m ·q contains A2m ·q− as a subgraph
where q− is the prime immediately preceding q. This is illustrated in Figure 14. At first glance this
appears to be very exciting because it suggests a mechanism to predict the next prime from a given
prime. Unfortunately, this is not the case. For example, the transition from p = 2 · 7 to p = 2 · 11.
Indeed, A2·7 is a subgraph of A2·11, but the predictive power is lost because, in this example, there
would be nothing, a priori, to prevent the generation of the false prime graph for p = 2 · 9.

Figure 14. The nested nature of the primes. Ap for p = 2 · q (top row), p = 22 · q (middle row) and
p = 23 · q (bottom row) where q = 3, 5, 7. In each case, the graph for a prime has a subgraph equal to
the previous prime. This continues for higher primes.
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The above discussion along with Figures 13 and 14 suggest an interesting effect of multiplying
by a factor of 2. Indeed, such action has the effect of “twining” each vertex. Figure 15 illustrates the
“twining” effect caused by multiplying by 2. A25 is compared toA2·25. In this example, |V̂2·25| = 2|V̂25|
and |Ê2·25| = 4|Ê25| − 1. That the number of vertices doubles while the number of edges quadruples
results in more cross-linking of vertices. Nevertheless, the twin vertices do not share an edge.

Figure 15. Illustration of the twining of vertices that results when p is multiplied by 2. A25 is compared
to A2·25 The middle two panels show the two copies of A25 contained in A2·25. The last panel shows
the remaining edges. Twin vertices do not share an edge.

6.1. Primes

The use the of antipodal condensed graphs obscures the prime decomposition compared with the
base space graphs. However, it nicely characterizes the behavior of powers of primes. Some of those
characteristics are explored in this section.

6.2. Powers of Primes

Starting with squares of primes, Figure 16 shows Ap where p = q2 for the first 12 primes.
The vernacular of flowers will be used as descriptor. Each square prime forms a flower with q−1

2
petals and one stalk. Each petal consists of a closed loop connecting the single ultimate vertex to
itself. There are q edges and q− 1 degree 2 vertices on the paths that form the petal. The stalk consists
of a simple path connecting the ultimate vertex with the vertex that contains the single self-loop.
This arrangement gives the ultimate vertex a degree equal to q.

Figure 16. Ap for p the squares of first 12 primes. The descriptor language for these types of graphs

would be that they are q−1
2 -petal flowers.

A example is the A5n family. There are actually two sub-families, one for n odd and one for n
even. These antipodal condensed graphs are captured in Figure 17 where n = 1, 3, 5 along the top
row and n = 2, 4, 6 along the bottom row. Of particular note is the similarity in overall morphology
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within a subfamily. This is related to the scaling properties of the prime graphs and is discussed in
detail below.

Finally, in addition to powers of individual primes, there is a “product” graph, Aqi ·qj for two

distinct primes. The descriptor of these product graphs is that of a web. The webbing consists of qi−1
2 ·

qj−1
2 faces. Exactly one face is triangular and the remaining faces are quadrilaterals. A “multiplication”

table involving the first five odd primes is shown in Figure 18. Notice the diagonals recover the flower
graph associated with the primes squared. The off-diagonals are webs with faces as described above.
Expressing the above in a more pictorial sense, the number of faces equals the product of the number
of petals on the respective flowers. The product is, of course, commutative so the upper and lower
triangles of the table are identical. The example of A77 is shown in the right panel with the faces
labeled. In this case, one expects 3 · 5 = 15 faces.

Figure 17. The A5n family of graphs. The top row shows the n odd subfamily for n = 1, 3, 5 and the
bottom row shows the n even subfamily for n = 2, 4, 6.

Figure 18. A graph multiplication table for the first five odd primes,Ap, where p = qi · qj. The “product”

is a web graph with qi−1
2 · qj−1

2 faces (qi 6= qj). The faces consist of one triangle and the remainder are
quadrilaterals. The example of A77 is shown on the right with the faces labeled.
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7. Scaling Properties

The above discussion strongly implicates the prime powers in the scaling features of centered
polygonal lacunary sequences. This is investigated further in this section. First, however, the important
new concept of sprays is introduced.

7.1. Sprays

The study of the scaling properties of the centered polygonal lacunary graphs is aided by the
introduction of the concept of a spray. (It is trusted that the use of the word spray in this context is
distinct enough to avoid confusion with its definition of a particular type of vector field on a tangent
bundle [25], to which there is no relation here.)

Definition 7. Spray. A set of simple linear paths between two primary vertices. The distinct paths are otherwise
identical. That is, they have the same number of intermediate vertices and edges and the degree of the intermediate
vertices is exactly 2. The paths of a first-order spray do not share a vertex. A second-order spray can be
thought of as a spray of first-order sprays; jth-order sprays are sprays of (j− 1)th-order sprays.

Examples of sprays can be seen in several of the figures. In particular, Figures 19 and 20 highlight
the notion of a spray. The example of G54 is shown in Figure 19 where the panel on the left shows
the entire graph, while the panel on the right shows a blow-up of the right petal and ultimate vertex.
One notices five first-order sprays connecting the ultimate vertex to the the adjacent penultimate
vertices. There are five first-order sprays terminating with the ultimate vertex. Each penultimate vertex
terminates two sprays.

There are additional features of note. The graph contains two petals and a stalk, as described
above, connecting at the one ultimate vertex. Each petal contains four penultimate vertices while
the stalk contains two. Every path in every spray has four degrees and two vertices and every spray
contains five paths. All these features generalize such that, for a prime number, q, there are q−1

2 petals
and one stalk. Each petal contains q− 1 penultimate vertices and there are q paths with q− 1 degree 2
vertices in every spray.

Figure 20 shows G56 as a concrete example of a graph containing a second-order spray. The left
panel shows the entire graph. Unfortunately, the large number of vertices obscures the details of
the connectivity. The middle panel shows a blow-up the ultimate vertex. There are 25 first-order
spays connecting the ultimate vertex with adjacent antepenultimate vertex. These 25 first-order sprays
are clustered into five second-order sprays, which connect the ultimate vertex with the five adjacent
penultimate vertices. Similar to above, the case of q = 5 is representative of general features. At the q6

level, there are the same number of petals and stalks. Each petal contains q− 1 penultimate vertices.
In between each of these are q− 1 antepenultimate vertices and in between those are q− 1 degree 2
vertices. All second-order sprays contain q− 1 first-order sprays.

One continues the above analysis for q2n in the obvious way. The same general features occur for
the cases of q2n−1; again in the obvious way.

7.2. Sprays, Renormalization, and Fractal Character

Sprays provide a natural renormalization scheme for prime power graphs. If the first-order sprays
in Aqn are replaced by edges the graph reduces to Aqn−2 . In this process, second-order sprays become
first-order sprays. Likewise, jth-order sprays become (j − 1)th-order sprays. This process can be
repeating until Aqn is fully reduce to Aq when j is odd and Aq2 when j is even.

Perhaps more importantly, the reverse of the renormalization scheme can be performed. Here,
each edge is replaced with a spray of q paths; each path having q edges. In a sense this acts to
“fractalize” the graph. Consider again Figures 16, 19, and 20. The third graph in the top row of
Figure 16 isA52 . Considering the ultimate vertex and comparing with Figure 19 one sees the five edges
become five groups of five. Then, comparing with Figure 20, one sees 125 edges grouped in the five
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groups of five, which are further grouped into five. The other vertices behave similarly. Thus, the act
of raising the power on the prime is akin to zooming in on a fractal object. Relatedly, the actual fractal
character as manifested by Julia sets for the centered polygonal lacunary functions has recently been
investigated [26].

Several basic properties of antipodal condensed graphs of prime powers can be immediately
gleaned from their scaling structure.

Figure 19. A54 illustrates the concept of spray. The left panel shows the entire graph while the right
panel is a blow-up of one of the petals. Five first-order sprays are connected to the ultimate vertex and
each penultimate vertex is terminated by two sprays. Because q = 5, the first-order sprays have five
paths each and each path consists of five edges and four intermediate degree 3 vertices. Application of
the renormalization scheme discussed in the text would yield A52 , which is shown in Figure 17.

Figure 20. A56 is an example of a graph with second-order sprays. The left panel shows the
entire graph while the middle and right panels are blow-ups of the area around the ultimate vertex.
Five second-order sprays are connected to the ultimate vertex and each member of the spray is itself
a (first-order) spray. Twenty-five first-order sprays connect the ultimate vertex to an antepenultimate
vertex. These 25 first-order sprays are organized into five second-order sprays, each of which connects
the ultimate vertex to the the penultimate vertex. Because q = 5, the first-order sprays have five paths
each and each path consists of five edges and four intermediate degree 3 vertices while the second-order
sprays have five paths of first-order sprays. One iteration of the renormalization scheme discussed
in the text would yield A54 which is shown in Figure 19. A second iteration of the renormalization
scheme would yield A52 , which is shown in Figure 17.

Conjecture 13. The graph diameter,

d
(
Aqn

)
=

 q
n
2 − 1 if n even;

q
n+1

2 −1
2 if n odd.

(17)

Conjecture 14. The graph radius r
(
Aqn

)
=

d(Aqn)
2 . This does not hold when n is odd and q = 3.
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A couple of definitions related to diameter and radius are useful for the even prime powers which
have the flower graph structure. In those cases, there is a single ultimate vertex. One then defines the
following.

Definition 8. Ultimate distance, u. The distance from a vertex from the ultimate vertex.

Definition 9. Ultimate radius, ur. The maximum distance from the ultimate vertex for a graph.

Conjecture 15. ur
(
Aqn

)
= r

(
Aqn

)
Finally, an observation awaiting proof is reported: ur

(
Aqn

)
is linearly related to the mean distance

for Aqn for q > 3 and prime. For n = 2, the relationship is ur = 1.997r− 0.915.

8. Graph Theoretic Properties

Several graph theoretic properties are collected in this section. In addition, the concept of a cycle
spectrum is developed. The purpose of this section is to provide some unproven conjectures and
proposition that are supported by observation. It is hoped that they will offer some potential graph
theoretic directions for future work.

8.1. Cliques and Chromatic Number

The antipodal condensed graphs have relatively simple clique structure, which is summarized in
a couple of conjectures and propositions.

Conjecture 16. The maximum cliques always includes vertex 0 or vertex π
2 . At least one member of the set of

maximum cliques includes vertex 0 (vertex π
2 ).

Proposition 17. Formula for the clique number. The clique number is ω(Ap) is 1 plus the number of distinct
primes in the prime decomposition of p (this includes 2). The exception is when p = 3n, then ω(A3n) = 3. If 2
is not one of the distinct primes then there is a unique maximum clique. If one factor of 2 is present then there
are 2r maximal cliques where r is the number of distinct odd prime factors. Finally, if more than one factor of 2 is
present then there are two maximal cliques.

Figure 21 shows the complete graphs isomorphic to the cliques corresponding to Theorem 17.
Figure 22 explores the set {A30,A60, and A90}. The p values all consist of three distinct primes; hence,
by Theorem 17, we see the maximum cliques are complete graphs of 4 vertices (plus self-loops). The set
of maximum cliques are of size 4 for A30 and A90 (2 to the first power). Further, vertex 0 and vertex π

2
are both contained in each clique. There are only two maximal cliques for A60 (2 to an even power),
one containing vertex 0 and the other containing vertex π

2 .
As with the cliques, the chromatic number is relatively simple. One note, however, is that the

graphs must be considered without the self-loops in order for the chromatic number to make sense.

Conjecture 18. χ = 2 if and only if p is a prime or a power of 2 and there are exactly two ways to color
the graph.

Figure 21. Maximum clique subgraphs for the cases of p equals two, three, four, and five distinct
primes. The maximum clique subgraph is unique.
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Figure 22. Maximum cliques for: A30 (top row); A60 (middle row); and A90 (bottom row). The left
panel in the middle row shows the complete graph isomorphic to the maximal cliques in this set of
graphs. Note that the isomorphism is up to the self-loops.

8.2. Cycles and the Cycle Spectrum

One can examine the nature of the cycles appearing in the graphs. This can be done by calculating
a normalized cycle spectrum, which counts the number of different cycle lengths present in a given graph
normalized by the largest value. Several normalized cycle spectra are shown in Figures 23 and 24.
In the former case, the normalized cycle spectra for graphs, Ap for p = 3q, p = 5q, and p = 7q where
q is an odd prime. Expectedly, when q = 3 in the first case, 5 in the second case, and 7 in the third
case, one sees a single spectral line at q. The cases of p = 3q are interesting in that they clearly exhibit
a self-similarity scaling as can be seen by inspection of the top two rows of Figure 23. In contrast,
the cases of p = 5q and p = 7q behave more typically. As the value of p increases, the spectrum
becomes more Gaussian-like as seen in the bottom three rows of Figure 23. For the cases of graphs in
which p = 2m · q, q = 3 again has special character. The top row of Figure 24 shows the normalized
cycle spectra for p = 2m · 3 and, indeed, these spectra display a self-similarity and are quite distinct
from those shown in the bottom row which are for the cases of p = 2m · 5.
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Figure 23. The normalized cycle spectrum for products of two odd primes. The top two rows are
p = 3q, where q = 3, 5, 7, 11, 13, 17. The third and fourth rows are p = 5q, where q = 5, 7, 11, 13, 17, 19.
The final row is p = 5q, where q = 7, 11, 13.

Figure 24. The normalized cycle spectrum for products of powers of two and one odd prime. The cases
of p = 2m · 3 (top row) and p = 2m · 5 (bottom row) where m = 2, 3, 4.

9. Conclusions

This work presents a graph-based approach to developing p-sequences of centered polygonal
lacunary functions. A ground-up set of construction scheme is shown to build the numerical values
in p-sequences. This first involves the two-dimensional base space graphs. This is then followed by
the cross-section generating procedure of Reference [18]. Further, an associated three-dimensional
graph is developed to provide a complementary view of the p-sequences. The three-dimensional
geometric features of these graphs reveal fundamental characteristics of the p-sequences they represent.
A polynomial is assigned to each graph, which gives the number of vertices. This allows for immediate
calculation of the saturation. Intuitive insights into the structure of the saturation data is provided
by use of the polynomials. Additionally, a natural reduction of the base space graphs to an antipodal
condensed graph provides much additional insight, especially in regard to the special role of primes.
The antipodal condensed graphs are adjoined with the concept of sprays, which enables a clear view
of the scaling properties of the underling systems that the graphs represent. Two complementary
schemes are discussed: a renormalization scheme, which provides a way to cast Aqn in terms of Aq

(odd n) or Aq2 (even n), and a fractalization scheme to build Aqn from Aq (odd n) or Aq2 (even n).
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The features of the graphs studied in this work provide much insight into the p-sequences
of centered polygonal lacunary functions. This helps one gain an intuition about these exotic and
interesting functions.

Notably, the way in which Ap reveals the scaling features of the the graphs and hence the
underlying p-sequences that they represent, shines light on the fractal-like characteristics of the
centered polygonal lacunary functions. Even more, it provides a possible handle for a potential
renormalization scheme for centered polygonal lacunary functions. If such a scheme is found and
is robust, then it seem likely that these function could find greater utility in physics and chemistry;
the area of phase transitions is one example.

The graph-theoretic analysis done here also indicates some potential ways to bring-out various
subsequences that are carried in the centered polygonal lacunary functions. For example, one might be
inclined to consider the family of p-sequences consisting only of p = qn. Comparison of these families
as either q→ ∞ or n→ ∞ could reveal some interesting results.

It is hoped that this work builds upon previous work and sheds additional light on the the
fascinating nature of centered polygonal lacunary functions and, in particular, on their p-sequences.
The unproven conjectures are the subject of ongoing research.
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