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Abstract: We consider a time-fractional diffusion equation for an inverse problem to determine an
unknown source term, whereby the input data is obtained at a certain time. In general, the inverse
problems are ill-posed in the sense of Hadamard. Therefore, in this study, we propose a mollification
regularization method to solve this problem. In the theoretical results, the error estimate between the
exact and regularized solutions is given by a priori and a posteriori parameter choice rules. Besides,
the proposed regularized methods have been verified by a numerical experiment.
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1. Introduction

In this work, we study an inverse source problem for the time-fractional diffusion equation in a
infinite domain as follows:

Pu(x
PUOD — tea(,) 4 p(f (), () €Bx (0,T],
u(x,0)=0,x € R, (1)
u(x,T) =g(x), x eR,

where the fractional derivative %%‘ is the Caputo derivative of order § (0 < B < 1) as defined by

B / s s
dPf) 1 /dj;(s)(tfs)ﬁ, @)

i T(1-p)J

and I'(+) denotes the standard Gamma function.
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The biggest motivation for developing the problem (1) is the inverse problems for the heat
equation; we recover the unknown source function under different assumptions on the smoothness
of input data, which were proposed by Igor Malyshev in Reference [1]. The inverse problems of the
restoration of a source function in the heat equation with the classical derivative are studied by many
researchers, that is, Geng [2] and Shidfar [3].

The mathematical model (1) arising in control theory, physical, generalized voltage divider,
elasticity and the model of neurons in biology is studied in References [4—6].

According to our search, the fractional inverse source problems (1) are the subject of very few
works, for example, Sakamoto et al. [7] used the data u(xg, t)(xp € R) to determine ¢(t) once f(x) was
given, where the authors obtained a Lipschitz stability for ¢(¢). In Problem (1) for a one-dimensional
problem with special coefficients, Wei et al. [8] used the Fourier truncation method to solve an inverse
source problem with ¢(t) = 1. In Reference [9], using the mollification regularization method, Yang
and Fu determined the inverse spatial-dependent heat source problem. In Reference [10], Wei and
Wang considered a modified quasi boundary value regularization method for identifying this problem.
In Reference [11], using the quasi-reversibility regularization method, Yang and his group identified the
unknown source for a time fractional diffusion equation. In Reference [12], with the quasi-reversibility
regularization method, Wei and her group investigated a space-dependent source for the time
fractional diffusion equation. Actually, to our knowledge, in the case ¢(t), dependent on time,
the results of the inverse source problem for the time-fractional diffusion equation still has a limited
achievement, if ¢(t) # 0, we know Huy and his group investigated this problem by way of the
Tikhonov regularization method, see Reference [13]. In these regularization methods, the priori
parameter choice rule depends on the noise level and the priori bound. But in practice, to know exactly
this is very difficult. In the above research, by using Morozov’s Discrepancy Principle for choosing the
regularization parameter in Tikhonov regularization, the authors show error estimation for both the
priori choice rule parameter and the posteriori choice rule parameter.

In this paper, we use the mollification method to solve the inverse source problem. Instead of
receiving the correct input data, we only get the approximate input data. We assume that the measured
data in functions couple (g:(x) € £(R), ¢(t) € C[0, T]) satisfies

18 = 8ell 2wy < & ¢ = Pellcpor) <& ®3)

where the constant ¢ > 0 represents a noise level. It is known that the inverse source problem
mentioned above is ill-posed in the sense of Hadamard, that is, a solution of this problem (1) does not
always exist, if the solution does exist, it is not dependent continuously on the given data, meaning
that the error of the initial data is small, the error of the solution will be large. This makes trouble for

the numerical solution; here a regularization is required. The Fourier transform of a function F is
defined by

- = / U (x @

We imposed an a priori bound on the input data, that is,
1F ey < Mo k>0, ©®)

where M > 0is a constant, || - ||Hk denotes the norm in Sobolev space H¥(R) is defined

HY(R) = { F € %(R)

< oo}, and ||]-‘/|Hk(R) = (/’(1+Cz)k/2]?(é)‘2d§>2. (6)
R
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The outline of this paper is divided into the following sections: Section 2 gives some auxiliary
results. In Section 3, by the priori bound assumption of the exact solution and the priori parameter
choice rule, we present the convergence rate. In Section 4, we show the convergence rate between the
exact and regularized solutions under the posteriori parameter choice rule. Next, a numerical example
is proposed to show the illustration of the results in theory in Section 5. Finally, a conclusion is given
in Section 6.

2. Some Auxiliary Results
Before showing some lemmas, we recall the Mittag-Leffler function which is defined by

[=9) Zk

Ep(z) = kgom z€C, )

where B > 0 and « € R are arbitrary constant. In Reference [14], the properties of the Mittag-Leffler
function are discussed. Hereby, we present the following Lemmas of the Mittag-Leffler function which
can be found in Reference ([14], Chapter 1).

Lemma 1. Let 0 < By < B1 < 1. Then there exist the constants By, By, B3 depending only on B, By such that

forall B € [Bo, 1],

B 1
r(1i5)m SEpl®) < g1

B, 1 B;
’ E < 7
‘B,lx(x) — 1 —x

Vx <0,Va € R. 8)

These estimates are uniform for all B € [Bo, B1]-
Lemma 2. (see Reference [7]) For 0 < B < 1, we have:
Egp(—C) >0, {>0.
Proof. As for the proof, see Miller and Samko [15]. O

Lemma 3. (see Reference [7]) For ¢ > 0, & > 0 and a positive integer n € N, we have:

dr _n

WEﬁ,l(—ézfﬁ) =~ " Eg g1 (—57tF), >0,

d

ﬁ(tEﬁ,z(—Cztﬁ)) = Eg1(—2%tF), t>0. )

Lemma 4. (see Reference [7]) By Lemma 2 and Lemma 3, we have
Q qQ
[l Epp—e2mat = [ Eg (-t
0 0

Q
= ; / %Eﬁll(*ézt’y)dt = é(l - Eﬂé,l(iézga))’ Q > 0. (10)
0

Lemma 5. (see Reference [16]) For 0 < a < 1, ¢ € R, the following inequalities hold:

222

sup | (1+ 62)_1((1 —e” 17)| < max {zka, uc2}. (11)

¢eR

Proof. The proof can be found in Reference [9]. O
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Lemma6. Let p € (0,1) and ¢ € R, the following estimate holds

g ,
T -1 ey fFll=1
( / sF 1Eﬂ,ﬁ(—625’3)d9> = — 52_ 5 < 1= Epr(=TF) (12)
1—Ep(—TP)' ‘

Proof. If [¢| > 1 then since Eg1(—y) for 0 < B < 1 is a decreasing function for y > 0, we get
Eﬁ,l(*ngﬁ) < E/g,1(—Tﬁ). Whereupon

T

(/Sﬁ_lE (gzsﬁ)ds> : - e = : for [¢] > 1 (13)
/ i 1—Ep1(—G2TF) = 1—Epa(~TP)’ T

If || < 1 then since Egg(—y) with 0 < B < 1is a decreasing function for y > 0, we get
E’g,ﬁ(—(-fZSﬁ) > Eﬁ,ﬁ(—sﬁ), SO

T T -1

-1
_ _ 1
(/sﬁ 1Eﬁ,ﬁ(—§25ﬁ)d5> < (/55 1El3,5(—s/3)ds) = m, for || < 1. (14)

0 0

O

Lemma 7. Fora € (0,1) and & € R, from Lemma 6, one has:

1 B .
r B 222
(/SﬁilEﬁM_Czsﬁ)ds)e“?z (1 - E,B,l(*ngﬁ))e 1
0
242 , 1
4 = <) () if 15> 1,
— By (—TE))e T\ N1 Epa(=TF)
< (1 Eg( Tﬁ))e 51 .
1 4 1
2) e ) 1.
(1 — Elgll(—T,B)) eﬂt24§2 S ([Xz> (1 _ Eﬁ,](_T’S)) Zf ‘€| <
This gives
1 4 .
/ o222 : (0‘2> (113/51(7‘ﬂ)> (16)
(/SﬁilEﬂrﬁ(_‘:zsﬁ)ds)eT
0

3. The Priori Parameter Choice

Next, the error estimate of the mollification regularization method will be derived under the
priori parameter choice rule in this section. We consider the Gauss function

pu(x) = (X\lﬁe?, (17)

as the mollifer kernel, where « is a positive constant.
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We define an operator K, as

Kaf () == paf () = [ pu()f(x =t = [ pulx=1)f (1), (18)
R R
for f(x) € £(R). The original ill-posed problem is replaced by a new problem of searching its
approximation f; . (x) which is defined by

S S N
fﬁrﬂé(x) T \/277_[]1{6 szfs(g)d‘f»/ (19)

The Inverse Source Problem

By using the Fourier transform, the problem (1) is formulated in the following frequency space

Bii —
PRED L 20@n = 9@, @0 eRx T,
a(8,0) =0, FER, (20)
(g, T) = &), geR.
From the equation and the initial value in (20), we obtain
t
TG 1) = [(t=9)P T Epp(—2(t = )P )p()F(E)s. @
0
Or equivalently,
t
1 iéx — Y
u(x, 1) = \/§7T%{fz¢ (g/<t——s>ﬁ VEp (=83t —5)P)p(s)ds ) F(§)de. (22)
Set
Dp(G,t—5) = (¢ —5)P Egg(—*(t —5)F).
And (¢, T) = g(¢) in (20), one has
o = — 3@ ~ 23)
/D/g((f, T —s)p(s)ds
0
Using the inverse Fourier transform, then we obtain the formula of the source function f
_ 1 [ 8()
f&)—vﬁnge . dz. (24)
[ D, T = 5)p(s)ds
0

On the other hand, if ¢(t) is bounded by infie(o 1] |<p(t)] < ¢(t) < SUP;e0,1] ]¢(t)| = \|¢||C[0,T],

2

. The unbounded

T
-1
_ i 1 g
we have (/Dﬁ(ff,T s)<p(s)ds) can be written then o WO (£ (—2T9))
0
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2
function (115%—52Tﬁ)) can be seen as an amplification when ¢ — co. From now on, putting
—Epa(—

infyco,1) [¢(t)| = Ao, infrcjory [¢e(t)| = A1, sup,cor) [¢(t)] = lI¢llcro,r = ®. From (19) with a
is a regularization parameter and « depends on ¢, we found the regularized solution

Foul®) = 8:(¢) ~ (25)

a2z2

(/Dﬁ E, T —5)pels )ds)e KN

Using inverse Fourier transform, we get

&) e 6
</ 5(5, T — s)¢>€(s)¢7ls)eaz4é2

0

foalx F/

The main conclusion of this section are given below.

Theorem 1. Let f(x), given by (24), be the exact solution of (1) with exact data § € £ (R), and fex(x) is
approximation solution of f(x) with measured data g € £ (R). Then we obtain
a. If0 < k < 1,and choosing a(e) = (i) 24 we have a convergence estimate

M

1F() = fea()] &

< BT MBT (max{l, (/\Z)M}+R(A0,Al,§)>- 27)

1

b. Ifk > 1, by choosing «(e) = (%) ¥, we have a convergence estimate

1FO) = fen O ) < M2 (14 R(Ao, ALY, 28)
in which
4 1 |§||32(R)>
(AO/ -’41/ ) (1 — Eﬁl( )) (-Al + -AlAO . (29)

Proof. From (24) and (26), by the Parseval formula, the triangle inequality, we obtain

Hf fslx ) = Hf()ff/s\vé() S (R)
:‘ §<c> - (&)
/DﬁCT*S)(P (/Dﬁm SIAETHES
:HIl om T2l g + 15l 4w (30)
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in which
I = — 4] N 3(8) ,
/D/S(‘;T —s)¢(s)ds (/ & T —s)o( )ds)euzfz
0 0
= — $€) & ,
22 s . 22
([oset o) ( [ouer i)
T = 8(¢) _ () | o1

/ 2282
<O/Dﬁ(C,T—s>¢(s)ds>e i (/Dﬁ ET —s)pe(s )ds)e o

Next, we estimate the error by diving it into three steps as follows
. 2
Step 1: Estimate for || Z;[|", (k) We have

~ 0o 112
||2'1H3%(R) = H T £() (1—e g )
£(R)
([ s T—s5)9(s)ds)
0
_ —k _ee2 k7o |2
= e ta-eHa o,
282 2
< ?elﬂg ’(1 + gz)fk(l — e’Tg)‘ ||f||?{k(R) < M? max {zx4k,a4}~
Hence,
(21| (®) < M max {chk,zxz}~ (32)
Step 2: Estimate for || Z» ||;2(R), we get
~ ~ 2
1721w = H T S T = .
282 22 1%
([PpeT=909c5)ds)e ([ Dp(e T —)gels)ds)es
0 . 0 , ,
< AT §(6) ~ (@) ey s | ([ (7= Epp (27 —5)0)as e
0 - ,
< AP2@) - 8@ sup =
RI(1—Epy(—E2TF)e"s
< (1) (41 Epa(- Tﬁ))) - (33)

Hence, we conclude that

%l ey < (35) (410 Ega-7)) e
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Step 3: Estimate for || Z3 ||;2(R), we have

N . 2
||I3Hf%_(R) _ H . 3(%) — (%) -
([ PpeT=9)9(s)ds)es ([ Dyp(e, T —s)guls)ds)e A
0 0
T
[ Dp(e T =5)(els) — p(s) ) s .
_18(&) 0
e% T T wm
(/Dl;(é‘,T—s)cpg(s)ds) (/Dﬁ(é,T—sM)(s)ds) 2
0 0
From (35), we get
3(0) i
1730y = ATl = 9l gy | —— -
([ Dot = s)pts)as)e s A
O 3(0) i
< Ao = 9l m| —— -
([ Dot~ s)pts)as)e s A
0
-2 2 5 2 e
S (AOAl) ||‘P€ _(PHC[O,T] 232 |g(€)’ d@'
(1—Ep (—8%TF))e |
16 -2 ~
< (32) (Ao 0 = Ega-1P0)) "l = o [ RO
R
Hence,
4 -1
1%l ey < (55) (Aoa (0= Epa(-T9)) gl ey
Combining (32), (34) and (37), we received
(@) If0 <k <1by choosing a(e) = (/\S/l) H , we have a convergent estimation:

k
Hf() - fs,a(.)||%(R) is of order kI,
4
(b) Ifk >1, by choosing a(e) = (/f/l) , we have a convergent estimation:

1£() _fs,a(-)H$2(R) is of order 2.

8 of 19

(35)

(36)

(37)

(38)

(39)
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4. The Discrepancy Principle

Now, we present the posteriori regularization parameter choice rule. The most general of the
posteriori rules is the Morozov discrepancy principle [17]. Choosing the regularization parameter « as

the solution of the equation
T -1
awrr(s(m(3) @

Remark 1. To ensure the existence and uniqueness, we can choose 1 such that

22

T8(8) — &(9)

I(a) = He

where 77 > 1is a constant.

0<ety(log(log (1)) < Il e

To establish the existence and uniqueness of the solution of Equation (40), we consider the
following lemmas

Lemma 8. If e > 0 then there holds:

(a) 1(w) is a continous function.

() lim,_,g+ I(a) =0.

(c) hmtx—H—oo l(lX) = ||g€||"%(R)

(d) l(a) is a strictly increasing function.

The proof is very easy and we omit it here.
Lemma 9. The following inequality holds:

2

|k‘?§N§V—§@HBﬂR)§2&+U(bg<bg<2>)>{ (41)

Proof. Applying the triangle inequality and (40), we have

le=F 8@ — 8O gy < e~ F 8@~ &O gy + 180 — FO gy

< e F &) — 8@ gy + 180 — 80| e

§28+77<10g(10g (Z)))l (42)

Lemma 10. Forany 0 # ¢ € R, let s, t € [0, T] such that 0 < s < t < T, making the substitution &2 and

O

using the inequality: Ff;z;lﬁ < B3sP~1, we have the following estimate
T T -
B-1 2 B B;TP
/Dﬁ(é’,T—s)ds - /(Tf )P Eg (2T —5)P)ds < =g 43)
0 0

Lemma 11. If w is the solution of Equation (40), then the following inequality also holds:

4 Hp(BaT 0 M) <1og(1og(f)). w

o? n
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whereby M > ||fHHk(R)'

Proof. Due to (40), we receive

e+n(1og (log (1)) = |a—e g0

a2§2 «

<|la-eF)a@ - - F)go +a - g
T

<et|a-eF)a + )7 [ Dple T - )p()ds) (1+ (@)

0

£(R)
2

2 (R)

2 (R)

T
2:2

(1—e )+ ([ Dp(e, T = 5)9(s)ds)

0

< e-+sup M

¢eR

2
<e+ %Hﬁ@,n o, M), (45)

whereby
Hg(Bs, T, @, M) = (B) '®B;TP M. (46)

So

4 ‘}{[3(2§3/ ]ﬂ/(I)/dA/i) T
2 < v log <log (s)) (47)

O

Lemma 12. For 0 < a < 1, using the Lemma 7, the following inequality holds:

k+1 RN |
S((l—E;;/ﬂ—Tﬁ))) (=) (48)

sup
ZeRr

( éfz ) k‘F],847 gigz
1— Epg.(—8%TF)

The proof is similar to Lemma 7 and we omit it here.
Next, the main results of this section are shown under Theorem.

Theorem 2. Assume the condition ||g. — g|| < € where ||.|| denotes the 25 (R)-norm with € > 0 is a noise
level and the condition (5) holds, then there holds the following error estimate

1FQ) = feu Ol gy = 17O = Fen O gy

< (s 1n (1)) (AP e

1 k
@ 1 B T A
i () ) e (zen (e (e(3))) )

T Hg (B3, T, @, M) Hp(B3, T, @, M)|3]l 2 r)
+ (slog(log(e))> <77~A0(1_E/5,1(—T/5)) + ( T T T () Ao )) (49)
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Proof. By the Parseval formula, we get

1FC) = foaOll gy = 1FQ) = FeaOll gy my

e ”zge@) 5(0) ‘
- T
/DIS é’ T—5s d £(R)
0
+ &e(0) _ 8(@)
T T
</ Dp(6, T —s)g(s >ds)e E ( / Dﬁ<c,T—s>¢<s>ds>e“f £(®)
0 0
+ $(&) - 20

<Al @ + 1720 4 @) + 1173]| 2w

We can divide the proof into three steps as follows:
Step 1: Estimate for ||.7; H;(R), using the Holder inequality, we obtain

||~71||iﬂz(ug) =7 ' ZHEWZEZgAS(g) _g(g)’;z(m
([ Ppte, T —5)p(s)ds)
0
2 272 2
e T GREZGEEC)]

< (CY)FT x (C3)FT,

whereby

2 22 R 2k
Ci = <R/<<AO(1E,§1(§2Tﬁ))>2(e_ 45 88(5)_8(5)) ) +1d§>,

k_
k

From (52), we can check that (C3) ¥ as follows

<0/TDﬁ(§,T—S)¢(S)dS>e i (/Dﬂ T $)0u(s )ds) 22 |l m)

11 0f 19

(50)

(51)

(52)

(53)
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On the other hand, we deduce

1

() < (Z( i /ff ] GG §<c>)2d¢>
_ H (o Ei camy) | (@ -50) :(R)
< (H( Ao(l_Ejf(_ézTﬁ»)k“e“zfz (0 -50)] .z,
(e Ei(_Csz ) (e Fr0-50)] (R)> T e

To estimate C;, we give two Lemmas as follows:

Lemma 13. Assume that the condition ||g¢(¢) — g(¢) HKZZ(R) < ¢ holds. Then we have the following estimate

2 22 R
|(&a E;(—w)) ) e (20 -50) 0
< 8<log (log (Z))kﬂ (Eﬁ(kr T) 7{“/2(01?73, T,d),/\/l)>k+1. -

Proof. Using the Lemma 12 and setting Lg(k, T) = (O—E}gkjﬁ) , we get

2 k 222 R
|Gr—my) F E0-50)|

4\ k+1 k+1 k+1
8(?) (Ao(l—EﬁJ(—Tﬁ)))

k+1 = k+1
§ e(bg (log (T)> (Eﬁ(k, T) Hﬁ(B(;,T,q),M)) 56
€ Ao

2 (R)

IN

in which Hg (B3, T, ®, M) is defined in Lemma 11. [

Lemma 14. Let ¢ € R and exist M is a positive constant such that M > || f{| (g, we get

2 k 22 R
H (A0(1 — E/f:l(_ngﬁ))> - (e’ : g(¢) —8(5))‘

Proof. Applying the Lemma 4, we receive

@ 1 k
< .
HR) ~ AR (1—Eg,1(—Tﬁ)> M. 67
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£ (R)

T
;) (0480T [ Dpe T - o)pte)is
0

£(R)

H(Ao(l—Eﬁl g2Tﬂ> ( 2§2 —g(g))‘
Z‘:Z

_‘( 2a-e)F
g2 )k(l—E’T)‘M

AO(l_Eﬁ,l( c2Th
_AO ge ’(.Ao 1—E‘51( gZT,B)) (1+§2)k
< ® sup‘( ¢
= AR e N1+ 82 (1~ Epa (—2TP))

@ 1 k
S%ﬂ@—%«WQM' ©8)

222

)

M

)k(l—e*

O

Combining (54), (56) and (58), we have estimate (C?) F as follows

() < <£<log <10g (Z))k“(ﬁﬁ(k, T) Zf;;Bg, T,q>))k+1Mk

2
k

d 1 R\ B,
+«4’6“ (15,3,1(#)) ) MFT, (59)

From (51) to (59), so

TN\ 1/ L(k, T) Hg(Bs, T, ®)\ <!
HlegZ(R) : <€<10g (10g (€>> ( : A(f’? > M
k

P 1 k k%l 1 T =1\ k+1
+.A’6+1 (1—Eﬁ1(—Tﬁ))> Mk+1.<28+17<10g(10g<8)>) ) . (60)

Step 2: Estimate for H szf% (R) We have
2 (3:(8) —3(0)) ?
HJZ 19 (R) S H

22

T
(/Dﬁ(é,T—s)qa(s)ds)e 1
0

2 (R)

62 222 N 2
- H Ao (1 — EﬁA(*CZTﬁ)) o ( © —g(C)) 2 (R)
18 — 81%, 2
(@) (mem) o

Applying the Lemmas 11 and 12 in case k = 0, we know that

2 = 2
> T Hy(Bs, T, ®, M)
172/l g ) < (slog (108 (€)>> (11/10(1 — Eﬁ,l(_Tﬁ))> : (62)
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Hence, we conclude that

T Hg(Bs, T, ®, M)
Gl (sl (D) (RS2

Step 3: Estimate for || '-73";2(11&)' we have :

I < | -]
(/Dﬁ(g,T—sm(s)ds)eT (/Dﬁ(é,T—s)(pg( )ds )5 A
0 0
252 T
(" F8@) [ DpET—5)@els) ~plsDds
_H . 0 . (64)
(/Ppe T =)p(s)ds) ([ Dple T = s)gels)as) =
0 0
From (64), it gives
T
o= lcon [Dp@T-s)s
5l < | F50)
AoAl(/Dﬁ(é,T—s)ds) £ (R)
0
H‘P_‘PSHZC[OT] &2 282 2
< ' g 65
ST AL |0 Ea (e 8@ £(R) )

Applying Lemma 12 with k = 0 and Lemma 11, we know that

2 16 1 2Ml¢ = ¢elEior , »

2 —
T Hp(B3, T, ®, M) |8l 4 (r) \
< <slog(log(8))> < T BT At ) . (66)

Therefore,

T Hp (B3, T, @, M)l 2 ()
Hj?’Hfz(R) = (slog (IOg (8))) ( 17(1 — EBJ(—Tﬁ)).AoAl ) €7

Combining (60), (63) and (67), we get:
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1£() —fs,uc(-)ng(R) - HJ? _f/s\tx : ||$2

(R)
(1) (D)

1
P 1 k\ k+1 1 T —1\ k+1
i (mgem) ) (e (s(2)))

N (slog <log (Z))) ( Hp(B3, T, , M) N (Hﬁ(Ba,T@,M)HgAH%(R))). (68)

1Ay (1 — Eg1(—TF)) (1 —Eg1(—TF))ApA

Nohing that

T k+1
et 1 (1)) =o. g s (1)) =0 @

Combining (68) and (69), we conclude that

Hf — feu(. | Hf f/s:"()Hj’z(R) — 0,as ¢ = 0. (70)

The proof of Theorem 2 is completed. O

5. Numerical Experiments

In this section, in order to illustrate the usefulness of the proposed methods, we consider the
numerical examples intended. We carry out numerically above regularization methods to verify our
proposed methods. The numerical examples with T = 1, and g = 0.4, B = 0.95 are shown in this
section, respectively. In the following, we give an example which had the exact expression of the
solutions (u(x,t), f(x)). We use the computations in Matlab codes which are given by Podlubny [18]
for computing the generalized Mittag-Leffler function and the accuracy control in computing is 10~ 1.
We will do the numerical tests with x € [-7,7] and # = 1.1. The couple of (¢, g¢), which are
determined below, play as measured data with a random noise as follows:

¢e(-) = ¢(-) +e (2rand(.) — 1), g(-) = g(-) +¢ (2rand(.) — 1). (71)

Following Reference [9], we know the function rand(-) generates arrays of random numbers
whose elements are normally distributed with mean 0, variance 02 = 1 and standard deviation o = 1,
and it gives rand(size(.)) and rand(size(.)) returns an array of random entries that is the same size as g
and ¢, respectively. We can easily verify the validity of the inequality:

e — Pllcor <& lIge — 8l nm) <& (72)

In this example, we consider particularly a one-dimensional case of the problem (1) for f is an
exact data function.

Pu(x,t)
T = uxX(xr t) + ¢(t>f(x)’ ('x’ t) €eRx <O’ T]’

u(x,0)=0,x € R,
u(x,1) =g(x), xeR-

(73)

In this example, we choose the following solution

u(x,t) = (Epa(th) = Ega(—t#)) sin (g) (74)
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Then a simple computation yields

P0) = 3 Epa(tF) + SEpa(~19). 75)

and f(x) = sin (5 ). Moreover, we have u(x,0) = ug(x) = 0 and

u(x,1) = 1 (x) = g(x) = (Eﬁ,l(l) - Em(—l)) sin (g) (76)

Next, for computing the integral in the latter equality, see Reference [19], we use the fact that

X

By — p
[ B ) = )P Bt — )Py = LRI B iy
0
From ¢¢(.) = ¢(.) +¢ <2rand(.) - 1), we have
1 1
/sﬁflEﬁlﬁ(—ézsﬁ)%(l —s)ds = /sﬁflEﬁrﬁ(—gzsﬁ)(p(l —s)ds
0 0
1
+¢ (2rand() — 1) / B1Ep 5(—E25P)ds- (78)
0
Combining (72), (75) and (78), we have
1
5/E 1)+ ¢°E —¢2
O/sﬁlEﬁ,/g(—gzs/gl)cpg(l —s)ds = 1( pp+1(l) 1 i gf,ﬁﬂ( ¢ ))
B §(Eﬁ,ﬁ+1(—1) - é‘zEﬁ,ﬁH(—Cz))
4 —1+¢2
e(2rand(.) — 1
- <(,:2) (1= Epa(=23). (79)

In general, the numerical methods referenced by References [20,21] are summarized in three steps
as follows.
Step 1: Choose N to generate the spatial and temporal discretization in such a manner as:

X = ihx, Ax = % i=0,N. (80)

Obviously, the higher value of N will provide numerical results that are more accurate and stable.
Here we choose N = 100 is satisfied.

Step 2: Setting fea(x;) = fi, and f(x;) = f', constructing two vectors contained all discrete values
of fex and f denoted by A, and ¥, respectively.

Nea = [fo fla o f2] € RO,
¥ =[O f' .. f e ROHL 81)

Step 3: The estimation is defined:
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Relative error estimation:

N
\/'Z | feu (%) —f(xi)|,2g2(f7,7)
g Vi . (82)

N 2
igl ’f(xi)|ﬂgé(,7/7)

Absolute error estimation:

1 N
E, = N 1:21 | fe (i) — f(xi)|32”2(—7r7). )

Figure 1 shows a 2D figures between the sought and its regularized solutions for N = 100 and
B = 0.95. All figures are presented with e = 0.1, ¢ = 0.01 and & = 0.001, respectively.

In Tables 1 and 2 of this example, we show the error estimation both the priori and the posteriori
within case N = 100, that is, in Table 1 we show the error estimation for both the priori and the
posteriori at = 0.95 with ¢ € {0.1,0.01,0.001}, respectively. In Table 2, we show the relative error
estimation and absolute error estimation both the priori and the posteriori with e = 0.01 with the
different values of p € {0.2,0.4,0.6,0.8}, when ¢ is fixed and the mesh resolutions are increased,
the regularized solution convergence is better than that of the exact solution. From observing the
results from the tables and figures above, we conclude that when ¢ tends to zero, the regularized
solution approaches the exact solution.

0.5

-0.51

f and its approximation
o

A+
—6— fprioni
Fposteriori
15 . . . . .
-8 -6 -4 -2 0 2 4 6 8
x
(a)
1.5 15

051

-0.5F

f and its approximation
o

[ and its approximation
o

r —k— fexact

ak
—0— foriori —— foriori
15 | | | | | fposteriori s | | | | | Sposteriori
i -6 -4 2 0 2 4 6 8 ) K -4 2 0 2 4 6 8
T xr
(b) (c)

Figure 1. A comparison between the exact and regularized solutions for k = 1, B = 0.95 with N = 100.
(a) e = 0.1. (b) e = 0.01. (c) e = 0.001.
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Table 1. The error estimation between the exact and regularized solutions of this example at § = 0.95

with N = 100.
P Elﬁpri Efpos Efpn’ Efpas
0.1 0.279660141830880  0.163452531664322  (0.188256991900635  0.110030273632189
0.01 0.167130513450332  0.146077554813055  0.112506156619184  0.098334073898654
0.001  0.144054212078375  0.144599158066180  0.096972033479447  0.097338871212350

Table 2. The error estimation between the exact and regularized solutions with the different values of
B, e =0.01 and N = 100.

ﬁ Efpri Efpus Efpri Egpos

0.2 0.156401672575436  0.176079016470940  0.078962919638416  0.092189970426402
0.4  0.146364358305196  0.165153671589525  0.073895354649786  0.086469770247512
0.6  0.136338164832119  0.153413164488168  0.068833404246973  0.080322774289912
0.8  0.124692172130227  0.140316883268202  0.062953661590221  0.073465933522836

6. Conclusions

In this study, by using the mollification regularization method, we solved the inverse problem and
recovered the source term for time fractional diffusion equation with the time dependent coefficient.
In the theoretical results, which we have shown, we obtained the error estimates of both a priori and a
posteriori parameter choice rule methods based on a priori condition. In addition, in the numerical
results, it shows that the regularized solutions are converged to the exact solution. Furthermore, it also
shows that the smaller error of the input data, the better the convergence results.
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